MTH4100 Calculus I

Week 3 (Thomas' Calculus Sections 2.1 to 2.4)

Rainer Klages

School of Mathematical Sciences
Queen Mary, University of London

Autumn 2008

Revision of Lecture 6

- composition of functions note: $(f \circ g)(x)$ is different from $(f \cdot g)(x)$!
- shifting and scaling of functions: transform graph of

$$
y=f(x)
$$

to graph of

$$
y=c f(a x+b)+d
$$

- trigonometric functions

Reading Assignment

Reminder: read

Thomas' Calculus:

- short Paragraph about ellipses, p.44/45
- Section 1.6 about trigonometric functions, particularly about
- symmetries
- law of cosines
- transformations of trigonometric graphs

Periodic functions

note: for angle of measure θ and angle of measure $\theta+2 \pi$ we have the very same trigonometric function values

example:

$$
\begin{aligned}
\sin (\theta+2 \pi) & =\sin \theta \\
\cos (\theta+2 \pi) & =\cos \theta \\
\tan (\theta+2 \pi) & =\tan \theta
\end{aligned}
$$

and so on

DEFINITION Periodic Function

A function $f(x)$ is periodic if there is a positive number p such that $f(x+p)=f(x)$ for every value of x. The smallest such value of p is the period of f.

Graphs of trigonometric functions

Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Period: 2π
(a)

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$
Range: $y \leq-1$ and $y \geq 1$
Period: 2π
(d)

Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Period: 2π
(b)

Domain: $x \neq 0, \pm \pi, \pm 2 \pi, \ldots$
Range: $y \leq-1$ and $y \geq 1$
Period: 2π
(e)

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$
Range: $-\infty<y<\infty$
Period: π
(c)

Domain: $x \neq 0, \pm \pi, \pm 2 \pi, \ldots$
Range: $-\infty<y<\infty$
Period: π
(f)

An important trigonometric identity

Since $x=r \cos \theta$ and $y=r \sin \theta$ by definition, for a triangle with $r=1$ we immediately have

$$
\cos ^{2} \theta+\sin ^{2} \theta=1 \text { (why?) }
$$

This is an example of an identity, i.e., an equation that remains true regardless of the values of any variables that appear within it. counterexample:

$$
\cos \theta=1
$$

This is not an identity, because it is only true for some values of θ, not all.

First part of Chapter 2:

Limits

Average rate of change

example: growth of a fruit fly population measured experimentally

- average rate of change from day 23 to day 45 ?
- growth rate on day a specific day, e.g., day 23 ?

Growth rate on a specific day

study the average rates of change over increasingly short time intervals starting at day 23 :

\boldsymbol{Q}	Slope of $P Q=\Delta p / \Delta t$ (flies/day)
$(45,340)$	$\frac{340-150}{45-23} \approx 8.6$
$(40,330)$	$\frac{330-150}{40-23} \approx 10.6$
$(35,310)$	$\frac{310-150}{35-23} \approx 13.3$
$(30,265)$	$\frac{265-150}{30-23} \approx 16.4$

lines approach the red tangent at point P with slope

$$
\frac{350-0}{35-14} \simeq 16.7 \text { flies/day }
$$

Summary: average rate of change and limit

DEFINITION Average Rate of Change over an Interval

The average rate of change of $y=f(x)$ with respect to x over the interval $\left[x_{1}, x_{2}\right]$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}, \quad h \neq 0 .
$$

Limits

To move from average rates of change to instantaneous rates of change we need to consider limits

Informal definition of a limit

Definition (informal)

Let $f(x)$ be defined on an open interval about x_{0} except possibly at x_{0} itself. If $f(x)$ gets arbitrarily close to the number L (as close to L as we like) for all x sufficiently close to x_{0}, we say that f approaches the limit L as x approaches x_{0}, and we write

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

which is read "the limit of $f(x)$ as x approaches x_{0}."
This is an informal definition, because:
What do "arbitrarily close" and "sufficiently close" mean?
This will be made mathematically precise later on ...

Behaviour of a function near a point

example: How does the function

$$
f(x)=\frac{x^{2}-1}{x-1}
$$

behave near $x_{0}=1$?

