MTH4100 Calculus I Week 2 (Thomas' Calculus Sections 1.3 to 1.6)

Rainer Klages

School of Mathematical Sciences Queen Mary, University of London

Autumn 2008

Revision of Lecture 3

• Some absolute value properties and their proofs:

$$|-a| = |a| \ , \ |ab| = |a| |b| \ , \ \left|\frac{a}{b}\right| = \frac{|a|}{|b|} ext{ for } b
eq 0$$

- Three important inequalities and their proofs:
 - Triangle inequality

$$|a+b| \le |a|+|b|$$

• Arithmetic-geometric mean inequality

$$\sqrt{ab} \leq rac{1}{2}(a+b)$$
 for $a, b \geq 0$

Cauchy-Schwarz inequality

$$(ac + bd)^2 \le (a^2 + b^2)(c^2 + d^2)$$

Reminder: read

Thomas' Calculus, Section 1.2: Lines, Circles, and Parabolas

What is a function?

examples:

height of the floor of the lecture hall depending on distance; stock market index depending on time; volume of a sphere depending on radius What do we mean when we say

y is a function of x?

Symbolically, we write y = f(x), where

- x is the independent variable (input value of f)
- y is the dependent variable (output value of f at x)
- f is a function ("rule that assigns x to y" further specify!)
- a function acts like a "little machine":

Important: uniqueness – only one value f(x) for every x!

f(x)

Output

Definition of a function

Definition

A function from a set D to a set Y is a rule that assigns a *unique* (single) element $f(x) \in Y$ to each element $x \in D$.

Domain, range and some notation

- The set *D* of all possible *input values* is called the domain of *f*.
- The set *R* of all possible *output values* of *f*(*x*) as *x* varies throughout *D* is called the range of *f*.

note: $R \subseteq Y$!

• We write f maps D to Y symbolically as

 $f: D \rightarrow Y$

• We write f maps x to y = f(x) symbolically as

$$f: x \mapsto y = f(x)$$

Note the different arrow symbols used!

R. Klages (QMUL)

MTH4100 Calculus 1

Natural domain

The natural domain is the largest set of real x which the rule f can be applied to.

examples:

Function	Domain $x \in D$	Range $y \in R$
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
y = 1/x	$(-\infty,0)\cup(0,\infty)$	$(-\infty,0)\cup(0,\infty)$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]

note: A function is specified by the rule f and the domain D:

$$f: x \mapsto y = x^2$$
, $D(f) = [0, \infty)$

and

$$f: x \mapsto y = x^2$$
, $D(f) = (-\infty, \infty)$

are *different* functions!

R. Klages (QMUL)

Graphs of functions

Definition

If f is a function with domain D, its graph consists of the points (x, y) whose coordinates are the input-output pairs for f:

 $\{(x,f(x))|x\in D\}$

y = f(x) is the *height* of the graph above/below x.

Arbitrary curves vs. graphs of functions

recall: A function f can have only one value f(x) for each x in its domain! This leads to the vertical line test:

No vertical line can intersect the graph of a function more than once.

Piecewise defined functions

A piecewise defined function is a function that is is described by using different formulas on different parts of its domain. **examples:**

Floor and ceiling functions

• the floor function

$$f(x) = \lfloor x \rfloor$$

is given by the greatest integer less than or equal to x:

$$\lfloor 1.3 \rfloor = 1, \ \lfloor -2.7 \rfloor = -3$$

• the ceiling function

$$f(x) = \lceil x \rceil$$

is given by the smallest integer greater than or equal to x:

$$\lceil 3.5 \rceil = 4$$
, $\lceil -1.8 \rceil = -1$

Revision of Lecture 4

- definition of a function
- domain and range of a function
- graph of a function
- piecewise defined functions

Some fundamental types of functions

• linear function
$$f(x) = mx + b$$

b = 0: all lines pass through the origin,

f(x) = mx

One also says "y = f(x) is proportional to x" for some nonzero constant m.

$$\begin{array}{c} y \\ 2 \\ - y \\ - y$$

$$m = 0$$
: constant function $f(x)=b$

Power function I

• power function
$$f(x) = x^a$$

 $a = n \in \mathbb{N}$: graphs of f(x) for n = 1, 2, 3, 4, 5

Power function II

Week 2 15 / 39

Polynomials

polynomials

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, \ n \in \mathbb{N}$$

with $a_n \neq 0$, coefficients $a_0, a_1, \ldots, a_{n-1}, a_n \in \mathbb{R}$ and domain \mathbb{R} *n* is called the *degree* of the polynomial

examples: linear functions with $m \neq 0$ are polynomials of degree 1 three polynomial functions and their graphs

