MTH4100 Calculus I

Week 2 (Thomas' Calculus Sections 1.3 to 1.6)

Rainer Klages

School of Mathematical Sciences
Queen Mary, University of London

Autumn 2008

Revision of Lecture 3

- Some absolute value properties and their proofs:

$$
|-a|=|a|,|a b|=|a||b|,\left|\frac{a}{b}\right|=\frac{|a|}{|b|} \text { for } b \neq 0
$$

- Three important inequalities and their proofs:
- Triangle inequality

$$
|a+b| \leq|a|+|b|
$$

- Arithmetic-geometric mean inequality

$$
\sqrt{a b} \leq \frac{1}{2}(a+b) \quad \text { for } a, b \geq 0
$$

- Cauchy-Schwarz inequality

$$
(a c+b d)^{2} \leq\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)
$$

Reading Assignment

Reminder: read

Thomas' Calculus, Section 1.2: Lines, Circles, and Parabolas

What is a function?

examples:

height of the floor of the lecture hall depending on distance; stock market index depending on time; volume of a sphere depending on radius
What do we mean when we say

$$
y \text { is a function of } x \text { ? }
$$

Symbolically, we write $y=f(x)$, where

- x is the independent variable (input value of f)
- y is the dependent variable (output value of f at x)
- f is a function (" rule that assigns x to y " - further specify!)
a function acts like a "little machine":

Important: uniqueness - only one value $f(x)$ for every x !

Definition of a function

Definition

A function from a set D to a set Y is a rule that assigns a unique (single) element $f(x) \in Y$ to each element $x \in D$.

Domain, range and some notation

- The set D of all possible input values is called the domain of f.
- The set R of all possible output values of $f(x)$ as x varies throughout D is called the range of f. note: $R \subseteq Y$!
- We write f maps D to Y symbolically as

$$
f: D \rightarrow Y
$$

- We write f maps x to $y=f(x)$ symbolically as

$$
f: x \mapsto y=f(x)
$$

Note the different arrow symbols used!

Natural domain

The natural domain is the largest set of real x which the rule f can be applied to. examples:

Function	Domain $x \in D$	Range $y \in R$
$y=x^{2}$	$(-\infty, \infty)$	$[0, \infty)$
$y=1 / x$	$(-\infty, 0) \cup(0, \infty)$	$(-\infty, 0) \cup(0, \infty)$
$y=\sqrt{x}$	$[0, \infty)$	$[0, \infty)$
$y=\sqrt{1-x^{2}}$	$[-1,1]$	$[0,1]$

note: A function is specified by the rule f and the domain D :

$$
f: x \mapsto y=x^{2}, \quad D(f)=[0, \infty)
$$

and

$$
f: x \mapsto y=x^{2}, \quad D(f)=(-\infty, \infty)
$$

are different functions!

Graphs of functions

Definition

If f is a function with domain D, its graph consists of the points (x, y) whose coordinates are the input-output pairs for f :

$$
\{(x, f(x)) \mid x \in D\}
$$

examples:

given the function, one can sketch the graph

$y=f(x)$ is the height of the graph above/below x.

Arbitrary curves vs. graphs of functions

recall: A function f can have only one value $f(x)$ for each x in its domain! This leads to the vertical line test:

No vertical line can intersect the graph of a function more than once.

(b) $y=\sqrt{1-x^{2}}$

(c) $y=-\sqrt{1-x^{2}}$
(a) $x^{2}+y^{2}=1$

Piecewise defined functions

A piecewise defined function is a function that is is described by using different formulas on different parts of its domain.

examples:

- the absolute value function

$$
f(x)=|x|=\left\{\begin{aligned}
x & , x \geq 0 \\
-x & , x<0
\end{aligned}\right.
$$

- some other function

$$
f(x)=\left\{\begin{aligned}
-x & , x<0 \\
x^{2} & , 0 \leq x \leq 1 \\
1 & , x>1
\end{aligned}\right.
$$

