University of London

MTH4100
Exercise sheet 9

Calculus 1, Autumn 2008
Rainer Klages
${ }^{(*)}$). Fundamental theorem of calculus.
[2007 exam question] Suppose that f has a negative derivative for all values of x and that $f(1)=0$. Which of the following statements must be true for the function

$$
h(x)=\int_{0}^{x} f(t) d t ?
$$

(a) h is a twice-differentiable function of x.
(b) h and $d h / d x$ are both continuous.
(c) The graph of h has a horizontal tangent at $x=1$.
(d) h has a local maximum at $x=1$.
(e) h has a local minimum at $x=1$.
(f) The graph of h has an inflection point at $x=1$.
(g) The graph of $d h / d x$ crosses the x-axis at $x=1$.

2. The substitution rule.

Sometimes it helps to reduce an integral step by step, using a trial substitution to simplify the integral a bit and then another one to simplify it some more. Practice this on

$$
\int \sqrt{1+\sin ^{2}(x-1)} \sin (x-1) \cos (x-1) d x
$$

(a) $u=x-1$, followed by $v=\sin u$, then by $w=1+v^{2}$
(b) $u=\sin (x-1)$, followed by $v=1+u^{2}$
(c) $u=1+\sin ^{2}(x-1)$
3. Integration, differentiation, and the chain rule
[2008 exam question]
Find

$$
\frac{d}{d x} \int_{\sqrt[3]{x}}^{\pi / 6} \cos \left(t^{3}\right) d t
$$

4. Area between curves

Find the area enclosed by the two curves $y=x^{2}-2$ and $y=2$.
Extra: Let f be continuous for all $x \in[a, b]$ and let F be any antiderivative of f on $[a, b]$. Show that

$$
F(b)-F(a)=\int_{a}^{b} f(x) d x
$$

Hint: Use $F(x)=G(x)+C$, where $G(x)=\int_{a}^{x} f(t) d t$ is a specific antiderivative of f, and C is some constant.

