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Lecture 7

Revision of Lecture 6

@ composition of functions
note: (f o g)(x) is different from (f - g)(x) !

@ shifting and scaling of functions: transform graph of
y =f(x)

to graph of

‘y:cf(ax—l—b)—l—d‘

@ trigonometric functions
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Lecture 7

Reading Assignment

Reminder: read

Thomas’ Calculus:

o short Paragraph about ellipses, p.44/45

o Section 1.6 about trigonometric functions,
particularly about

@ symmetries
@ law of cosines
@ transformations of trigonometric graphs
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Lecture 7

Periodic functions

note: for angle of measure 6 and angle
very same trigonometric function values

of measure 6 4 27 we have the

example:
P —“\
vi[\ | 2, \ sin(0 4+ 2w) =sind

[ 2 3 \

[ 1 I cos(f +27) = cos@

\2 tan(f0 +2r) =tan6
T and so on

DEFINITION  Periodic Function

A function f(x) is periodic if there is a positive number p such that
flx + p) = f(x) for every value of x. The smallest such value of p is the period

of f.
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Lecture 7

Graphs of trigonometric functions
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Lecture 7

An important trigonometric identity

Since x = rcos @ and y = rsin @ by definition, for a triangle with r =1 we
immediately have ‘ cos26) +sin2f = 1 ‘ (why?)

v

Plcos @, sin )

|sin 8| 1

|cos 8]

This is an example of an identity, i.e., an equation that remains true
regardless of the values of any variables that appear within it.

counterexample: cosf =1

This is not an identity, because it is only true for some values of 6, not all.
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First part of Chapter 2:
Limits

R. Klages (QMUL) MTH4100 Calculus 1 Week 3 7 /40



Lecture 7

Average rate of change

example: growth of a fruit fly population measured experimentally

g

350
Q(45, 340)
300
5
= 250 Ap =190
s 200
- -
£ P(23, 150) day
E 150 e -
=
100
50
i
0 10 20 30 40 50
Time (days)

@ average rate of change from day 23 to day 457
@ growth rate on day a specific day, e.g., day 237
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Lecture 7

Growth rate on a specific day

study the average rates of change over increasingly short time intervals
starting at day 23:

p
d—

Slope of PQ = Ap /At 250 B(35,350) o/~
o (flies /day) /LA 0145, 340)
: L300
@s,340) 0 -150 44 & 250

45=23 g

330 — 150 5 AR

s S g E

(40, 330) 20 -23 ° 10.6 3 150

310 — 150 _ 100
(35,310) 35 -2 ° 13.3 50 :
(30, 265) % ~ 16.4 0" w2 30 30 0 !

AU40) Time (days)

lines approach the red tangent at point P with slope
350 -0

B 11 16.7 flies/day
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Lecture 7

Summary: average rate of change and limit

¥
¥y =flx)
Qlxs, fixa))
I
1
I
I
I
| A_‘-
P(xy. flxy)) !
__________ J
Y Ax=nh
| |
0 R X2 ¥

DEFINITION  Average Rate of Change over an Interval

The average rate of change of y = f(x) withrespect to x over the interval [x,, x] is

Ay flx) = fGa) _ fla + k) = flx)
il 7 ‘ h# 0.

Animation!
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Lecture 7

To move from
average rates of change
to
instantaneous rates of change

we need to consider

limits
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Lecture 7

Informal definition of a limit

Definition (informal)

Let (x) be defined on an open interval about xo except possibly at xg
itself. If f(x) gets arbitrarily close to the number L (as close to L as we
like) for all x sufficiently close to xg, we say that f approaches the limit L
as x approaches xp, and we write

lim f(x)=1L,

X—X0

which is read “the limit of f(x) as x approaches xp.”

