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Lecture 16

Revision of lecture 15

differentiation rules

higher-order derivatives

derivatives of trigonometric functions

the chain rule
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Lecture 16

Parametric equations

example:

Describe a point moving in the xy -
plane as a function of a parameter t
(“time”) by two functions

x = x(t) , y = y(t) .

This may be the graph of a function,
but it need not be.
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Lecture 16

Parametric curve

The variable t is a parameter for the curve.
If t ∈ [a, b], which is called a parameter interval, then

(f (a), g(a)) is the initial point, and

(f (b), g(b)) is the terminal point.

Equations and interval constitute a parametrisation of the curve.
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Lecture 16

Motion on a circle

example: parametrisation x = cos t , y = sin t , 0 ≤ t ≤ 2π

The above parametric equations
describe motion on the unit circle:

The motion starts at initial point
(1, 0) at t = 0 and traverses the
circle x2 + y2 = 1 counterclock-
wise once, ending at the terminal
point (1, 0) at t = 2π.
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Lecture 16

Moving along a parabola

example: parametrisation x =
√

t , y = t , t ≥ 0

What is the path defined by these equa-
tions?
Solve for y = f (x):

y = t , x2 = t ⇒ y = x2

Note that the domain of f is only [0,∞)!
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Lecture 16

Parametrising a line segment

example:

Find a parametrisation for the line segment from (−2, 1) to (3, 5).

Start at (−2, 1) for t = 0 by making the ansatz (“educated guess”)

x = −2 + at , y = 1 + bt .

Implement the terminal point at (3, 5) for t = 1:

3 = −2 + a , 5 = 1 + b .

We conclude that a = 5 , b = 4.

Therefore, the solution based on our ansatz is:

x = −2 + 5t , y = 1 + 4t , 0 ≤ t ≤ 1 ,

which indeed defines a straight line.
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Lecture 16

Slopes of parametrised curves

A parametrised curve x = f (t), y = g(t) is differentiable at t if f and g
are differentiable at t.
If y is a differentiable function of x , say y = h(x), then y = h(x(t)) and
by the chain rule

dy

dt
=

dy

dx

dx

dt
.

Solving for dy/dx yields the
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Lecture 16

Moving along an ellipse

example: Describe the motion of a particle whose position P(x , y) at
time t is given by

x = a cos t , y = b sin t , 0 ≤ t ≤ 2π

and compute the slope at P .

Find the equation in (x , y) by eliminating t: Using cos t = x/a,
sin t = y/b and cos2 t + sin2 t = 1 we obtain

x2

a2
+

y2

b2
= 1 ,

which is the equation of an ellipse.
With dx

dt
= −a sin t and dy

dt
= b cos t the parametric formula yields

dy

dx
=

dy/dt

dx/dt
=

b cos t

−a sin t
.

Eliminating t again we obtain
dy

dx
= −b2

a2

x

y
.
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Lecture 16

Higher-order derivatives

motivation: y ′ =
dy
dt
dx
dt

⇒ y ′′ = ?

Remember y ′′ = (y ′)′: put y ′ in place of y

example about ellipse continued: y ′ = −b
a

cos t
sin t

gives

y ′′ =
d
dt

[

−b
a

cos t
sin t

]

−a sin t
= − b

a2

1

sin3 t
= − b4

a2

1

y3
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Lecture 17

Revision of lecture 16

parametric equations

parametric differentiation
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Lecture 17

Implicit differentiation

problem: We want to compute y ′ but do not have an explicit relation
y = f (x) available. Rather, we have an implicit relation

F (x , y) = 0

between x and y .

example:

F (x , y) = x2 + y2 − 1 = 0 .

solutions:

1 Use parametrisation, for example, x = cos t, y = sin t for the unit
circle: see previous lecture.

2 If no obvious parametrisation of F (x , y) = 0 is possible:

use implicit differentiation
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Lecture 17

Differentiating implicitly

example: Given y2 = x , compute y ′.
new method by differentiating implicitly:

Differentiating both sides of the equation gives 2yy ′ = 1.

Solving for y ′ we get y ′ = 1
2y .

Compare with differentiating explicitly:

For y2 = x we have the two explicit
solutions |y | =

√
x ⇒ y1,2 = ±√

x

with derivatives y ′
1,2 = ± 1

2
√

x
.

