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Lecture 10

Revision of Lecture 9

ǫ − δ definition of limit

how to find δ for a given ǫ

one-sided limits
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Lecture 10

Reminder: one-sided limits

right-hand limit: limx→c+ f (x) = L, where x > c

left-hand limit: limx→c− f (x) = M, where x < c

Limit laws, theorems for limits of polynomials and rational functions, and
the sandwich theorem all hold for one-sided limits.
There is also an ǫ − δ definition for one-sided limits (see book).
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Lecture 10

Limits of some piecewise linear function

example:

c limx→c− f (x) limx→c+ f (x) limx→c f (x)

0 n.a. 1 n.a.

1 0 1 n.a.

2 1 1 1

3 2 2 2

4 1 n.a. n.a.
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Lecture 10

Limits involving sin θ/θ

Theorem

lim
θ→0

sin θ

θ
= 1 (θ in radians)
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Lecture 10

Proof of limθ→0
sin θ
θ = 1

show that both right-hand and left-hand limits are equal to 1:

restrict to 0 < θ < π/2

sin θ < θ < tan θ

proof via areas of two triangles and
area sector; this implies

cos θ <
sin θ

θ
< 1 .

by sandwich theorem (taking the limit
as θ → 0+)

1 ≤ lim
θ→0+

sin θ

θ
≤ 1 .

symmetry: also limθ→0−
sin θ

θ = 1

⇒ lim
θ→0

sin θ

θ
= 1
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Lecture 10

Applications of this theorem

examples:

(1) Compute

lim
h→0

cos h − 1

h
= (sin2(h/2) = (1 − cos h)/2)

= lim
h→0

1 − 2 sin2(h/2) − 1

h

= lim
h→0

−sin(h/2)

h/2
sin(h/2) (θ = h/2)

= lim
θ→0

−sin θ

θ
sin θ (limit laws)

= −1 · 0 = 0
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Lecture 10

Applications of this theorem

(2) Compute

lim
x→0

sin 2x

5x
=

= lim
x→0

(2/5) · sin 2x

(2/5) · 5x

= lim
x→0

2

5

sin 2x

2x
(θ = 2x)

= lim
θ→0

2

5

sin θ

θ
(limit laws)

=
2

5
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Lecture 10

Limits as x approaches infinity

special case of a limit:

x approaching positive/negative infinity

example:

similar to one-sided limit

use slightly modified ǫ-δ
definition of a limit to capture
these cases

idea for this: choose a
particular δ-interval . . .
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Lecture 10

Limits as x approaches infinity: definition

Definition

1. We say that f (x) has the limit L as x approaches infinity and write

lim
x→∞

f (x) = L

if, for every number ǫ > 0, there exists a corresponding number M such
that for all x

x > M ⇒ |f (x) − L| < ǫ .

2. We say that f (x) has the limit L as x approaches minus infinity and
write

lim
x→−∞

f (x) = L

if, for every number ǫ > 0, there exists a corresponding number N such
that for all x

x < N ⇒ |f (x) − L| < ǫ .
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Lecture 10

Limits at infinity for f (x) = 1/x

example:

Show that

lim
x→∞

1

x
= 0

Let ǫ > 0 be given. We must find a
number M such that for all x

x > M ⇒
∣

∣

∣

∣

1

x
− 0

∣

∣

∣

∣

=

∣

∣

∣

∣

1

x

∣

∣

∣

∣

< ǫ

This holds if we choose M = 1/ǫ or
any larger positive number.

(similarly, proof of limx→−∞
1
x

= 0
and limx→±∞ k = k)
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Lecture 10

Limit laws as x approaches infinity

simply replace x → c by x → ±∞ in the previous limit laws theorem:

Theorem

If L, M and k are real numbers and
lim

x→±∞
f (x) = L and lim

x→±∞
g(x) = M , then

1 Sum Rule: limx→±∞(f (x) + g(x)) = L + M

2 Difference Rule: limx→±∞(f (x) − g(x)) = L − M

3 Product Rule: limx→±∞(f (x) · g(x)) = L · M
4 Constant Multiple Rule: limx→±∞(k · f (x)) = k · L
5 Quotient Rule: limx→±∞

f (x)
g(x) = L

M
, M 6= 0

6 Power Rule: If s and r are integers with no common factor and s 6= 0,
then

lim
x→±∞

(f (x))r/s = Lr/s

provided that Lr/s is a real number. (If s is even, we assume that
L > 0.)
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Lecture 11

Revision of Lecture 10

one-sided limits: example

limθ→0
sin θ

θ

limits as x approaches infinity
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Lecture 11