This is an informal definition, because:
What do “arbitrarily close” and “sufficiently close” mean?
This will be made mathematically precise later on ...
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Lecture 7

Behaviour of a function near a point

example: How does the function

f(x):X -1

x—1

behave near xg = 17
@ problem: f(x) is not defined for xo = 1

@ but: we can simplify for x # 1:

(x —1)(x+1)

1 =x+1forx#1

f(x) =

@ this suggests that
limf(x)=1+1=2

x—1
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Lecture 7

Limit: a geometric view

graphs of these two functions:

>t
e

We say that f(x) approaches the limit 2 as x approaches 1 and write

lim £(x) = 2
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Lecture 7

The limit value does not depend on how the function is

defined at x

(a) flx) =

-1
She =i x# 1
o] (b) glx) = (c) hix)=x+1

All these functions have limit 2 as x — 1!
However, only for h we have equality of limit and function value:

lim h(x) = h(1)
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Lecture 8

Revision of Lecture 7

@ periodicity of functions
@ average rate of change

@ intuitive approach to limits
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Lecture 8

Recall our informal definition of limit

Definition (informal)

Let f(x) be defined on an open interval about xy except possibly at xg
itself. If f(x) gets arbitrarily close to the number L (as close to L as we
like) for all x sufficiently close to xg, we say that f approaches the limit L
as x approaches xp, and we write

lim f(x)=L.

X—X0
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Lecture 8

Limits at every point

y=x
ppF———=
|
|
i
]
| x
X
y
k L=k
+
I
|
|
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L > X
0 Yo
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for any value of xg we have

lim f(x) = lim x = x
X—Xo X—X0

example: lim,_,3x =3

for any value of xp we have

lim f(x) = lim k=k
X—XQ X—XQ
example: for k =5 we have
lim 5=1lmb5=5

x——12 x—7
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Lecture 8

Limits can fail to exist!

no limit — three different examples:

y
¥
[0 x<0
"_[ I x=0 I
19
0 J 0 ) ¥
0. x=0
FPET
sin 3, x>0
=1
values that jump values that grow to0 3 |yes that oscillate too
large much
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Lecture 8

Finding limits of simple functions

We have just “convinced ourselves” that for real constants k and ¢

limx=c
X—C
and
lim k =k

X—C

The following important theorem provides the basis to calculate limits of
functions that are arithmetic combinations of the above two functions (like
polynomials, rational functions, powers):

R. Klages (QMUL) MTH4100 Calculus 1 Week 3 20 / 40



Lecture 8
Limit laws

If L, M, c and k are real numbers and
lim f(x) =L and lim g(x) =M , then
X—C X—C

Q Sum Rule: limy_(f(x)+g(x)) =L+ M
The limit of the sum of two functions is the sum of their limits.

Difference Rule: limy_,(f(x) —g(x))=L—-M
Product Rule: limy_(f(x)-g(x))=L-M
Constant Multiple Rule: limy_c(k - f(x)) =k - L

Quotient Rule: limy_ . % = ﬁ . M#£0

© 0000

Power Rule: If s and r are integers with no common factor and s # 0,
h
then lim (F(x))7® = L'/*

X—C

provided that L'/S is a real number. (If s is even, we assume that
L>0.)
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Lecture 8

Using limit laws

. concerning proofs of this theorem see later ...
examples:

o lime_c(x3 —4x+2) = (rules 1,2)
= limy_cx3 — limy_c4x + limy_.2 = (rules 3 or 6,4)

=c3—4c+2

XXl At
o)l[)nc 215 - 213 (rules 5,1,2,3 or 6)
o lim 4x2 -3 = —2)2 —3=1+/13 (rules 6,2, 3 or 6,4)
xX——=2

So "sometimes” you can just substitute the value of x.

R. Klages (QMUL) MTH4100 Calculus 1 Week 3 22 / 40



Lecture 8

Some consequences of the limit laws theorem

THEOREM 2 Limits of Polynomials Can Be Found by Substitution
IfP(x) = a,x" + a,_;x" ' + <=+ + ag, then

lim P(x) = P(c) = a,¢" + ap-1¢"' + -+ + aq.