Rational functions

rational functions

$$f(x) = \frac{p(x)}{q(x)}$$

with p(x) and q(x) polynomials and domain $\mathbb{R} \setminus \{x | q(x) = 0\}$ (never divide by zero!) examples: three rational functions and their graphs

Even more types of functions

Other classes (to come later):

• algebraic functions: any function constructed from polynomials using algebraic operations (including taking roots)

- trigonometric functions
- exponential and logarithmic functions
- transcendental functions: any function that is not algebraic examples: trigonometric or exponential functions

•

Increasing/decreasing functions

Informally,

- a function is called increasing if the graph of the function "climbs" or "rises" as you move *from left to right*.
- a function is called decreasing if the graph of the function "descends" or "falls" as you move *from left to right*.

examples:

function	where increasing	where decreasing
$y = x^2$	$0 \le x < \infty$	$-\infty < x \leq 0$
y = 1/x	nowhere	$-\infty < x < 0$ and $0 < x < \infty$
$y = 1/x^{2}$	$-\infty < x < 0$	$0 < x < \infty$
$y = x^{2/3}$	$0 \le x < \infty$	$-\infty < x \leq 0$

Even/odd functions

Definition

A function y = f(x) is an

- even function of x if f(-x) = f(x)
- odd function of x if f(-x) = -f(x)

for every x in the function's domain.

 $f(-x) = (-x)^3 \stackrel{\text{\tiny{(b)}}}{=} -x^3 = -f(x)$: odd function; graph is symmetric about the origin

R. Klages (QMUL)

Even/odd functions continued

further examples:

- f(-x) = -x = -f(x): odd function
- $f(-x) = -x + 1 \neq f(x)$ and $-f(x) = -x - 1 \neq f(-x)$: neither even nor odd!

Sums, differences, products, quotients

If f and g are functions, then for every

 $x \in D(f) \cap D(g)$

(that is, for every x that belongs to the domains of *both* f and g) we define

$$(f+g)(x) = f(x) + g(x) (f-g)(x) = f(x) - g(x) (fg)(x) = f(x)g(x) (f/g)(x) = f(x)/g(x) \text{ if } g(x) \neq 0$$

algebraic operation on functions = algebraic operation on function values

Special case: multiplication by a constant $c \in \mathbb{R}$:

$$(cf)(x) = c f(x)$$

(take g(x) = c constant function)

R. Klages (QMUL)

Combining functions algebraically

examples:

$$f(x) = \sqrt{x}$$
, $g(x) = \sqrt{1-x}$

(natural) domains:

$$D(f) = [0,\infty) \qquad D(g) = (-\infty,1]$$

intersection of both domains:

$$D(f) \cap D(g) = [0,\infty) \cap (-\infty,1] = [0,1]$$

function	formula	domain
f + g	$(f+g)(x) = \sqrt{x} + \sqrt{1-x}$	$[0,1] = D(f) \cap D(g)$
f - g	$(f-g)(x) = \sqrt{x} - \sqrt{1-x}$	[0, 1]
g-f	$(g-f)(x) = \sqrt{1-x} - \sqrt{x}$	[0, 1]
f·g	$(f \cdot g)(x) = f(x)g(x) = \sqrt{x(1-x)}$	[0,1]
f/g	$\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \sqrt{\frac{x}{1-x}}$	[0,1) ($x = 1$ excluded)
g/f	$\frac{g}{f}(x) = \frac{g(x)}{f(x)} = \sqrt{\frac{1-x}{x}}$	(0,1] ($x = 0$ excluded)

R. Klages (QMUL)

Revision of Lecture 5

- classification of basic types of functions
- increasing/decreasing functions
- even/odd functions
- algebraic combinations of functions

Composition of functions

Definition

If f and g are functions, the composite function $f \circ g$ ("f composed with g") is defined by

$$(f \circ g)(x) = f(g(x))$$

$$x \longrightarrow g \quad -g(x) \longrightarrow f \quad \longrightarrow f(g(x))$$

The *domain* of $f \circ g$ consists of the numbers x in the domain of g for which g(x) lies in the domain of f, i.e.