Compare with solution above:
substituting y = y1,2 = ±√

x
therein reproduces the explicit
result.
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Lecture 17

General recipe

example: the ellipse again,
x2

a2
+

y2

b2
= 1

1
2x

a2
+

2yy ′

b2
= 0

2
2yy ′

b2
= −2x

a2

3 y ′ = −b2

a2

x

y
, as obtained via parametrisation in the previous lecture.
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Lecture 17

Higher-order derivatives

Implicit differentiation also works for higher-order derivatives.
example:

For the ellipse we had after differentiation:

2x

a2
+

2yy ′

b2
= 0

Differentiate again:

2

a2
+

2(y ′2 + yy ′′)

b2
= 0

Now substitute our previous result y ′ = −b2

a2
x
y

and simplify
(this takes a few steps):

y ′′ = −b4

a2

1

y3
,

as also obtained via parametrisation in the previous lecture.
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Lecture 17

Power rule for rational powers

Another application: Differentiate y = x
p

q using implicit differentiation.

write yq = xp

differentiate: qyq−1y ′ = pxp−1

solve for y ′ as a function of x :

y ′ =
p

q

xp−1

yq−1
=

p

q

xp

yq

y

x
=

p

q

y

x
=

p

q

x
p

q

x
=

p

q
x

p

q
−1

note: Above we have silently assumed that y ′ exists! Therefore we have
‘motivated’ but not (yet) proven the theorem.
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Lecture 18

Revision of lecture 17

implicit differentiation

application to higher-order derivatives

power rule for rational powers
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Lecture 18

Linearisation

“Close to” the point (a, f (a)), the tangent

y = f (a) + f ′(a)(x − a)

(point-slope form)

is a “good” approximation for y = f (x).
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Lecture 18

Finding a linearisation

example: Compute the linearisation for f (x) =
√

1 + x at a = 0.
Use

L(x) = f (a) + f ′(a)(x − a) :

We have f (0) = 1 and with f ′(x) = 1
2(1 + x)−1/2 we get f ′(0) = 1

2 , so

L(x) = 1 +
1

2
x .
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Lecture 18

How accurate is this approximation?

Magnify region around x = 0:
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Lecture 18

Applications of linearisations and further theory

why useful? simplify problems, solve equations analytically, . . .

Make phrases like “close to a point (a, f (a)) the linearisation is a
good approximation” mathematically precise in terms of differentials.
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Lecture 18

Extreme values of functions

These values are also called
absolute extrema, or global

extrema.

example:
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Lecture 18

Same rule for different domains yields different extrema

example:

Domain abs. max. abs. min.

(a) (−∞,∞) none 0, at 0

(b) [0, 2] 4, at 2 0, at 0

(c) (0, 2] 4, at 2 none

(d) (0, 2) none none
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Lecture 18

Existence of a global maximum and minimum

examples:

counterexamples?
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Lecture 18

Local (relative) extreme values

and extension of def. to endpoints via half-open intervals at endpoints
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Lecture 18

Finding extreme values

Theorem

If f has a local maximum or minimum value at an interior point c of its
domain, and if f ′ is defined at c, then f ′(c) = 0.

basic idea of

the proof:
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Lecture 18

First derivative theorem for local extrema: proof

Theorem

If f has a local maximum or minimum value at an interior point c of its
domain, and if f ′ is defined at c, then f ′(c) = 0.

Proof.

If at a local maximum c the derivative

f ′(c) = lim
h→0

f (c + h) − f (c)

h

exists, then f ′(c) = lim
h→0+

f (c + h) − f (c)

h
≤ 0

and f ′(c) = lim
h→0−

f (c + h) − f (c)

h
≥ 0

so that f ′(c) = 0. (Similarly for minimum.)

note: the converse is false! (counterexample)
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Lecture 18

Conditions for extreme values

Where can a function f possibly have an extreme value? Recall the

Theorem

If f has a local maximum or minimum value at an interior point c of its
domain, and if f ′ is defined at c, then f ′(c) = 0.

answer:

1 at interior points where f ′ = 0
2 at interior points where f ′ is not defined
3 at endpoints of the domain of f .

combine 1 and 2:
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