- problem: $f(x)$ is not defined for $x_{0}=1$
- but: we can simplify for $x \neq 1$:

$$
f(x)=\frac{(x-1)(x+1)}{x-1}=x+1 \text { for } x \neq 1
$$

- this suggests that

$$
\lim _{x \rightarrow 1} f(x)=1+1=2
$$

Limit: a geometric view

graphs of these two functions:

We say that $f(x)$ approaches the limit 2 as x approaches 1 and write

$$
\lim _{x \rightarrow 1} f(x)=2
$$

The limit value does not depend on how the function is defined at x_{0}

(a) $f(x)=\frac{x^{2}-1}{x-1}$
(b) $g(x)= \begin{cases}\frac{x^{2}-1}{x-1}, & x \neq 1 \\ 1, & x=1\end{cases}$
(c) $h(x)=x+1$

All these functions have limit 2 as $x \rightarrow 1$!
However, only for h we have equality of limit and function value:

$$
\lim _{x \rightarrow 1} h(x)=h(1)
$$

Revision of Lecture 7

- periodicity of functions
- average rate of change
- intuitive approach to limits

Recall our informal definition of limit

Definition (informal)

Let $f(x)$ be defined on an open interval about x_{0} except possibly at x_{0} itself. If $f(x)$ gets arbitrarily close to the number L (as close to L as we like) for all x sufficiently close to x_{0}, we say that f approaches the limit L as x approaches x_{0}, and we write

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

Limits at every point

for any value of x_{0} we have

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} x=x_{0}
$$

example: $\lim _{x \rightarrow 3} x=3$
for any value of x_{0} we have

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} k=k
$$

example: for $k=5$ we have

$$
\lim _{x \rightarrow-12} 5=\lim _{x \rightarrow 7} 5=5
$$

Limits can fail to exist!

no limit - three different examples:

values that jump

values that grow too large

values that oscillate too much

Finding limits of simple functions

We have just "convinced ourselves" that for real constants k and c

$$
\lim _{x \rightarrow c} x=c
$$

and

$$
\lim _{x \rightarrow c} k=k
$$

The following important theorem provides the basis to calculate limits of functions that are arithmetic combinations of the above two functions (like polynomials, rational functions, powers):

Limit laws

Theorem

If L, M, c and k are real numbers and

$$
\lim _{x \rightarrow c} f(x)=L \text { and } \lim _{x \rightarrow c} g(x)=M \text {, then }
$$

(1) Sum Rule: $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$ The limit of the sum of two functions is the sum of their limits.
(2) Difference Rule: $\lim _{x \rightarrow c}(f(x)-g(x))=L-M$
(3) Product Rule: $\lim _{x \rightarrow c}(f(x) \cdot g(x))=L \cdot M$
(9) Constant Multiple Rule: $\lim _{x \rightarrow c}(k \cdot f(x))=k \cdot L$
(3) Quotient Rule: $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}, M \neq 0$
(0) Power Rule: If s and r are integers with no common factor and $s \neq 0$, then

$$
\lim _{x \rightarrow c}(f(x))^{r / s}=L^{r / s}
$$

provided that $L^{r / s}$ is a real number. (If s is even, we assume that $L>0$.)

Using limit laws

... concerning proofs of this theorem see later ...
examples:

- $\lim _{x \rightarrow c}\left(x^{3}-4 x+2\right)=($ rules 1,2$)$
$=\lim _{x \rightarrow c} x^{3}-\lim _{x \rightarrow c} 4 x+\lim _{x \rightarrow c} 2=$ (rules 3 or 6,4)
$=c^{3}-4 c+2$
- $\lim _{x \rightarrow c} \frac{x^{4}+x^{2}-1}{x^{2}+5}=\frac{c^{4}+c^{2}-1}{c^{2}+5}($ rules $5,1,2,3$ or 6$)$
- $\lim _{x \rightarrow-2} \sqrt{4 x^{2}-3}=\sqrt{4(-2)^{2}-3}=\sqrt{13}($ rules $6,2,3$ or 6,4$)$

So " sometimes" you can just substitute the value of x.