Floor and ceiling functions

- the floor function

$$
f(x)=\lfloor x\rfloor
$$

is given by the greatest integer less than or equal to x :

is given by the smallest integer greater than or equal to x :

$$
\lceil 3.5\rceil=4,\lceil-1.8\rceil=-1
$$

Revision of Lecture 4

- definition of a function
- domain and range of a function
- graph of a function
- piecewise defined functions

Some fundamental types of functions

- linear function $f(x)=m x+b$
$b=0:$ all lines pass through the origin,

$$
f(x)=m x
$$

One also says " $y=f(x)$ is proportional to x " for some nonzero constant m.

$$
m=0: \text { constant function } f(x)=b
$$

Power function I

- power function $f(x)=x^{a}$
$a=n \in \mathbb{N}$: graphs of $f(x)$ for $n=1,2,3,4,5$

$a=-n, n \in \mathbb{N}$: graphs of $f(x)$
for $n=-1,-2$

Power function II

still power function $f(x)=x^{a}$, now for $a \in \mathbb{Q}$: graphs of $f(x)$ for $a=\frac{1}{2}, \frac{1}{3}, \frac{3}{2}, \frac{2}{3}$

Polynomials

- polynomials

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, n \in \mathbb{N}
$$

with $a_{n} \neq 0$, coefficients $a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} \in \mathbb{R}$ and domain \mathbb{R} n is called the degree of the polynomial examples: linear functions with $m \neq 0$ are polynomials of degree 1 three polynomial functions and their graphs

(a)

(b)

(c)

Rational functions

- rational functions

$$
f(x)=\frac{p(x)}{q(x)}
$$

with $p(x)$ and $q(x)$ polynomials and domain $\mathbb{R} \backslash\{x \mid q(x)=0\}$ (never divide by zero!)
examples: three rational functions and their graphs

(a)

NOTTO SCALE
(b)

(c)

Even more types of functions

Other classes (to come later):

- algebraic functions: any function constructed from polynomials using algebraic operations (including taking roots) examples

(a)

(b)

(c)
- trigonometric functions
- exponential and logarithmic functions
- transcendental functions: any function that is not algebraic examples: trigonometric or exponential functions

Increasing/decreasing functions

Informally,

- a function is called increasing if the graph of the function "climbs" or "rises" as you move from left to right.
- a function is called decreasing if the graph of the function "descends" or "falls" as you move from left to right.

examples:

function	where increasing	where decreasing
$y=x^{2}$	$0 \leq x<\infty$	$-\infty<x \leq 0$
$y=1 / x$	nowhere	$-\infty<x<0$ and $0<x<\infty$
$y=1 / x^{2}$	$-\infty<x<0$	$0<x<\infty$
$y=x^{2 / 3}$	$0 \leq x<\infty$	$-\infty<x \leq 0$

Even/odd functions

Definition

A function $y=f(x)$ is an

- even function of x if $f(-x)=f(x)$
- odd function of x if $f(-x)=-f(x)$
for every x in the function's domain.

examples:

$f(-x)=(-x)^{(2)}=x^{2}=f(x):$ even function; graph is symmetric about the y-axis
$f(-x)=(-x)^{3} \stackrel{(b)}{=}-x^{3}=-f(x):$ odd function; graph is symmetric about the origin

Even/odd functions continued

further examples:

(1) $f(-x)=-x=-f(x)$: odd function
(2) $f(-x)=-x+1 \neq f(x)$ and
$-f(x)=-x-1 \neq f(-x)$: neither even nor odd!

