MTH4100 Calculus I
 Lecture notes for Week 10

Thomas' Calculus, Sections 5.2 to 5.6

Rainer Klages

School of Mathematical Sciences
Queen Mary, University of London

Autumn 2008

Lecture 25

Riemann sums and definite integral

Consider a typical continuous function over $[a, b]$:

Partition $[a, b]$ by choosing $n-1$ points between a and b :

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b
$$

i.e., $\Delta x_{k}=x_{k}-x_{k-1}$, the width of the subinterval $\left[x_{k-1}, x_{k}\right]$, may vary. Choose $c_{k} \in\left[x_{k-1}, x_{k}\right]$ and construct rectangles:

The resulting sums

$$
S_{p}=\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}
$$

are called Riemann sums for f on $[a, b]$.
Then choose finer and finer partitions by taking the limit such that the width of the largest subinterval goes to zero.
For a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$ we write $\|P\|$ (called "norm") for the width of the largest subinterval.

DEFINITION The Definite Integral as a Limit of Riemann Sums

Let $f(x)$ be a function defined on a closed interval $[a, b]$. We say that a number I is the definite integral of \boldsymbol{f} over $[\boldsymbol{a}, \boldsymbol{b}]$ and that I is the limit of the Riemann sums $\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}$ if the following condition is satisfied:

Given any number $\epsilon>0$ there is a corresponding number $\delta>0$ such that for every partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$ with $\|P\|<\delta$ and any choice of c_{k} in $\left[x_{k-1}, x_{k}\right]$, we have

$$
\left|\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}-I\right|<\epsilon
$$

shorthand notation:

$$
I=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}=\int_{a}^{b} f(x) d x
$$

with

note:

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} f(x) d x, \text { etc. }
$$

THEOREM 1 The Existence of Definite Integrals

A continuous function is integrable. That is, if a function f is continuous on an interval $[a, b]$, then its definite integral over $[a, b]$ exists.

(idea of proof: check convergence of upper/lower sums; see p. 345 of book for further details) example of a nonintegrable function on [0.1]:

$$
f(x)= \begin{cases}0 & \text { if } x \in \mathbb{Q} \\ 1 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

upper sum is always 1 ; lower sum is always $0 \Rightarrow \int_{0}^{1} f(x) d x$ does not exist!
Theorem 2 For integrable functions f, g on $[a, b]$ the definite integral satisfies the following rules:

(a) Zero Width Interval:

$$
\int_{a}^{a} f(x) d x=0
$$

(The area over a point is 0 .)

(d) Additivity for definite integrals: $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$
(b) Constant Multiple:
$\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
(Shown for $k=2$.)

(e) Max-Min Inequality:
$\min f \cdot(b-a) \leq \int_{a}^{b} f(x) d x$

$$
\leq \max f \cdot(b-a) \quad \Rightarrow \int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x
$$

and (g) order of integration:

$$
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
$$

(for idea of proof of (b) to (f) see book p.348; (a), (g) are definitions!)

Area under the graph and mean value theorem

example: $f(x)=x, a=0, b>0$

- area $A=\frac{1}{2} b^{2}$

- definition of integral:
choose $x_{k}=k b / n$ with right endpoints c_{k}

$$
\begin{aligned}
I & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k b}{n} \cdot \frac{b}{n} \\
& =\lim _{n \rightarrow \infty} \frac{b^{2}}{n^{2}} \sum_{k=1}^{n} k \\
& =\lim _{n \rightarrow \infty} \frac{b^{2}}{n^{2}} \frac{n(n+1)}{2}=\frac{b^{2}}{2}
\end{aligned}
$$

Lecture 26

DEFINITION Area Under a Curve as a Definite Integral

If $y=f(x)$ is nonnegative and integrable over a closed interval $[a, b]$, then the area under the curve $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ over $[\boldsymbol{a}, \boldsymbol{b}]$ is the integral of f from a to b,

$$
A=\int_{a}^{b} f(x) d x
$$

Consider the (arithmetic) average of n function values on $[a, b]$:

$$
\frac{1}{n} \sum_{k=1}^{n} f\left(c_{k}\right)=\frac{1}{n \Delta x} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x \rightarrow \frac{1}{b-a} \int_{a}^{b} f(x) d x(n \rightarrow \infty)
$$

