# MTH4100 Calculus I Week 6 (Thomas' Calculus Sections 3.5 to 4.2)

Rainer Klages

School of Mathematical Sciences Queen Mary, University of London

Autumn 2008

#### Revision of lecture 15

- differentiation rules
- higher-order derivatives
- derivatives of trigonometric functions
- the chain rule

### Parametric equations

#### example:



Describe a point moving in the *xy*plane as a function of a parameter *t* ("time") by two functions

$$x = x(t)$$
,  $y = y(t)$ .

This *may* be the graph of a function, but it need not be.

#### Parametric curve

#### DEFINITION Parametric Curve

If x and y are given as functions

 $x = f(t), \qquad y = g(t)$ 

over an interval of *t*-values, then the set of points (x, y) = (f(t), g(t)) defined by these equations is a **parametric curve**. The equations are **parametric equations** for the curve.

The variable t is a parameter for the curve. If  $t \in [a, b]$ , which is called a parameter interval, then

(f(a), g(a)) is the initial point, and (f(b), g(b)) is the terminal point.

Equations and interval constitute a parametrisation of the curve.

#### Motion on a circle

example: parametrisation 
$$x = \cos t$$
,  $y = \sin t$ ,  $0 \le t \le 2\pi$ 



The above parametric equations describe motion on the unit circle:

The motion starts at initial point (1,0) at t = 0 and traverses the circle  $x^2 + y^2 = 1$  counterclockwise once, ending at the terminal point (1,0) at  $t = 2\pi$ .

# Moving along a parabola

**example:** parametrisation 
$$x = \sqrt{t}$$
,  $y = t$ ,  $t \ge 0$ 

Solve for y = f(x):

$$y = t$$
,  $x^2 = t \Rightarrow y = x^2$ 

Note that the domain of f is only  $[0, \infty)!$ 



### Parametrising a line segment

#### example:

Find a parametrisation for the line segment from (-2, 1) to (3, 5).

• Start at (-2,1) for t = 0 by making the ansatz ("educated guess")

$$x = -2 + at$$
,  $y = 1 + bt$ .

• Implement the terminal point at (3,5) for t = 1:

$$3 = -2 + a$$
,  $5 = 1 + b$ .

- We conclude that a = 5, b = 4.
- Therefore, the solution *based on our ansatz* is:

$$x = -2 + 5t$$
,  $y = 1 + 4t$ ,  $0 \le t \le 1$ 

which indeed defines a straight line.

### Slopes of parametrised curves

A parametrised curve x = f(t), y = g(t) is differentiable at t if f and g are differentiable at t.

If y is a differentiable function of x, say y = h(x), then y = h(x(t)) and by the chain rule

$$rac{dy}{dt} = rac{dy}{dx} rac{dx}{dt} \; .$$

Solving for dy/dx yields the

**Parametric Formula for** dy/dxIf all three derivatives exist and  $dx/dt \neq 0$ ,

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} \, .$$

## Moving along an ellipse

**example:** Describe the motion of a particle whose position P(x, y) at time t is given by

$$x = a \cos t$$
,  $y = b \sin t$ ,  $0 \le t \le 2\pi$ 

and compute the slope at P.

• Find the equation in (x, y) by eliminating t: Using  $\cos t = x/a$ ,  $\sin t = y/b$  and  $\cos^2 t + \sin^2 t = 1$  we obtain

$$rac{x^2}{a^2} + rac{y^2}{b^2} = 1 \; ,$$

which is the equation of an ellipse.