X=*c

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution
If the Limit of the Denominator Is Not Zero

If P(x) and O(x) are polynomials and Q(¢) # 0, then
o P _ P
e 0x) ~ 0le)
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Lecture 8

Eliminating zero denominators algebraically

example: Evaluate

@ substitution of x = 17 No!/

@ but algebraic simplification is possible:

P4x—2 (x+2)(x—1) x+2

= = 1
x2 — x x(x — 1) x X7
@ therefore,
X2 4 x=2 Coox+2
I|m27:hm =3
x—1 X —X x—1 X
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Lecture 8
Creating and cancelling a common factor

lim Vx2 4100 — 10
x—0 X2

@ substitution of x = 07
@ trick: algebraic simplification
Vx2 4100 — 10 V/x2 4100 — 10 v/x2 + 100 + 10
x2 x2 Vx2+100 + 10
(x? 4 100) — 100
x2(v/x2 4100 + 10)
1

VX2 4100 + 10
VZF100-10 _ 1 1

@ therefore

l - -
< X2 <20 /X2 1100 +10 20
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Lecture 8

The Sandwich Theorem

g

0 C ::

function f sandwiched between g and h that have the same limit

THEOREM 4 The Sandwich Theorem

Suppose that g(x) = f(x) = h(x) for all x in some open interval containing ¢,
except possibly at x = ¢ itself. Suppose also that

lim g(x) = lim A(x) = L.
X=¥L Xty

Then lim,—. f(x) = L.
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Lecture 8

Application

example: Show that limg_gsinf = 0. .
@ From the definition of

sin 8 it follows that

—10] <sinf < |6|
ol @ We have
-\I )
L oine lim (~16]) = lim [6] = 0
A >0 @ Using the sandwich
-7 - theorem, we therefore
-1 v=-|8al conclude that
limsind =0
(a) 0—0

@ Similarly, one can prove
that limg_gcosf =1
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Lecture 8

Limits: trying to be more precise

@ We have used informal phrases such as “sufficiently close”.
But what do they mean?

@ A picture might help:
i i

PR -
X \

i
Xp— ] X Xy + 8

X

T

@ Let's be precise: instead of
“for all x sufficiently close to xg ...

write
“choose & > 0 such that for all x, 0 < |x — x| <9 ..."
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Lecture 8

Revisiting the definition of limit

The informal definition was:

Let f(x) be defined on an open

interval about xy except possibly

at xg itself. If f(x) gets arbitrarily

close to L for all x sufficiently close
| [ SO lies to xp, we say that f approaches
§ifuiy [ 0 hoet the limit L as x approaches xp, and
L—ed we write

L+e

lim f(x)=1L.
for all x # x; X0

in here
8
T - y 5
, T 7
0
Xp—08 xy Xxy+8

Think of a function as a machine
and of ¢ as the desired output tol-
erance depending on the input ac-
curacy.

=}
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Lecture 9

Revision of Lecture 8

@ limit laws

@ Some useful “tricks”

@ ¢ — 0 definition of limit
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Lecture 9

Output-input relation in limits

example: output-input tolerance for a given € of a linear function

y=2x-1
Upper bound:
¥y=9
9 T
To satisfy i
this T /l
5 1
: : Lower bound:
| ] y=35
U
i ]
Ly | .
0 345
bl )
Restrict
to this

If we want to keep y within € = 2 units of yy = 7, we need to keep x
within § = 1 unit of xg = 4.
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Lecture 9

The precise definition of a limit

Animation?! (or blackboard...)

DEFINITION  Limit of a Function
Let f(x) be defined on an open interval about x;, except possibly at xy itself. We
say that the limit of f(x) as x approaches x; is the number L, and write

lim fix) =L,

X=Xy

if, for every number € > 0, there exists a corresponding number 6 > 0 such that
for all x,

0<|x—x| <8 = |flx) — L| <.

