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Lecture 7

Revision of Lecture 6

composition of functions
note: (f ◦ g)(x) is different from (f · g)(x) !

shifting and scaling of functions: transform graph of

y = f (x)

to graph of

y = cf (ax + b) + d

trigonometric functions
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Lecture 7

Reading Assignment

Reminder: read

Thomas’ Calculus:

short Paragraph about ellipses, p.44/45

Section 1.6 about trigonometric functions,

particularly about
symmetries
law of cosines
transformations of trigonometric graphs
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Lecture 7

Periodic functions

note: for angle of measure θ and angle of measure θ + 2π we have the
very same trigonometric function values

example:

sin(θ + 2π) = sin θ

cos(θ + 2π) = cos θ

tan(θ + 2π) = tan θ

and so on

R. Klages (QMUL) MTH4100 Calculus 1 Week 3 4 / 40



Lecture 7

Graphs of trigonometric functions
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Lecture 7

An important trigonometric identity

Since x = r cos θ and y = r sin θ by definition, for a triangle with r = 1 we
immediately have cos2 θ + sin2 θ = 1 (why?)

This is an example of an identity, i.e., an equation that remains true
regardless of the values of any variables that appear within it.
counterexample: cos θ = 1

This is not an identity, because it is only true for some values of θ, not all.

R. Klages (QMUL) MTH4100 Calculus 1 Week 3 6 / 40



Lecture 7

First part of Chapter 2:

Limits
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Lecture 7

Average rate of change

example: growth of a fruit fly population measured experimentally

average rate of change from day 23 to day 45?

growth rate on day a specific day, e.g., day 23?
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Lecture 7

Growth rate on a specific day

study the average rates of change over increasingly short time intervals
starting at day 23:

lines approach the red tangent at point P with slope

350 − 0

35 − 14
≃ 16.7 flies/day
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Lecture 7

Summary: average rate of change and limit

x2 = x1 + h

Animation!
R. Klages (QMUL) MTH4100 Calculus 1 Week 3 10 / 40



Lecture 7

Limits

To move from

average rates of change

to

instantaneous rates of change

we need to consider

limits
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Lecture 7

Informal definition of a limit

Definition (informal)

Let f (x) be defined on an open interval about x0 except possibly at x0

itself. If f (x) gets arbitrarily close to the number L (as close to L as we
like) for all x sufficiently close to x0, we say that f approaches the limit L
as x approaches x0, and we write

lim
x→x0

f (x) = L ,

which is read “the limit of f (x) as x approaches x0.”

This is an informal definition, because:
What do “arbitrarily close” and “sufficiently close” mean?

This will be made mathematically precise later on . . .
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Lecture 7

Behaviour of a function near a point

example: How does the function

f (x) =
x2 − 1

x − 1

behave near x0 = 1?

problem: f (x) is not defined for x0 = 1

but: we can simplify for x 6= 1:

f (x) =
(x − 1)(x + 1)

x − 1
= x + 1 for x 6= 1

this suggests that
lim
x→1

f (x) = 1 + 1 = 2
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Lecture 7

Limit: a geometric view

graphs of these two functions:

We say that f (x) approaches the limit 2 as x approaches 1 and write

lim
x→1

f (x) = 2
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Lecture 7

The limit value does not depend on how the function is
defined at x0

All these functions have limit 2 as x → 1!
However, only for h we have equality of limit and function value:

lim
x→1

h(x) = h(1)
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Lecture 8

Revision of Lecture 7

periodicity of functions

average rate of change

intuitive approach to limits
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Lecture 8

Recall our informal definition of limit

Definition (informal)

Let f (x) be defined on an open interval about x0 except possibly at x0

itself. If f (x) gets arbitrarily close to the number L (as close to L as we
like) for all x sufficiently close to x0, we say that f approaches the limit L
as x approaches x0, and we write

lim
x→x0

f (x) = L .