• With  $\frac{dx}{dt} = -a \sin t$  and  $\frac{dy}{dt} = b \cos t$  the parametric formula yields

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{b\cos t}{-a\sin t} .$$
  
we obtain 
$$\frac{dy}{dx} = -\frac{b^2}{a^2}\frac{x}{v}.$$

Eliminating t again we obtain

### Higher-order derivatives

**motivation:** 
$$y' = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \Rightarrow y'' = ?$$

Remember y'' = (y')': put y' in place of y

Parametric Formula for  $d^2y/dx^2$ 

If the equations x = f(t), y = g(t) define y as a twice-differentiable function of x, then at any point where  $dx/dt \neq 0$ ,

$$\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt}.$$

**example** about ellipse continued:  $y' = -\frac{b}{a} \frac{\cos t}{\sin t}$  gives

$$y'' = \frac{\frac{d}{dt} \left[ -\frac{b}{a} \frac{\cos t}{\sin t} \right]}{-a \sin t} = -\frac{b}{a^2} \frac{1}{\sin^3 t} = -\frac{b^4}{a^2} \frac{1}{y^3}$$

#### Revision of lecture 16

- parametric equations
- parametric differentiation

# Implicit differentiation

**problem:** We want to compute y' but do not have an explicit relation y = f(x) available. Rather, we have an implicit relation

$$F(x,y)=0$$

between x and y.

example:

$$F(x,y) = x^2 + y^2 - 1 = 0$$
.

#### solutions:

- Use parametrisation, for example, x = cos t, y = sin t for the unit circle: see previous lecture.
- 2 If no obvious parametrisation of F(x, y) = 0 is possible:

use implicit differentiation

### Differentiating implicitly

**example:** Given  $y^2 = x$ , compute y'. new method by differentiating *implicitly*:

• Differentiating both sides of the equation gives 2yy' = 1.

• Solving for 
$$y'$$
 we get  $y' = \frac{1}{2y}$ .

Compare with differentiating *explicitly*:

- For  $y^2 = x$  we have the two *explicit* solutions  $|y| = \sqrt{x} \Rightarrow y_{1,2} = \pm \sqrt{x}$ with derivatives  $y'_{1,2} = \pm \frac{1}{2\sqrt{x}}$ .
- Compare with solution above: substituting  $y = y_{1,2} = \pm \sqrt{x}$ therein reproduces the explicit result.



### General recipe

#### **Implicit Differentiation**

- 1. Differentiate both sides of the equation with respect to x, treating y as a differentiable function of x.
- 2. Collect the terms with dy/dx on one side of the equation.
- 3. Solve for dy/dx.

example: the ellipse again, 
$$\frac{x^2}{x^2} + \frac{y^2}{b^2} = 1$$

$$\frac{2x}{a^2} + \frac{2yy'}{b^2} = 0$$

$$\frac{2yy'}{b^2} = -\frac{2x}{a^2}$$

$$y' = -\frac{b^2 x}{a^2 y}$$
, as obtained via parametrisation in the previous lecture.

### Higher-order derivatives

Implicit differentiation also works for higher-order derivatives. example:

• For the ellipse we had after differentiation:

$$\frac{2x}{a^2} + \frac{2yy'}{b^2} = 0$$

• Differentiate again:

$$\frac{2}{a^2} + \frac{2(y'^2 + yy'')}{b^2} = 0$$

• Now substitute our previous result  $y' = -\frac{b^2}{a^2}\frac{x}{y}$  and simplify (this takes a few steps):

$$y'' = -rac{b^4}{a^2}rac{1}{y^3} \; ,$$

as also obtained via parametrisation in the previous lecture.

### Power rule for rational powers

Another application: Differentiate  $y = x^{\frac{p}{q}}$  using implicit differentiation.

- write  $y^q = x^p$
- differentiate:  $qy^{q-1}y' = px^{p-1}$

• solve for y' as a function of x:  

$$y' = \frac{p}{q} \frac{x^{p-1}}{y^{q-1}} = \frac{p}{q} \frac{x^p}{y^q} \frac{y}{x} = \frac{p}{q} \frac{y}{x} = \frac{p}{q} \frac{x^{\frac{p}{q}}}{x} = \frac{p}{q} x^{\frac{p}{q}-1}$$

THEOREM 4 Power Rule for Rational Powers

If p/q is a rational number, then  $x^{p/q}$  is differentiable at every interior point of the domain of  $x^{(p/q)-1}$ , and

$$\frac{d}{dx}x^{p/q} = \frac{p}{q}x^{(p/q)-1}.$$

**note:** Above we have silently assumed that y' exists! Therefore we have 'motivated' but not (yet) proven the theorem.

## Revision of lecture 17

- implicit differentiation
- application to higher-order derivatives
- power rule for rational powers

### Linearisation



**DEFINITIONS** Linearization, Standard Linear Approximation If f is differentiable at x = a, then the approximating function

$$L(x) = f(a) + f'(a)(x - a)$$

is the linearization of f at a. The approximation

$$f(x)\approx L(x)$$

of f by L is the standard linear approximation of f at a. The point x = a is the center of the approximation.

