MTH4100
Exercise sheet 3

Calculus 1, Autumn 2008
Rainer Klages

- Make sure you attend the excercise class that you have been assigned to!
- The instructor will present the starred problem in class.
- You should then work on the other problems on your own.
- The instructor and helper will be available for questions.
- Solutions will be available online after the exercise class took place.
${ }^{(*)} 1$. Two wrong statements about limits. Show by example that the following statements are wrong.
(a) The number L is the limit of $f(x)$ as x approaches x_{0} if $f(x)$ gets closer to L as x approaches x_{0}.
(b) The number L is the limit of $f(x)$ as x approaches x_{0} if, given any $\epsilon>0$, there exists a value of x for which $|f(x)-L|<\epsilon$.

Explain why the functions in your examples do not have the given value of L as a limit as $x \rightarrow x_{0}$.
2. Compute the following limits:
[2007 and 2008 exam questions]
(a) $\lim _{x \rightarrow-3^{-}}(x+4) \frac{|x+3|}{x+3}$,
(b) $\lim _{u \rightarrow 3} \frac{u^{3}-27}{u^{4}-81}$,
(c) $\lim _{x \rightarrow 0} \frac{6 x+6 x \cos (6 x)}{\sin (6 x) \cos (6 x)}$.
3. Use the graph of the greatest integer function $y=\lfloor x\rfloor$ to determine the limits

$$
\text { (a) } \quad \lim _{\theta \rightarrow 3^{+}} \frac{\lfloor\theta\rfloor}{\theta}, \quad \lim _{\theta \rightarrow 3^{-}} \frac{\lfloor\theta\rfloor}{\theta}, \quad \text { (b) } \quad \lim _{t \rightarrow 4^{+}}(t-\lfloor t\rfloor), \quad \lim _{t \rightarrow 4^{-}}(t-\lfloor t\rfloor) \text {. }
$$

Extra: Roots of a quadratic equation that is almost linear. The equation $a x^{2}+2 x-$ $1=0$, where a is a constant, has two roots if $a>-1$ and $a \neq 0$, one positive and one negative:

$$
r_{+}(a)=\frac{-1+\sqrt{1+a}}{a}, \quad r_{-}(a)=\frac{-1-\sqrt{1+a}}{a} .
$$

(a) What happens to $r_{+}(a)$ as $a \rightarrow 0$? As $a \rightarrow-1^{+}$?
(b) What happens to $r_{-}(a)$ as $a \rightarrow 0$? As $a \rightarrow-1^{+}$?
(c) Support your conclusions by graphing $r_{+}(a)$ and $r_{-}(a)$ as functions of a. Describe what you see.