Sums, differences, products, quotients

If f and g are functions, then for every

$$
x \in D(f) \cap D(g)
$$

(that is, for every x that belongs to the domains of both f and g) we define

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(f-g)(x) & =f(x)-g(x) \\
(f g)(x) & =f(x) g(x) \\
(f / g)(x) & =f(x) / g(x) \quad \text { if } g(x) \neq 0
\end{aligned}
$$

algebraic operation on functions $=$ algebraic operation on function values
Special case: multiplication by a constant $c \in \mathbb{R}$:

$$
(c f)(x)=c f(x)
$$

(take $g(x)=c$ constant function)

Combining functions algebraically

examples:

$$
f(x)=\sqrt{x} \quad, \quad g(x)=\sqrt{1-x}
$$

(natural) domains:

$$
D(f)=[0, \infty) \quad D(g)=(-\infty, 1]
$$

intersection of both domains:

$$
D(f) \cap D(g)=[0, \infty) \cap(-\infty, 1]=[0,1]
$$

function	formula	domain
$f+g$	$(f+g)(x)=\sqrt{x}+\sqrt{1-x}$	$[0,1]=D(f) \cap D(g)$
$f-g$	$(f-g)(x)=\sqrt{x}-\sqrt{1-x}$	$[0,1]$
$g-f$	$(g-f)(x)=\sqrt{1-x}-\sqrt{x}$	$[0,1]$
$f \cdot g$	$(f \cdot g)(x)=f(x) g(x)=\sqrt{x(1-x)}$	$[0,1]$
f / g	$\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\sqrt{\frac{x}{1-x}}$	$[0,1)(x=1$ excluded $)$
g / f	$\frac{g}{f}(x)=\frac{g(x)}{f(x)}=\sqrt{\frac{1-x}{x}}$	$(0,1](x=0$ excluded $)$

Revision of Lecture 5

- classification of basic types of functions
- increasing/decreasing functions
- even/odd functions
- algebraic combinations of functions

Composition of functions

Definition

If f and g are functions, the composite function $f \circ g$ (" f composed with $\left.g^{\prime \prime}\right)$ is defined by

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ consists of the numbers x in the domain of g for which $g(x)$ lies in the domain of f, i.e.

$$
D(f \circ g)=\{x \mid x \in D(g) \text { and } g(x) \in D(f)\}
$$

Arrow diagram for a composite function

$$
D(f \circ g)=\{x \mid x \in D(g) \text { and } g(x) \in D(f)\}
$$

Finding formulas for composites

examples:

$$
\begin{array}{llll}
f(x)=\sqrt{x} & \text { with } & D(f)=[0, \infty) \\
g(x)=x+1 & \text { with } & D(g)=(-\infty, \infty)
\end{array}
$$

composite

domain

$$
\begin{array}{lll}
(f \circ g)(x) & =f(g(x))=\sqrt{g(x)}=\sqrt{x+1} & \\
(g \circ f)(x)=g(f(x))=f(x)+1=\sqrt{x}+1 & & {[0, \infty)} \\
(f \circ f)(x)=f(f(x))=\sqrt{f(x)}=\sqrt{\sqrt{x}}=x^{1 / 4} & & {[0, \infty)} \\
(g \circ g)(x)=g(g(x))=g(x)+1=x+2 & & (-\infty, \infty) \\
\hline
\end{array}
$$

The domain of composites

further examples:

$$
\begin{array}{rlll}
f(x) & =\sqrt{x} & \text { with } & D(f)=[0, \infty) \\
g(x) & =x^{2} & \text { with } & D(g)=(-\infty, \infty) \\
& & \\
\cline { 2 - 3 } & \text { composite } & \text { domain } \\
\hline & (f \circ g)(x)=|x| & (-\infty, \infty) \\
& (g \circ f)(x)=x & {[0, \infty)} \\
\hline
\end{array}
$$

Shifting a graph of a function

Shift Formulas

Vertical Shifts

$y=f(x)+k$
Shifts the graph of fup k units if $k>0$
Shifts it down $|k|$ units if $k<0$

Horizontal Shifts

$y=f(x+h)$
Shifts the graph of fleft h units if $h>0$
Shifts it right $|h|$ units if $h<0$

examples:

Scaling a graph of a function

For $c>1$,
$y=c f(x) \quad$ stretches the graph of f along the y-axis by a factor of c $y=\frac{1}{c} f(x) \quad$ compresses the graph of f along the y-axis by a factor of c

$y=f(c x) \quad$ compresses the graph of f along the x-axis by a factor of c
$y=f(x / c) \quad$ stretches the graph of f along the x-axis by a factor of c

Reflecting a graph of a function

For $c=-1$,
$y=-f(x)$ reflects the graph of f across the x-axis

$y=f(-x) \quad$ reflects the graph of f across the y-axis

Combining scalings and reflections

the original graph of
$y=f(x)$:

horizontal compression by a factor of 2: $y=f(2 x)$ followed by a reflection across the y-axis: $y=f(-2 x)$

vertical compression by a factor of 2: $y=\frac{1}{2} f(x)$ followed by a reflection across the x-axis: $y=-\frac{1}{2} f(x)$

Reading Assignment

Read

Thomas' Calculus:

- short Paragraph about ellipses, p.44/45
- Section 1.6 about trigonometric functions, especially trigonometric identities

You will need this for Coursework 2!

Radian measure

The radian measure of the angle $A C B$ is the length θ of $\operatorname{arc} A B$ on the unit circle.
$s=r \theta$ is the length of arc on a circle of radius r when θ is measured in radians.
conversion formula degrees \leftrightarrow radians:
360° corresponds to $2 \pi \Rightarrow \frac{\text { angle in radians }}{\text { angle in degrees }}=\frac{\pi}{180}$

Signed angles

- angles are oriented
- positive angle: counter-clockwise
- negative angle: clockwise

Large angles

note: angles can be larger than 2π :
counterclockwise:

clockwise:

Trigonometric functions

reminder: the six basic trigonometric functions

$$
\begin{array}{rrrr}
\text { sine: } & \sin \theta=\frac{y}{r} & \text { cosecant: } & \csc \theta=\frac{r}{y} \\
\text { cosine: } & \cos \theta=\frac{x}{r} & \text { secant: } & \sec \theta=\frac{r}{x} \\
\text { tangent: } & \tan \theta=\frac{y}{x} & \text { cotangent: } & \cot \theta=\frac{x}{y}
\end{array}
$$

note: These definitions hold not only for $0 \leq \theta \leq \pi$ but also for $\theta<0$ and $\theta>\pi / 2$.

Finding trigonometric function values

recommended to memorize the following two triangles:

because exact values of trigonometric ratios can be read from them example:

$$
\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \quad ; \quad \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}
$$

Finding extended trigonometric function values

a more non-trivial example:

$$
\sin \frac{2}{3} \pi=\frac{y}{r}=\sin \left(\pi-\frac{2}{3} \pi\right)=\sin \frac{\pi}{3}
$$

see previous triangle: $\sin \frac{\pi}{3}=\sqrt{3} / 2$
here $r=1 \Rightarrow x=-1 / 2, y=\sqrt{3} / 2$
(why?)
from the above triangle we can now read off the values of all trigonometric functions:

$$
\begin{array}{ll}
\text { ns: } \sin \left(\frac{2}{3} \pi\right)=\frac{y}{r}=\frac{\sqrt{3}}{2} & \csc \left(\frac{2}{3} \pi\right)=\frac{r}{y}=\frac{2}{\sqrt{3}} \\
\cos \left(\frac{2}{3} \pi\right)=\frac{x}{r}=-\frac{1}{2} & \sec \left(\frac{2}{3} \pi\right)=\frac{r}{x}=-2 \\
\tan \left(\frac{2}{3} \pi\right)=\frac{y}{x}=-\sqrt{3} & \cot \left(\frac{2}{3} \pi\right)=\frac{x}{y}=-\frac{1}{\sqrt{3}}
\end{array}
$$