Some consequences of the limit laws theorem

THEOREM 2 Limits of Polynomials Can Be Found by Substitution
If $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, then

$$
\lim _{x \rightarrow c} P(x)=P(c)=a_{n} c^{n}+a_{n-1} c^{n-1}+\cdots+a_{0} .
$$

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution If the Limit of the Denominator Is Not Zero
If $P(x)$ and $Q(x)$ are polynomials and $Q(c) \neq 0$, then

$$
\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)} .
$$

Eliminating zero denominators algebraically

example: Evaluate

$$
\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-x}
$$

- substitution of $x=1$? No!
- but algebraic simplification is possible:

$$
\frac{x^{2}+x-2}{x^{2}-x}=\frac{(x+2)(x-1)}{x(x-1)}=\frac{x+2}{x}, x \neq 1
$$

- therefore,

$$
\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-x}=\lim _{x \rightarrow 1} \frac{x+2}{x}=3
$$

Creating and cancelling a common factor

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+100}-10}{x^{2}}
$$

- substitution of $x=0$?
- trick: algebraic simplification

$$
\begin{aligned}
\frac{\sqrt{x^{2}+100}-10}{x^{2}} & =\frac{\sqrt{x^{2}+100}-10}{x^{2}} \frac{\sqrt{x^{2}+100}+10}{\sqrt{x^{2}+100}+10} \\
& =\frac{\left(x^{2}+100\right)-100}{x^{2}\left(\sqrt{x^{2}+100}+10\right)} \\
& =\frac{1}{\sqrt{x^{2}+100}+10}
\end{aligned}
$$

- therefore

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+100}-10}{x^{2}}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x^{2}+100}+10}=\frac{1}{20}
$$

The Sandwich Theorem

function f sandwiched between g and h that have the same limit

THEOREM 4 The Sandwich Theorem

Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in some open interval containing c, except possibly at $x=c$ itself. Suppose also that

$$
\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L .
$$

Then $\lim _{x \rightarrow c} f(x)=L$.

Application

example: Show that $\lim _{\theta \rightarrow 0} \sin \theta=0$.

(a)

- From the definition of $\sin \theta$ it follows that

$$
-|\theta| \leq \sin \theta \leq|\theta|
$$

- We have

$$
\lim _{\theta \rightarrow 0}(-|\theta|)=\lim _{\theta \rightarrow 0}|\theta|=0
$$

- Using the sandwich theorem, we therefore conclude that

$$
\lim _{\theta \rightarrow 0} \sin \theta=0
$$

- Similarly, one can prove that $\lim _{\theta \rightarrow 0} \cos \theta=1$

Limits: trying to be more precise

- We have used informal phrases such as "sufficiently close". But what do they mean?
- A picture might help:

- Let's be precise: instead of
"for all x sufficiently close to $x_{0} \ldots$.
write

$$
\text { "choose } \delta>0 \text { such that for all } x, 0<\left|x-x_{0}\right|<\delta \ldots \text { ". }
$$

Revisiting the definition of limit

The informal definition was:
Let $f(x)$ be defined on an open interval about x_{0} except possibly at x_{0} itself. If $f(x)$ gets arbitrarily close to L for all x sufficiently close to x_{0}, we say that f approaches the limit L as x approaches x_{0}, and we write

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

Think of a function as a machine and of ϵ as the desired output tolerance depending on the input accuracy.

Revision of Lecture 8

- limit laws
- Some useful "tricks"
- $\epsilon-\delta$ definition of limit

Output-input relation in limits

example: output-input tolerance for a given ϵ of a linear function

If we want to keep y within $\epsilon=2$ units of $y_{0}=7$, we need to keep x within $\delta=1$ unit of $x_{0}=4$.

The precise definition of a limit

Animation?! (or blackboard...)

DEFINITION Limit of a Function

Let $f(x)$ be defined on an open interval about x_{0}, except possibly at x_{0} itself. We say that the limit of $\boldsymbol{f}(\boldsymbol{x})$ as \boldsymbol{x} approaches \boldsymbol{x}_{0} is the number \boldsymbol{L}, and write

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

if, for every number $\epsilon>0$, there exists a corresponding number $\delta>0$ such that for all x,

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

This is a crucial concept!!
If you have trouble to understand it: read p.91-93 for further details!