R. Klages (QMUL) MTH4100 Calculus 1 Week 3 17 / 40



Lecture 8

Limits at every point

for any value of x0 we have

lim
x→x0

f (x) = lim
x→x0

x = x0

example: limx→3 x = 3

for any value of x0 we have

lim
x→x0

f (x) = lim
x→x0

k = k

example: for k = 5 we have

lim
x→−12

5 = lim
x→7

5 = 5
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Lecture 8

Limits can fail to exist!

no limit — three different examples:

values that jump values that grow too
large

values that oscillate too
much
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Lecture 8

Finding limits of simple functions

We have just “convinced ourselves” that for real constants k and c

lim
x→c

x = c

and
lim
x→c

k = k .

The following important theorem provides the basis to calculate limits of
functions that are arithmetic combinations of the above two functions (like
polynomials, rational functions, powers):

R. Klages (QMUL) MTH4100 Calculus 1 Week 3 20 / 40



Lecture 8

Limit laws

Theorem

If L,M, c and k are real numbers and
lim
x→c

f (x) = L and lim
x→c

g(x) = M , then

1 Sum Rule: limx→c(f (x) + g(x)) = L + M
The limit of the sum of two functions is the sum of their limits.

2 Difference Rule: limx→c(f (x) − g(x)) = L − M

3 Product Rule: limx→c(f (x) · g(x)) = L · M
4 Constant Multiple Rule: limx→c(k · f (x)) = k · L
5 Quotient Rule: limx→c

f (x)
g(x) = L

M
, M 6= 0

6 Power Rule: If s and r are integers with no common factor and s 6= 0,
then

lim
x→c

(f (x))r/s = Lr/s

provided that Lr/s is a real number. (If s is even, we assume that
L > 0.)
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Lecture 8

Using limit laws

. . . concerning proofs of this theorem see later . . .

examples:

limx→c(x
3 − 4x + 2) = (rules 1,2)

= limx→c x3 − limx→c 4x + limx→c 2 = (rules 3 or 6,4)
= c3 − 4c + 2

lim
x→c

x4 + x2 − 1

x2 + 5
=

c4 + c2 − 1

c2 + 5
(rules 5,1,2,3 or 6)

lim
x→−2

√

4x2 − 3 =
√

4(−2)2 − 3 =
√

13 (rules 6,2, 3 or 6,4)

So ”sometimes” you can just substitute the value of x .
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Lecture 8

Some consequences of the limit laws theorem
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Lecture 8

Eliminating zero denominators algebraically

example: Evaluate

lim
x→1

x2 + x − 2

x2 − x

substitution of x = 1? No!

but algebraic simplification is possible:

x2 + x − 2

x2 − x
=

(x + 2)(x − 1)

x(x − 1)
=

x + 2

x
, x 6= 1

therefore,

lim
x→1

x2 + x − 2

x2 − x
= lim

x→1

x + 2

x
= 3
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Lecture 8

Creating and cancelling a common factor

lim
x→0

√
x2 + 100 − 10

x2

substitution of x = 0?

trick: algebraic simplification
√

x2 + 100 − 10

x2
=

√
x2 + 100 − 10

x2

√
x2 + 100 + 10√
x2 + 100 + 10

=
(x2 + 100) − 100

x2(
√

x2 + 100 + 10)

=
1√

x2 + 100 + 10
therefore

lim
x→0

√
x2 + 100 − 10

x2
= lim

x→0

1√
x2 + 100 + 10

=
1

20
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Lecture 8

The Sandwich Theorem

function f sandwiched between g and h that have the same limit
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Lecture 8

Application

example: Show that limθ→0 sin θ = 0.
From the definition of
sin θ it follows that

−|θ| ≤ sin θ ≤ |θ|
We have

lim
θ→0

(−|θ|) = lim
θ→0

|θ| = 0

Using the sandwich
theorem, we therefore
conclude that

lim
θ→0

sin θ = 0

Similarly, one can prove
that limθ→0 cos θ = 1
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Lecture 8

Limits: trying to be more precise

We have used informal phrases such as “sufficiently close”.
But what do they mean?

