University of London

MTH4100
Exercise sheet 6

Calculus 1, Autumn 2008
Rainer Klages

- Make sure you attend the excercise class that you have been assigned to!
- The instructor will present the starred problem in class.
- You should then work on the other problems on your own.
- The instructor and helper will be available for questions.
- Solutions will be available online after the exercise class took place.
$\left(^{*}\right) 1$. Critical points.
[2008 exam question]
Consider the family of curves given by

$$
f_{a}(x)=2 x^{3}+a x^{2}+1, \quad a, x \in \mathbb{R} .
$$

(a) For fixed a, compute the critical point(s) of each curve.
(b) When varying a, the set of all a-dependent critical points lie on a new curve. Compute the equation of that curve.

2. Linearisation of trigonometric functions.

Find the linearisation of $f(x)=\cos x$ at $x=\pi / 2$.
3. Absolute extrema.
[2008 exam question] Find the absolute maximum and minimum values of the function $f(x)=\frac{5}{6} x-9$ on the interval $[-4,7]$.
4. The mean value theorem.
[2007 exam question] Explain why the function $f(x)=2 x^{2}+5 x-3$ defined on $[a, b]$ with $a=-2, b=1$ satisifies all assumptions of the mean value theorem. Then find all values of $c \in(a, b)$ that satisfy the equation in the conclusion of this theorem,

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c) .
$$

Extra: We know how to find the extreme values of a continuous function $f(x)$ by investigating its values at critical points and endpoints. But what if there are no critical points or endpoints? What happens then? Do such functions really exist? Give reasons for your answers.