Calculating limits as x approaches infinity

examples: (1)

lim
x→∞

(

5 +
1

x

)

= (sum rule)

= lim
x→∞

5 + lim
x→∞

1

x
= (known results)

= 5

(2) method for rationals: pull out highest power of x

lim
x→∞

5x2 + 8x − 3

3x2 + 2
=

= lim
x→∞

x2(5 + 8/x − 3/x2)

x2(3 + 2/x2)

=
5

3

R. Klages (QMUL) MTH4100 Calculus 1 Week 4 14 / 43



Lecture 11

Horizontal asymptotes

example:
lim

x→∞

1

x
= 0

lim
x→−∞

1

x
= 0

The graph approaches the line

y = 0

asymptotically: the line is an
asymptote of the graph.
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Lecture 11

Calculating a horizontal asymptote

example: (already seen before)

The graph has the line
y = 5/3 as a horizontal
asymptote on both the left
and the right, because

lim
x→±∞

f (x) =
5

3
.
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Lecture 11

Another application of the sandwich theorem. . .

. . . which also holds for limits such as x → ±∞:
Find the horizontal asymptote of f (x) = 2 + sin x

x
.

0 ≤
∣

∣

sin x
x

∣

∣ ≤
∣

∣

1
x

∣

∣ (why?)

limx→±∞
∣

∣

1
x

∣

∣ = 0

therefore, by the sandwich
theorem,

lim
x→±∞

sin x

x
= 0

hence,

lim
x→±∞

(

2 +
sin x

x

)

= 2
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Lecture 11

Oblique asymptotes

If for a rational function f (x) = p(x)/q(x) the degree of p(x) is one
greater than the degree of q(x), polynomial division gives

f (x) = ax + b + r(x) with lim
x→±∞

r(x) = 0

y = ax + b is called an oblique (slanted) asymptote.

example: f (x) =
2x2 − 3

7x + 4
=

2

7
x − 8

49
+

−115

49(7x + 4)

lim
x→±∞

−115

49(7x + 4)
= 0, so that

y =
2

7
x − 8

49

is the oblique asymptote of f (x).
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Lecture 11

Infinite limits

example:
f (x) = 1

x
has no limit as x → 0+. How-

ever, it is convenient to still say that f (x)
approaches ∞ as x → 0+. We write

lim
x→0+

1

x
= ∞

Similarly,

lim
x→0−

1

x
= −∞

note: limx→0+
1
x

= ∞ really means that the limit does not exist because
1/x becomes arbitrarily large and positive as x → 0+!
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Lecture 11

One-sided infinite limits

example: find limx→1+
1

x−1 and limx→1−
1

x−1

lim
x→1+

1

x − 1
= ∞

and

lim
x→1−

1

x − 1
= −∞

as y = 1/(x − 1) is just y = 1/x
shifted by one to the right.
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Lecture 11

Two-sided infinite limits

example: what is the behaviour of f (x) = 1/x2 near x = 0?

lim
x→0

1

x2
= ∞

as the values of 1/x2 are positive and be-
come arbitrarily large as x → 0.
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Lecture 11

Towards a precise definition of infinite limits

For |x − x0| < δ, the graph of f (x) lies
above the line y = B below the line y = −B
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Lecture 11

Precise definition of infinite limits

Definition

1. We say that f (x) approaches infinity as x approaches x0 and write

lim
x→x0

f (x) = ∞

if, for every positive real number B, there exists a corresponding δ > 0
such that for all x

0 < |x − x0| < δ ⇒ f (x) > B .

2. We say that f (x) approaches negative infinity as x approaches x0

and write
lim

x→x0

f (x) = −∞

if, for every negative real number −B, there exists a corresponding δ > 0
such that for all x

0 < |x − x0| < δ ⇒ f (x) < −B .
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Lecture 11

Using the definition

Prove that

lim
x→0

1

x2
= ∞

given B > 0, find δ > 0 such that

0 < |x − 0| < δ ⇒ 1

x2
> B ,

where the last inequality is equivalent to |x | < 1/
√

B. Therefore,

choose δ = 1√
B

so that

0 < |x | < δ ⇒ 1

|x | >
1

δ
⇒ 1

x2
>

1

δ2
= B

Hence, by definition

lim
x→0

1

x2
= ∞
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Lecture 11

Vertical asymptotes

example:
lim

x→0+

1

x
= ∞

lim
x→0−

1

x
= −∞

The graph approaches the line

x = 0

asymptotically; the line is an
asymptote of the graph.
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Lecture 11