A picture might help:

Let’s be precise: instead of

“for all x sufficiently close to x0 . . .”

write

“choose δ > 0 such that for all x , 0 < |x − x0| < δ . . .”
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Lecture 8

Revisiting the definition of limit

The informal definition was:

Let f (x) be defined on an open
interval about x0 except possibly
at x0 itself. If f (x) gets arbitrarily
close to L for all x sufficiently close
to x0, we say that f approaches
the limit L as x approaches x0, and
we write

lim
x→x0

f (x) = L .

Think of a function as a machine
and of ǫ as the desired output tol-
erance depending on the input ac-
curacy.
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Lecture 9

Revision of Lecture 8

limit laws

Some useful “tricks”

ǫ − δ definition of limit
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Lecture 9

Output-input relation in limits

example: output-input tolerance for a given ǫ of a linear function

If we want to keep y within ǫ = 2 units of y0 = 7, we need to keep x
within δ = 1 unit of x0 = 4.
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Lecture 9

The precise definition of a limit

Animation?! (or blackboard...)

This is a crucial concept!!

If you have trouble to understand it: read p.91-93 for further details!
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Lecture 9

Testing the definition, part 1

example: show that limx→1(5x − 3) = 2; graphically:

R. Klages (QMUL) MTH4100 Calculus 1 Week 3 33 / 40



Lecture 9

Testing the definition, part 2

example: show that limx→1(5x − 3) = 2; algebraically:

|f (x) − L| < ǫ: this is what we want
to be fulfilled!
substitute: |(5x − 3) − 2| < ǫ
⇔ |5x − 5| < ǫ

⇔ |x − 1| < 1
5ǫ (1)

given this inequality, we now need to
find a δ > 0 such that
0 < |x − x0| < δ is fulfilled

substitute: 0 < |x − 1| < δ (2)

matching (1) with (2) suggests to choose δ = 1
5ǫ, because:

if 0 < |x − 1| < δ = ǫ/5, then |f (x) − 2| = 5|x − 1| < 5δ= ǫ
for all ǫ.
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Lecture 9

General recipe of how to apply the definition
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Lecture 9

A slightly more complicated example, part 1

For the limit limx→5

√
x − 1 = 2 and ǫ = 1, find a δ > 0 such that for all x

0 < |x − 5| < δ ⇒ |
√

x − 1 − 2| < 1

asymmetric preimage of the ǫ-interval!
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Lecture 9

A slightly more complicated example, part 2

Find a δ > 0 such that |
√

x − 1 − 2| < 1 for all 0 < |x − 5| < δ:

1 solve |f (x) − L| < ǫ:
substitute: |

√
x − 1 − 2| < 1

⇔ −1 <
√

x − 1 − 2 < 1
⇔ 1 <

√
x − 1 < 3

⇔ 2 < x < 10
therefore (a, b) = (2, 10)

2 find δ:
find the distance from x0 = 5 to the nearest
endpoint of (2, 10), which is δ = 3. Then

x ∈ (5 − δ, 5 + δ) = (2, 8) ⊂ (2, 10)

means 0 < |x − 5| < 3, which implies

|
√

x − 1 − 2| < 1
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Lecture 9

Proof of the previous limit laws theorem

note:

the ǫ − δ definition of limit can be used to rigorously prove our limit laws
theorem
see p.97 for a proof of the Sum Rule,

lim
x→c

(f (x) + g(x)) = L + M

and Appendix 2 for a proof of product and quotient rules
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Lecture 9

One-sided limits

To have a limit L as x → c , a function f must be defined on both
sides of c (two-sided limit)

If f fails to have a limit as x → c , it may still have a one-sided limit if
the approach is only from the right (right-hand limit) or from the left
(left-hand limit)

We write
limx→c+ f (x) = L or limx→c− f (x) = M

The symbol x → c+ means that we only consider values of x greater
than c. The symbol x → c− means that we only consider values of x
less than c .
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Lecture 9

Jump function

example:

limx→0+ f (x) = 1

limx→0− f (x) = −1

limx→0 f (x)
does not exist
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