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Lecture 16

Revision of lecture 15

o differentiation rules
@ higher-order derivatives
@ derivatives of trigonometric functions

@ the chain rule
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Lecture 16

Parametric equations

example:

plane as a function of a parameter t

\ Describe a point moving in the xy-
“time") by two functions

Position of paﬂiclé
at time ¢ T (f{0), glr)
x=x(t), y=y(t).

This may be the graph of a function,
but it need not be.
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Lecture 16

Parametric curve

DEFINITION  Parametric Curve

If x and y are given as functions

x=f), ry=gb
over an interval of f-values, then the set of points (x, ) = (f(¢), g(¢)) defined by
these equations is a parametric curve. The equations are parametric equations
for the curve.

The variable t is a parameter for the curve.
If t € [a, b], which is called a parameter interval, then

(f(a),g(a)) is the initial point, and
(f(b), g(b)) is the terminal point.

Equations and interval constitute a parametrisation of the curve.
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Lecture 16

Motion on a circle

example: parametrisation ‘x =cost, y=sint, 0<t<27

e yi=1
o~ Plecst. i) The above parametric equations
[cos 1, s . . L
describe motion on the unit circle:

The motion starts at initial point
t=m =0 (1,0) at t = 0 and traverses the

0 (1,0) circle x> 4+ y? = 1 counterclock-
wise once, ending at the terminal
point (1,0) at t = 2.
B
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Lecture 16

Moving along a parabola

example: parametrisation |[x =+vt, y=t, t>0

¢ v=x%x=0
What is the path defined by these equa-
tions?
Solve for y = f(x): P(V1, 1)
t=:1
y:t,xzzi.“:>y:x2 Ly
(1, 1)
Note that the domain of f is only [0, c0)! i
01 Starts at
=0
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Lecture 16

Parametrising a line segment

example:
Find a parametrisation for the line segment from (—2,1) to (3,5).

@ Start at (—2,1) for t = 0 by making the ansatz (“educated guess”)
x=-2+at, y=1+bt.
@ Implement the terminal point at (3,5) for t = 1:
3=-2+4+a, 5=1+5b.

@ We conclude that a=5, b =4.

@ Therefore, the solution based on our ansatz is:

x=—-245bt,y=14+4t,0<t<1],

which indeed defines a straight line.
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Lecture 16

Slopes of parametrised curves

A parametrised curve x = f(t), y = g(t) is differentiable at t if f and g
are differentiable at t.

If y is a differentiable function of x, say y = h(x), then y = h(x(t)) and
by the chain rule

dy _ dydx
dt  dxdt’
Solving for dy/dx yields the

Parametric Formula for dy /dx
If all three derivatives exist and dx/dr # 0,
dy dy/dt

dx ~ dx/dt’
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Lecture 16

Moving along an ellipse

example: Describe the motion of a particle whose position P(x, y) at
time t is given by

‘X:acost, y = bsint, 0§t§27r‘

and compute the slope at P.
@ Find the equation in (x,y) by eliminating t: Using cost = x/a,
sint = y/b and cos? t + sin? t = 1 we obtain

X2 )2 .,
2T
which is the equation of an ellipse.
o With % = —asint and % = bcost the parametric formula yields

dy dy/dt  bcost

dx  dx/dt —asint’

o . . dy b? x
Eliminating t again we obtain — = ——-—.
Ix acy
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Lecture 16

Higher-order derivatives

motivation: y' = 9L = ' =7

Remember y” = (y')': put y’ in place of y

e ) 2
Parametric Formula for dy [dx*

If the equations x = f(), v = g(r) define y as a twice-differentiable function of
x, then at any point where dx/dt # 0,

dly _ dy'/dt
el dx/dt’
: H .\, _ _bcost _:
example about ellipse continued: y" = — 22> gives
d [_bcost 4
y/l:dt[ asint]:_ﬁ 1 :_b_i
—asint a%sint a? y3
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Lecture 17

Revision of lecture 16

@ parametric equations

@ parametric differentiation
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Lecture 17

Implicit differentiation

problem: We want to compute y’ but do not have an explicit relation
y = f(x) available. Rather, we have an implicit relation

F(x,y)=0

between x and y.
example:

F(x,y)=x>+y?>—1=0.
solutions:

© Use parametrisation, for example, x = cos t, y = sint for the unit
circle: see previous lecture.

