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Lecture 31

Techniques of integration

• Basic properties (Thomas’ Calculus, Chapter 5)

• Rules (substitution, integration by parts - see today)

• Basic formulas, integration tables (Thomas’ Calculus, pages T1-T6)

• Procedures to simplify integrals (bag of tricks, methods)

This needs practice, practice, practice, . . .:

Last exercise class and voluntary online exercises
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Integration tricks:

see book p.554 to p.557 and exercise sheet 10 for further examples

Integration by parts

differentation ←→ integration:

• chain rule ←→ substitution
∫

f(g(x))g′(x)dx =

∫

f(u)du , u = g(x)

• product rule ←→ ?

d

dx
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x)

Integrate:
∫

d

dx
(f(x)g(x)) dx =

∫

(f ′(x)g(x) + f(x)g′(x)) dx

Therefore,

f(x)g(x) =

∫

f ′(x)g(x)dx +

∫

f(x)g′(x)dx
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(in this case we neglect the integration constant - it is implicitly contained on the rhs)

leading to

abbreviated:

example: Evaluate
∫

x cos x dx :

Choose
u = x , dv = cos x dx ,

then
du = dx , v = sin x neglect any constant

gives, according to formula,

∫

x cos x dx = x sin x−
∫

sin x dx

= x sin x + cos x + C

(do not forget constant here!)
Explore other choices of u and dv for

∫

x cos x dx :

1. u = 1, dv = x cos x dx:
We don’t know of how to compute

∫

dv: no good!
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2. u = x and dv = cos x dx:
Done above, works!

3. u = cos x, dv = x dx:
Now du = − sin x dx and v = x2/2 so that

∫

x cos x dx =
1

2
x2 cos x +

∫

1

2
x2 sin x dx

This makes the situation worse!

4. u = x cos x and dv = dx:
Now du = (cos x− x sin x)dx and v = x so that

∫

x cos x dx = x2 cos x−
∫

x(cos x− x sin x)dx

This again is worse!

General advice:

• Choose u such that du “simplifies”.

• Choose dv such that vdu is easy to integrate

• If your result looks more complicated after doing integration by parts, it’s most likely
not right. Try something else.

• Remember: generally

∫

f(x)g(x)dx 6=
∫

f(x)dx

∫

g(x)dx !

Read Thomas’ Calculus:

p.563 to 565, examples 3 to 5:
Three further examples of integration by parts. . .

. . . and practice by doing voluntary online exercises!
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The method of partial fractions

example: If you know that

5x− 3

x2 − 2x− 3
=

2

x + 1
+

3

x− 3

you can integrate easily

∫

5x− 3

x2 − 2x− 3
dx =

∫

2

x + 1
dx +

∫

3

x− 3
dx

= 2 ln |x + 1|+ 3 ln |x− 3|+ C

To obtain such simplifications, we use the method of partial fractions.

Let f(x)/g(x) be a rational function, for example,

f(x)

g(x)
=

2x3 − 4x2 − x− 3

x2 − 2x− 3

If deg(f) ≥ deg(g), we first use polynomial division:

2x3 − 4x2 − x− 3

x2 − 2x− 3
= 2x +

5x− 3

x2 − 2x− 3

and consider the remainder term. We also have to know the factors of g(x):

x2 − 2x− 3 = (x + 1)(x− 3)

Now we can write

5x− 3

x2 − 2x− 3
=

A

x + 1
+

B

x− 3

and obtain from

5x− 3 = A(x− 3) + B(x + 1) = (A + B)x + (−3A + B)

that A = 2 and B = 3, see above.

note: Alternatively, determine the coefficients by setting x = −1 and x = 3 in the above
equation. However, you need to know about complex numbers (taught later) in order to
apply this method to more complicated fractions.
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example for a repeated linear factor: Find
∫

6x + 7

(x + 2)2
dx .

• Write
6x + 7

(x + 2)2
=

A

x + 2
+

B

(x + 2)2
.

• Multiply by (x + 2)2 to get

6x + 7 = A(x + 2) + B = Ax + (2A + B) .

• Equate coefficients of equal powers of x and solve:

A = 6 and 2A + B = 12 + B = 7⇒ B = −5 .