DEFINITION The Average or Mean Value of a Function

If f is integrable on $[a, b]$, then its average value on $[a, b]$, also called its mean value, is

$$
\operatorname{av}(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

example: $f(x)=x, x \in[0, b]$ (see above)

$$
\operatorname{av}(f)=\frac{1}{b-0} \int_{0}^{b} x d x=\left.\frac{1}{b} \frac{x^{2}}{2}\right|_{0} ^{b}=\frac{b^{2}}{2 b}=\frac{b}{2}
$$

Theorem 3 (The mean value theorem for definite integrals) If f is continuous on $[a, b]$, then there is a $c \in[a, b]$ with

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Interpretation, loosely speaking: " f assumes its average value somewhere on $[a, b]$."
geometrical meaning:

(proof: see book p.357; not hard; based on max-min-inequality for integrals and intermediate value theorem for continuous functions)
example for applying the mean value theorem for integrals:
Let f be continuous on $[a, b]$ with $a \neq b$ and

$$
\int_{a}^{b} f(x) d x=0
$$

Show that $f(x)=0$ at least once in $[a, b]$.
Solution: According to the last theorem, there is a $c \in[a, b]$ with

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x=0
$$

The fundamental theorem of calculus

For a continuous function f, define

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Geometric interpretation:

Compute the difference quotient:

$$
\frac{F(x+h)-F(x)}{h}=\frac{1}{h}\left(\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t\right)
$$

(additivity rule and see figure below) $=\frac{1}{h} \int_{x}^{x+h} f(t) d t$
(mean value theorem for definite integrals) $=f(c)$
for some c with $x \leq c \leq x+h$.

Since f is continuous,

$$
\lim _{h \rightarrow 0} f(c)=f(x)
$$

and therefore

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=f(x) .
$$

We have just proven (except a little detail - which one?)

THEOREM 4 The Fundamental Theorem of Calculus Part 1

If f is continuous on $[a, b]$ then $F(x)=\int_{a}^{x} f(t) d t$ is continuous on $[a, b]$ and differentiable on (a, b) and its derivative is $f(x)$;

$$
\begin{equation*}
F^{\prime}(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) . \tag{2}
\end{equation*}
$$

examples:
1.

$$
\frac{d}{d x} \int_{a}^{x} \frac{1}{1+4 t^{3}} d t=\frac{1}{1+4 x^{3}}
$$

2. Find

$$
\frac{d}{d x} \int_{2}^{x^{2}} \cos t d t
$$

Define

$$
y=\int_{2}^{u} \cos t d t \text { with } u=x^{2}
$$

Apply the chain rule:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \cdot \frac{d u}{d x} \\
& =\left(\frac{d}{d u} \int_{2}^{u} \cos t d t\right) \cdot \frac{d u}{d x} \\
& =\cos u \cdot 2 x \\
& =2 x \cos x^{2}
\end{aligned}
$$

We know that

$$
\int_{a}^{x} f(t) d t=G(x)
$$

is an antiderivative of f, as $G^{\prime}(x)=f(x)$, see theorem above.
The most general antiderivative is $F(x)=G(x)+C$ (why?). We thus have

$$
\begin{aligned}
\qquad F(b)-F(a) & =(G(b)+C)-(G(a)+C) \\
& =G(b)-G(a) \\
& =\int_{a}^{b} f(t) d t-\int_{a}^{a} f(t) d t \\
\text { (zero width interval rule) } & =\int_{a}^{b} f(t) d t
\end{aligned}
$$

We have just proven (supplemented by considering F, G at the boundary points a, b)

THEOREM 4 (Continued) The Fundamental Theorem of Calculus Part 2 If f is continuous at every point of $[a, b]$ and F is any antiderivative of f on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

Lecture 27

Recipe to calculate $\int_{a}^{b} f(x) d x$:

1. Find an antiderivative F of f
2. Calculate $F(b)-F(a)$

Notation:

$$
F(b)-F(a)=\left.F(x)\right|_{a} ^{b}
$$

example:

$$
\begin{aligned}
\int_{1}^{4}\left(\frac{3}{2} \sqrt{x}-\frac{4}{x^{2}}\right) d x & =\left.\left(x^{3 / 2}+\frac{4}{x}\right)\right|_{1} ^{4} \\
& =\left(4^{3 / 2}+\frac{4}{4}\right)-\left(1^{3 / 2}+\frac{4}{1}\right) \\
& =4
\end{aligned}
$$

Fundamental theorem of calculus: summary

$$
\begin{gathered}
\frac{d}{d x} \int_{a}^{x} f(t) d t=\frac{d F}{d x}=f(x) \\
\int_{a}^{x} f(t) d t=\int_{a}^{x} \frac{d F}{d t} d t=F(x)-F(a)
\end{gathered}
$$

Processes of integration and differentiation are "inverses" of each other!