@ If no obvious parametrisation of F(x,y) = 0 is possible:

use | implicit differentiation ‘
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Lecture 17

Differentiating implicitly

example: Given y? = x, compute y’.
new method by differentiating implicitly:

o Differentiating both sides of the equation gives 2yy’ = 1.

1

@ Solving for y" we get |y’ = 5|

Compare with differentiating explicitly:

@ For y? = x we have the two explicit
solutions y| = \/x = y12 = £/x
with derivatives | y; , = iﬁ :

@ Compare with solution above:
substituting y = y1 0 = £/
therein reproduces the explicit
result.
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Lecture 17

General recipe

Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a differ-
entiable function of x.

2. Collect the terms with dy/dx on one side of the equation,
3. Solve for dy/dkx.

2 2

) .oX y
example: the ellipse again, - + 35 =1
P IPse€ again, — + b
2x  2yy’
R
2yy!  2x
2 2
2 x
Q)= ——5—, as obtained via parametrisation in the previous lecture.
acy
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Lecture 17

Higher-order derivatives

Implicit differentiation also works for higher-order derivatives.
example:
@ For the ellipse we had after differentiation:

2x  2yy"
2T =0
o Differentiate again:
2 2 2 "
227w
a b2
@ Now substitute our previous result y' = —g—§§ and simplify

(this takes a few steps):
, bt

a2y3’
as also obtained via parametrisation in the previous lecture.
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Lecture 17

Power rule for rational powers

Another application: Differentiate y = x9 using implicit differentiation.
® write y9 =xP

o differentiate: qyd 1ty = pxP71

@ solve for y’ as a function of x:
,_PxPt _pxPy py pxi _p e
q

T gyl gyix  gx

THEOREM & Power Rule for Rational Powers
If p/q is a rational number, then x/7 is differentiable at every interior point of the
domain of x79~! and

d

P =
L opfa = £ ylpfak-1
dx q

note: Above we have silently assumed that y’ exists! Therefore we have
‘motivated’ but not (yet) proven the theorem.
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Lecture 18

Revision of lecture 17

@ implicit differentiation
@ application to higher-order derivatives

@ power rule for rational powers
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Lecture 18

Linearisation

¥ v = f(x)

Slope =f(@ Close to" the point (a, f(a)), the tangent

y =f(a) + f(a)(x - a)
(point-slope form)

(a, fla))

is a “good” approximation for y = f(x).

.

DEFINITIONS Linearization, Standard Linear Approximation
If f is differentiable at x = ¢, then the approximating function

L(x) = f(a) + f'(a)(x — a)
is the linearization of f at ¢. The approximation
fx) =~ L(x)

of f by L is the standard linear approximation of f at a. The point x = « is the
center of the approximation.
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Lecture 18

Finding a linearisation

example: Compute the linearisation for f(x) = /14 x at a=0.
Use

| L(x) = F(a) + F'(a)(x — a) |-
We have £(0) = 1 and with '(x) = (1 + x)7*/2 we get f/(0) = 1, so

1
L(X):1+§X
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Lecture 18

How accurate is this approximation?

Magnify region around x = 0:

UI—QO.I 0 f}l,l 02
Approximation True value | True value — approximation |
Vi2z=1+ % = 1.10 1.095445 <107
V105 ~ 1 + g;_?_g = 1.025 1.024695 <107
V1.005 = 1 + % = 1.00250  1.002497 <107
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Lecture 18

Applications of linearisations and further theory

@ why useful? simplify problems, solve equations analytically, ...