• Integrate:
∫

6x + 7

(x + 2)2
dx = 6

∫

dx

x + 2
− 5

∫

dx

(x + 2)2
= 6 ln |x + 2|+ 5(x + 2)−1 + C .

Read Thomas’ Calculus:

p.572 to 575, examples 1, 4 and 5:
Three more advanced examples. . .

. . . and practice by doing voluntary online exercises!
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Improper integrals

Can we compute areas under infinitely extended curves?
Two examples of improper integrals:

Type 1: area extends from x = 1 to x =∞.
Type 2: area extends from x = 0 to x = 1 but f(x) diverges at x = 0.

Calculation of type I improper integrals in two steps.
example: y = e−x/2 on [0,∞)
1. Calculate bounded area:

A(b) =

∫ b

0

e−x/2dx = −2e−x/2
∣

∣

b

0
= −2e−b/2 + 2

2. Take the limit:

lim
b→∞

A(b) = lim
b→∞

(−2e−b/2 + 2) = 2

⇒
∫

∞

0

e−x/2dx = 2
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Calculation of type II improper integrals in two steps.

example: y = 1/
√

x on (0, 1]

1. Calculate bounded area:

A(a) =

∫

1

a

dx√
x

= 2
√

x
∣

∣

1

a
= 2− 2sqrta

2. Take the limit:

lim
a→0+

A(a) = lim
a→0+

(2− 2
√

a) = 2

⇒
∫

1

0

dx√
x

= 2
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Remarks:

• If you need more examples, please read through Section 8.8, p.619 to p.626.

• Voluntary reading assignment: Tests for convergence and divergence, see 2nd part
of Section 8.8, p.627 to 629; states two conditions under which improper integrals
converge or diverge.
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Polar Coordinates

How can we describe a point P in the plane?

• by Cartesian coordinates P (x, y)

• by polar coordinates:

While Cartesian coordinates are unique, polar coordinates are not!

example:

(r, θ) = (r, θ − 2π)

Apart from negative angles, we also allow negative values for r:
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(r, θ) = (−r, θ + π)

example: Find all polar coordinates of the point (2, π/6).

• r = 2: θ = π/6, π/6± 2π, π/6± 4π, π/6± 6π, . . .

• r = −2: θ = 7π/6, 7π/6± 2π, 7π/6± 4π, 7π/6± 6π, . . .

Some graphs have simple equations in polar coordinates.
examples:

1. A circle about the origin.

equation: r = a 6= 0 (by varying θ over any interval of length 2π)

note: r = a and r = −a both describe the same circle of radius |a|.

2. A line through the origin.
equation: θ = θ0 (by varying r between −∞ and ∞)
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examples: Find the graphs of

1. −3 ≤ r ≤ 2 and θ = π/4:

2. 2π/3 ≤ θ ≤ 5π/6:

Polar and Cartesian coordinates can be converted into each other:

• polar → Cartesian coordinates:

x = r cos θ , y = r sin θ

Given (r, θ), we can uniquely compute (x, y).
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• Cartesian → polar coordinates:

r2 = x2 + y2 , tan θ = y/x

Given (x, y), we have to choose one of many polar coordinates.

Often as convention (particularly in physics): r ≥ 0 (“distance”) and 0 ≤ θ < 2π.
(if r = 0, choose also θ = 0 for uniqueness)

examples: equivalent equations

Cartesian polar

x = 2 r cos θ = 2
xy = 4 r2 cos θ sin θ = 4

x2 − y2 = 1 r2(cos2 θ − sin2 θ) = r2 cos 2θ = 1

In some cases polar coordinates are a lot simpler, in others they are not.

examples:

1. Cartesian → polar for circle

x2 + (y − 3)2 = 9
⇔ (x2 + y2)− 6y + 9 = 9
⇔ r2 − 6r sin θ = 0
⇔ r = 0 or r = 6 sin θ

(which includes r = 0)

2. polar → Cartesian:

r =
4

2 cos θ − sin θ
is equivalent to

2r cos θ − r sin θ = 4

or 2x− y = 4, which is the equation of a line,

y = 2x− 4 .

The End