### Finding a linearisation

**example:** Compute the linearisation for  $f(x) = \sqrt{1 + x}$  at a = 0. Use

$$L(x) = f(a) + f'(a)(x - a)$$
:

We have f(0) = 1 and with  $f'(x) = \frac{1}{2}(1+x)^{-1/2}$  we get  $f'(0) = \frac{1}{2}$ , so  $L(x) = 1 + \frac{1}{2}x$ .



# How accurate is this approximation?

Magnify region around x = 0:



| Approximation                                        | True value | True value - approximation |
|------------------------------------------------------|------------|----------------------------|
| $\sqrt{1.2} \approx 1 + \frac{0.2}{2} = 1.10$        | 1.095445   | <10 <sup>-2</sup>          |
| $\sqrt{1.05} \approx 1 + \frac{0.05}{2} = 1.025$     | 1.024695   | <10 <sup>-3</sup>          |
| $\sqrt{1.005} \approx 1 + \frac{0.005}{2} = 1.00250$ | 1.002497   | <10 <sup>-5</sup>          |

### Applications of linearisations and further theory

- why useful? simplify problems, solve equations analytically, ...
- Make phrases like "close to a point (a, f(a)) the linearisation is a good approximation" mathematically precise in terms of differentials.

#### Extreme values of functions

#### DEFINITIONS Absolute Maximum, Absolute Minimum

Let f be a function with domain D. Then f has an **absolute maximum** value on D at a point c if

 $f(x) \le f(c)$  for all x in D

and an **absolute minimum** value on D at c if

 $f(x) \ge f(c)$  for all x in D.

These values are also called absolute **extrema**, or **global** extrema.



## Same rule for different domains yields different extrema



(0, 2)

R. Klages (QMUL)

d

none

none

### Existence of a global maximum and minimum

#### THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval [a, b], then f attains both an absolute maximum value M and an absolute minimum value m in [a, b]. That is, there are numbers  $x_1$  and  $x_2$  in [a, b] with  $f(x_1) = m$ ,  $f(x_2) = M$ , and  $m \le f(x) \le M$  for every other x in [a, b] (Figure 4.3).



#### counterexamples?

R. Klages (QMUL)

MTH4100 Calculus 1

# Local (relative) extreme values



#### DEFINITIONS Local Maximum, Local Minimum

A function f has a local maximum value at an interior point c of its domain if

 $f(x) \le f(c)$  for all x in some open interval containing c.

A function f has a **local minimum** value at an interior point c of its domain if

 $f(x) \ge f(c)$  for all x in some open interval containing c.

and extension of def. to endpoints via half-open intervals at endpoints

### Finding extreme values

#### Theorem

If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then f'(c) = 0.



### First derivative theorem for local extrema: proof

#### Theorem

If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then f'(c) = 0.

#### Proof.

If at a local maximum c the derivative

$$f'(c) = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h}$$
  
exists, then 
$$f'(c) = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le 0$$
  
and 
$$f'(c) = \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h} \ge 0$$

so that f'(c) = 0. (Similarly for *minimum*.)

note: the converse is false! (counterexample)

R. Klages (QMUL)

MTH4100 Calculus 1

# Conditions for extreme values

Where can a function f possibly have an extreme value? Recall the

#### Theorem

If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then f'(c) = 0.

#### answer:

- **1** at interior points where f' = 0
- 2 at interior points where f' is not defined
- $\bigcirc$  at endpoints of the domain of f.

combine 1 and 2:

#### DEFINITION Critical Point

An interior point of the domain of a function f where f' is zero or undefined is a **critical point** of f.