Summary: asymptotes for y = 1/x
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Lecture 11

An asymptote that is not two-sided

example: Find the horizontal and vertical asymptotes of

f (x) = − 8

x2 − 4

Check for the behaviour as x → ±∞ and as x → ±2 (why?):

limx→±∞ f (x) = 0, approached from below.

limx→−2− f (x) = −∞, limx→−2+ f (x) = ∞

limx→2− f (x) = ∞, limx→2+ f (x) = −∞ (because f (x) is even)

Asymptotes are
y = 0 , x = −2 , x = 2
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Lecture 11

A one-sided asymptote

curve approaches the x-axis from only one side
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Lecture 11

Asymptotes of another rational function

example: Find the asymptotes of

f (x) =
x2 − 3

2x − 4

Rewrite by polynomial

division:

f (x) =
x

2
+ 1 +

1

2x − 4

Asymptotes are

y = x
2 + 1 , x = 2

We say that x/2 + 1 dominates when x is large and that 1/(2x − 4)
dominates when x is near 2.
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Lecture 12

Revision of Lecture 11

horizontal asymptotes

oblique asymptotes

infinite limits

vertical asymptotes
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Lecture 12

Continuity
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Lecture 12

Intuitive approach towards continuity

Definition (informal)

Any function whose graph can be sketched over its domain in one
continuous motion, i.e. without lifting the pen, is an example of a
continuous function.

example:

This function is continuous on [0, 4] except at x = 1, x = 2 and x = 4.
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Lecture 12

Continuity at a point

More precisely, we need to define continuity at interior and at end points.
example:
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Lecture 12

Continuity at an interior point

For any x = c in the domain of f one defines:

right-continuous: limx→c+ f (x) = f (c)

left-continuous: limx→c− f (x) = f (c)

A function f is continuous at an interior point x = c if and only if it is
both right-continuous and left-continuous at c.

Continuity Test

A function f (x) is continuous at x = c if and only if it meets the following
three conditions:

1 f (c) exists.

2 f has a limit as x approaches c .

3 The limit equals the function value.

Note the difference to a function merely having a limit!
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Lecture 12

A catalogue of discontinuity types

If a function f is not continuous at a point c , we say that f is
discontinuous at c . Note that c need not be in the domain of f .
examples:

continuous not continuous jump discontinuity

infinite discontinuity oscillating discontinuity
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Lecture 12

Continuous functions

A function is continuous on an interval if and only if it is continuous
at every point of the interval.

A continuous function is a function that is continuous at every point
of its domain.

example:

y = 1/x is a continuous
function: It is continuous at
every point of its domain.

It has nevertheless a
discontinuity at x = 0: No
contradiction, because it is not
defined there.
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Lecture 12

Algebraic combinations of continuous functions

Previous limit laws straightforwardly imply:

example: f (x) = x and constant functions are continuous ⇒ polynomials
and rational functions are also continuous
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Lecture 12

Continuity for composites
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Lecture 12

Applying the previous two theorems

Note that y = sin x and y = cos x are everywhere continuous:

Show that y =
∣

∣

∣

x sin x
x2+2

∣

∣

∣
is everywhere continuous.

f (x) = x sin x
x2+2

is continuous
(why?)

g(x) = |x | is continuous (why?)

therefore y = g ◦ f (x) is
continuous
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Lecture 12

Continuous extension to a point

example:

f (x) =
sin x

x

is defined and continuous for all x 6= 0. As limx→0
sin x
x

= 1, it makes sense
to define a new function

F (x) =

{

sin x
x

for x 6= 0
1 for x = 0

Definition

If limx→c f (x) = L exists, but f (c) is not defined, we define a new function

F (x) =

{

f (x) for x 6= c
L for x = c ,

which is continuous at c . It is called the continuous extension of f (x) to c .
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Lecture 12

Finding continuous extensions

example: Find the continuous extension of f (x) =
x2 + x − 6

x2 − 4
to x = 2.

For x 6= 2, f (x) is equal to

F (x) =
x + 3

x + 2
(why?)

F (x) is the continuous extension of
f (x) to x = 2, as

lim
x→2

f (x) =
5

4
= F (2)
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Lecture 12

The intermediate value theorem

A function has the intermediate value property if whenever it takes on two
values, it also takes on all the values in between.
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Lecture 12

Geometrical interpretation of this theorem

Any horizontal line crossing the y -axis between f (a) and f (b) will
cross the curve y = f (x) at least once over the interval [a, b].

Continuity is essential: if f is discontinuous at any point of the
interval, then the function may “jump” and miss some values.
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