Testing the definition, part 1

example: show that $\lim _{x \rightarrow 1}(5 x-3)=2$; graphically:

Testing the definition, part 2

example: show that $\lim _{x \rightarrow 1}(5 x-3)=2$; algebraically:

- $|f(x)-L|<\epsilon$: this is what we want to be fulfilled! substitute: $|(5 x-3)-2|<\epsilon$ $\Leftrightarrow \quad|5 x-5|<\epsilon$
$\Leftrightarrow|x-1|<\frac{1}{5} \epsilon$
- given this inequality, we now need to find a $\delta>0$ such that $0<\left|x-x_{0}\right|<\delta$ is fulfilled substitute: $0<|x-1|<\delta$
- matching (1) with (2) suggests to choose $\delta=\frac{1}{5} \epsilon$, because: if $0<|x-1|<\delta=\epsilon / 5$, then $|f(x)-2|=5|x-1|<5 \delta=\epsilon$ for all ϵ.

General recipe of how to apply the definition

How to Find Algebraically a δ for a Given f, L, x_{0}, and $\epsilon>0$

The process of finding a $\delta>0$ such that for all x

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

can be accomplished in two steps.

1. Solve the inequality $|f(x)-L|<\epsilon$ to find an open interval (a, b) containing x_{0} on which the inequality holds for all $x \neq x_{0}$.
2. Find a value of $\delta>0$ that places the open interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ centered at x_{0} inside the interval (a, b). The inequality $|f(x)-L|<\epsilon$ will hold for all $x \neq x_{0}$ in this δ-interval.

A slightly more complicated example, part 1

For the limit $\lim _{x \rightarrow 5} \sqrt{x-1}=2$ and $\epsilon=1$, find a $\delta>0$ such that for all x

$$
0<|x-5|<\delta \Rightarrow|\sqrt{x-1}-2|<1
$$

asymmetric preimage of the ϵ-interval!

A slightly more complicated example, part 2

Find a $\delta>0$ such that $|\sqrt{x-1}-2|<1$ for all $0<|x-5|<\delta$:
(1) solve $|f(x)-L|<\epsilon$:
substitute: $|\sqrt{x-1}-2|<1$
$\Leftrightarrow \quad-1<\sqrt{x-1}-2<1$
$\Leftrightarrow \quad 1<\sqrt{x-1}<3$
$\Leftrightarrow \quad 2<x<10$
therefore $(a, b)=(2,10)$
(2) find δ :
find the distance from $x_{0}=5$ to the nearest endpoint of $(2,10)$, which is $\delta=3$. Then

$$
x \in(5-\delta, 5+\delta)=(2,8) \subset(2,10)
$$

means $0<|x-5|<3$, which implies

$$
|\sqrt{x-1}-2|<1
$$

Proof of the previous limit laws theorem

note:

the $\epsilon-\delta$ definition of limit can be used to rigorously prove our limit laws theorem
see p. 97 for a proof of the Sum Rule,

$$
\lim _{x \rightarrow c}(f(x)+g(x))=L+M
$$

and Appendix 2 for a proof of product and quotient rules

One-sided limits

- To have a limit L as $x \rightarrow c$, a function f must be defined on both sides of c (two-sided limit)
- If f fails to have a limit as $x \rightarrow c$, it may still have a one-sided limit if the approach is only from the right (right-hand limit) or from the left (left-hand limit)
- We write

$$
\lim _{x \rightarrow c^{+}} f(x)=L \text { or } \lim _{x \rightarrow c^{-}} f(x)=M
$$

- The symbol $x \rightarrow c^{+}$means that we only consider values of x greater than c. The symbol $x \rightarrow c^{-}$means that we only consider values of x less than c.

Jump function

example:

- $\lim _{x \rightarrow 0^{+}} f(x)=1$
- $\lim _{x \rightarrow 0^{-}} f(x)=-1$
- $\lim _{x \rightarrow 0} f(x)$
does not exist