 $D(f \circ g) = \{x | x \in D(g) \text{ and } g(x) \in D(f)\}$

Arrow diagram for a composite function

Finding formulas for composites

examples:

$$\begin{array}{ll} f(x) &= \sqrt{x} & \text{with} & D(f) = [0,\infty) \\ g(x) &= x+1 & \text{with} & D(g) = (-\infty,\infty) \end{array}$$

composite	domain
$(f \circ g)(x) = f(g(x)) = \sqrt{g(x)} = \sqrt{x+1}$	$[-1,\infty)$
$(g \circ f)(x) = g(f(x)) = f(x) + 1 = \sqrt{x} + 1$	$[0,\infty)$
$(f \circ f)(x) = f(f(x)) = \sqrt{f(x)} = \sqrt{\sqrt{x}} = x^{1/4}$	$[0,\infty)$
$(g \circ g)(x) = g(g(x)) = g(x) + 1 = x + 2$	$(-\infty,\infty)$

The domain of composites

further examples:

$$\begin{array}{ll} f(x) &= \sqrt{x} & \text{with} & D(f) = [0,\infty) \\ g(x) &= x^2 & \text{with} & D(g) = (-\infty,\infty) \end{array}$$

composite	domain
$(f \circ g)(x) = x $ $(g \circ f)(x) = x$	$(-\infty,\infty)$ [0, ∞)

Shifting a graph of a function

Shift Formulas	
Vertical Shifts	
y = f(x) + k	Shifts the graph of $f up k$ units if $k > 0$
	Shifts it $down k $ units if $k < 0$
Horizontal Shifts	
y = f(x + h)	Shifts the graph of <i>f left h</i> units if $h > 0$
	Shifts it $right h $ units if $h < 0$

examples:

R. Klages (QMUL)

Scaling a graph of a function

For
$$c > 1$$
,
 $y = cf(x)$ stretches the graph of f
along the y-axis
by a factor of c
 $y = \frac{1}{c}f(x)$ compresses the graph of f
along the y-axis
by a factor of c
 $y = f(cx)$ compresses the graph of f
along the x-axis
by a factor of c
 $y = f(x/c)$ stretches the graph of f
along the x-axis
by a factor of c
 $y = f(x/c)$ stretches the graph of f
along the x-axis
by a factor of c
 $y = f(x/c)$ stretches the graph of f
along the x-axis
by a factor of c
 $y = \sqrt{x}$

Reflecting a graph of a function

For c = -1, y = -f(x) reflects the graph of f across the x-axis

$$y = f(-x)$$
 reflects the graph of f across the y-axis

R. Klages (QMUL)

Combining scalings and reflections

the **original graph** of y = f(x):

horizontal compression by a factor of 2: y = f(2x) followed by a reflection across the y-axis: y = f(-2x)

vertical compression by a factor of 2: $y = \frac{1}{2}f(x)$ followed by a reflection across the x-axis: $y = -\frac{1}{2}f(x)$

Reading Assignment

Read

Thomas' Calculus:

- short **Paragraph** about ellipses, p.44/45
- Section 1.6 about trigonometric functions, *especially* trigonometric identities

You will need this for Coursework 2!

Radian measure

The radian measure of the angle *ACB* is the length θ of arc *AB* on the unit circle.

 $s = r\theta$ is the length of arc on a circle of radius r when θ is measured in radians.

conversion formula degrees \leftrightarrow radians:

360° corresponds to
$$2\pi \Rightarrow \left| \frac{\text{angle in radians}}{\text{angle in degrees}} = \frac{\pi}{180} \right|$$

Signed angles

- angles are oriented
- positive angle: counter-clockwise
- negative angle: clockwise

Large angles

note: angles can be larger than 2π :

Trigonometric functions

reminder: the six basic trigonometric functions

note: These definitions hold not only for $0 \le \theta \le \pi$ but also for $\theta < 0$ and $\theta > \pi/2$.

R. Klages (QMUL)

Finding trigonometric function values

recommended to memorize the following two triangles:

because exact values of trigonometric ratios can be read from them example:

$$\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$
 ; $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$

Finding extended trigonometric function values

a more non-trivial example:

$$\sin \frac{2}{3}\pi = \frac{y}{r} = \sin \left(\pi - \frac{2}{3}\pi\right) = \sin \frac{\pi}{3}$$

see previous triangle: $\sin \frac{\pi}{3} = \sqrt{3}/2$
here $r = 1 \Rightarrow x = -1/2$, $y = \sqrt{3}/2$
(why?)

from the above triangle we can now read off the values of all trigonometric

Functions:
$$\sin\left(\frac{2}{3}\pi\right) = \frac{y}{r} = \frac{\sqrt{3}}{2}$$
 $\csc\left(\frac{2}{3}\pi\right) = \frac{r}{y} = \frac{2}{\sqrt{3}}$
 $\cos\left(\frac{2}{3}\pi\right) = \frac{x}{r} = -\frac{1}{2}$ $\sec\left(\frac{2}{3}\pi\right) = \frac{r}{x} = -2$
 $\tan\left(\frac{2}{3}\pi\right) = \frac{y}{x} = -\sqrt{3}$ $\cot\left(\frac{2}{3}\pi\right) = \frac{x}{y} = -\frac{1}{\sqrt{3}}$