Finding total areas

example:

To find the area between the graph of $y=f(x)$ and the x-axis over the interval $[a, b]$, do the following:

1. Subdivide $[a, b]$ at the zeros of f.
2. Integrate over each subinterval.
3. Add the absolute values of the integrals.
example continued:

$$
f(x)=x^{3}-x^{2}-2 x,-1 \leq x \leq 2
$$

1. $f(x)=x\left(x^{2}-x-2\right)=x(x+1)(x-2):$ zeros are $-1,0,2$
2.

$$
\begin{aligned}
\int_{-1}^{0}\left(x^{3}-x^{2}-2 x\right) d x & =\left.\left(\frac{x^{4}}{4}-\frac{x^{3}}{3}-x^{2}\right)\right|_{-1} ^{0}=\frac{5}{12} \\
\int_{0}^{2}\left(x^{3}-x^{2}-2 x\right) d x & =\left.\left(\frac{x^{4}}{4}-\frac{x^{3}}{3}-x^{2}\right)\right|_{0} ^{2}=-\frac{8}{3}
\end{aligned}
$$

3. $A=\left|\frac{5}{12}\right|+\left|-\frac{8}{3}\right|=\frac{37}{12}$

The substitution rule

motivation: develop more general techniques for calculating antiderivatives Recall the chain rule for $F(g(x))$:

$$
\frac{d}{d x} F(g(x))=F^{\prime}(g(x)) g^{\prime}(x)
$$

If F is an antiderivative of f, then

$$
\frac{d}{d x} F(g(x))=f(g(x)) g^{\prime}(x)
$$

Now compute

$$
\begin{aligned}
\int f(g(x)) g^{\prime}(x) d x & =\int\left(\frac{d}{d x} F(g(x))\right) d x \\
\text { (fundamental theorem) } & =F(g(x))+C \\
(u=g(x)) & =F(u)+C \\
\text { (fundamental theorem) } & =\int F^{\prime}(u) d u \\
& =\int f(u) d u
\end{aligned}
$$

We have just proven

THEOREM 5 The Substitution Rule

If $u=g(x)$ is a differentiable function whose range is an interval I and f is continuous on I, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

method for evaluating

$$
\int f(g(x)) g^{\prime}(x) d x:
$$

1. Substitute $u=g(x), d u=g^{\prime}(x) d x$ to obtain $\int f(u) d u$.
2. Integrate with respect to u.
3. Replace $u=g(x)$.
example: Evaluate

$$
\int \frac{2 z}{\sqrt[3]{z^{2}+5}} d z
$$

1. Substitute $u=z^{2}+5, d u=2 z d z$:

$$
\int \frac{2 z}{\sqrt[3]{z^{2}+5}} d z=\int u^{-1 / 3} d u
$$

2. Integrate:

$$
\int u^{-1 / 3} d u=\frac{3}{2} u^{2 / 3}+C
$$

3. Replace $u=z^{2}+5$:

$$
\int \frac{2 z}{\sqrt[3]{z^{2}+5}} d z=\frac{3}{2}\left(z^{2}+5\right)^{2 / 3}+C
$$

Transform integrals by using trigonometric identities.
example: Evaluate $\int \sin ^{2} x d x$:
Use half-angle formula $\sin ^{2} x=(1-\cos 2 x) / 2$ to write

$$
\begin{aligned}
\int \sin ^{2} x d x & =\int \frac{1}{2}(1-\cos 2 x) d x \\
& =\frac{1}{2} \int d x-\frac{1}{2} \int \cos 2 x d x \\
& =\frac{1}{2} x-\frac{1}{4} \sin 2 x+C
\end{aligned}
$$

Move on to substitution in definite integrals:
Theorem 6 If g is continuous on $[a, b]$ and f is continuous on the range of g, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

(note that $u=g(x)$! proof straightforward, see book p.377)
example: Evaluate $\int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x$.
Substitute $u=x^{3}+1, d u=3 x^{2} d x$.
$x=-1$ gives $u=(-1)^{3}+1=0 ; x=1$ gives $u=1^{3}+1=2$, and we obtain

$$
\begin{aligned}
\int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x & =\int_{0}^{2} \sqrt{u} d u \\
& =\left.\frac{2}{3} u^{3 / 2}\right|_{0} ^{2} \\
& =\frac{2}{3} 2^{3 / 2}-0 \\
& =\frac{4 \sqrt{2}}{3}
\end{aligned}
$$