@ Make phrases like “close to a point (a, f(a)) the linearisation is a
good approximation” mathematically precise in terms of differentials.
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Lecture 18

Extreme values of functions

DEFINITIONS  Absolute Maximum, Absolute Minimum
Let f be a function with domain D. Then f has an absolute maximum value on
D at a point c if

fx) = f(e) for all x in D

and an absolute minimum value on D at ¢ if

fx) = f(e) forallxin D.

example:
1 .
y=smx

These values are also called y = cosx
absolute extrema, or global

pud v X
extrema. B 0 b

2 2

,1 —
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Lecture 18

Same rule for different domains yields different extrema

example:

)

yoat
D=i0.2)

(d)

2

H Domain ‘ abs. max. ‘ abs. min. ‘

(@) || (—o0,00) none 0,at0
®) | 0.2 4,at2 | 0 ato
(c) (0,2] 4, at 2 none
(d) (0,2) none none
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Lecture 18

Existence of a global maximum and minimum

THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval [a, #], then f attains both an absolute max-
imum value M and an absolute minimum value m in [a, A]. That is, there are
numbers x| and x; in [, b] with f(x|) = m, f(x2) = M, andm = f(x) = M for
every other x in [a, b] (Figure 4.3).

(. M}
examples:
| =/
"M
"" 1 1 x 1 L
a X5 | b a b
- ]| R .
| Maximum and minimum
at endpoints
(xy.m)
Maximum and minimum
at interior points
x
Maximum at inlerior point, Minimum al interior point, 7
minimum at endpoint maximum at endpoint CO u nte rexa m p I eS .
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Lecture 18

Local (relative) extreme values

Absolute maximum
No greater value of fanywhere.
Local maximum Also a local maximum.
No greater value of
[ nearby.

Local minimum
No smaller value

[
: : of f nearby.
Absolute minimum : :
No smaller value of K | Local minimum |
Jfanywhere. Alsoa 1 1 I No smaller value of 1
local minimum. : : :f nearby. } :
] 1 1 | 1 X
a ¢ e d b

DEFINITIONS Local Maximum, Local Minimum
A function f has a local maximum value at an interior point ¢ of its domain if

f(x) = f(e) for all x in some open interval containing c.
A function f has a local minimum value at an interior point ¢ of its domain if

f(x) = f(e) for all x in some open interval containing c.

and extension of def. to endpoints via half-open intervals at endpoints
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Lecture 18

Finding extreme values

If f has a local maximum or minimum value at an interior point c of its

domain, and if f' is defined at c, then f'(c) = 0.

basic idea of L.ncalmaxim\um value
the proof: \ L

! |

S I
| I
I I
I I
I I
I 1

Secant slopes =

(never pogitive)
I

Secant slopes == 0
(never negative)
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|
|
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|
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Lecture 18

First derivative theorem for local extrema: proof

If f has a local maximum or minimum value at an interior point c of its
domain, and if f' is defined at c, then f'(c) = 0.

If at a local maximum c the derivative
. f(c+h)—1f(c)
f'(c) =1
(c) hl—rQ) h

exists, then f'(c) = lim f(c+h) —f(c) <0

h—0t h -

f h) —f

and Flc) = tim et =) o

h—0— h
so that f/(c) = 0. (Similarly for minimum.) O

note: the converse is false! (counterexample)
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Lecture 18

Conditions for extreme values

Where can a function f possibly have an extreme value? Recall the

If f has a local maximum or minimum value at an interior point ¢ of its
domain, and if f' is defined at c, then f'(c) = 0.

answer:
© at interior points where f' =0
@ at interior points where f’ is not defined
© at endpoints of the domain of f.

combine 1 and 2:

DEFINITION Critical Point

An interior point of the domain of a function f where f' is zero or undefined is a
critical point of f.
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