This is a crucial concept!!
If you have trouble to understand it: read p.91-93 for further details!
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Lecture 9

Testing the definition, part 1

example: show that limy_,1(5x — 3) = 2; graphically:

id

‘1'=5x—7
2+
/
|
2fmmm e |
|
/ |
I
2—¢€ +
1 ]
/ [
i |
0 €] 8 *
|—§ 1 ]+§
3
NOT TO SCALE
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Lecture 9

Testing the definition, part 2

example: show that lim,_,1(5x — 3) = 2; algebraically:

; ot @ |f(x) — L| < e: this is what we want
Bds to be fulfilled!

. substitute: [(5x —3) —2| <€

= Vi < |bx —5| <e

ERNTT e |lx—1 < e (1)

@ given this inequality, we now need to

= find a 6 > 0 such that

e 0 < |x — xo| < ¢ is fulfilled
substitute: ‘0 <|x—-1] < 5‘ (2)

® matching (1) with (2) suggests to choose § = %¢, because:
if 0 < |x—1] <d =¢/5, then |f(x) —2| =5|x — 1| < 5i=¢
for all e.
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Lecture 9

General recipe of how to apply the definition

How to Find Algebraically a & for a Given f, L, xo, ande > 0
The process of finding a & > 0 such that for all x

0<|x—x| <d = [f(x) —L| < e
can be accomplished in two steps.

1. Solve the inequality | f(x) — L| < e to find an open interval (a, b) contain-
ing xo on which the inequality holds for all x # x;.

2. Find a value of 8 > ( that places the open interval (x, — 8, xo + 8) centered
at xg inside the interval (a, ). The inequality | f(x) — L| < e will hold for all
x # Xp in this 8-interval.
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Lecture 9

A slightly more complicated example, part 1

For the limit limy_5+/x —1=2and e = 1, find a § > 0 such that for all x
O<|x=5<d=|vVx—-1-2|<1
v

&

yv=Y%x=1
3 |
|
I I
I I
] |
2 _________ ] ]
I I |
I I |
I I I
I I I
] L) ] T
I I | I
I 3 I 3 | |
! 1 1 |
| | 1 |
IS YT (Y R T Y
o 1 2 3 8 10
NOT TO SCALE

asymmetric preimage of the e-interval!
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Lecture 9

A slightly more complicated example, part 2

Find a 6 > 0 such that |[v/x —1—2| <1 forall 0 < |[x — 5| < ¢:
Q solve |f(x) — L| < e
substitute: [/x —1—-2| <1
& —l<vyx—-1-2<1

& 1<yx—-1<3
& 2<x<10
y=Va-1
. i therefore (a, b) = (2, 10)
1 - Q find &:
- find the distance from xg = 5 to the nearest
/ R | endpoint of (2,10), which is § = 3. Then
x € (5-6,5+0)=(2,8) C (210)
means 0 < |x — 5| < 3, which implies
[Vx—-1-2|<1
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Lecture 9

Proof of the previous limit laws theorem

note:

the € — § definition of limit can be used to rigorously prove our limit laws
theorem

see p.97 for a proof of the Sum Rule,

(fx)+e(x))=L+M

[im
X—C

and Appendix 2 for a proof of product and quotient rules
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Lecture 9

One-sided limits

@ To have a limit L as x — ¢, a function f must be defined on both
sides of ¢ (two-sided limit)

o If f fails to have a limit as x — c¢, it may still have a one-sided limit if
the approach is only from the right (right-hand limit) or from the left
(left-hand limit)

@ We write

‘ limy_c+ f(x) = L‘ or ‘ lim,_ .- f(x) = M‘

@ The symbol x — ¢' means that we only consider values of x greater
than c. The symbol x — ¢~ means that we only consider values of x
less than c.
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Lecture 9

Jump function

example:
y
X
v X
[+l
1 .
@ lim, o+ f(x)=1
o lim,_ - f(x)=-1
X
0 @ limy_of(x)
does not exist
-1
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