

MTH4100 Exercise sheet 3 Calculus 1, Autumn 2008 Rainer Klages

- Make sure you attend the excercise class that you have been assigned to!
- The instructor will present the starred problem in class.
- You should then work on the other problems on your own.
- The instructor and helper will be available for questions.
- Solutions will be available online after the exercise class took place.
- (*)1. **Two wrong statements about limits.** Show by example that the following statements are wrong.
 - (a) The number L is the limit of f(x) as x approaches x_0 if f(x) gets closer to L as x approaches x_0 .
 - (b) The number L is the limit of f(x) as x approaches x_0 if, given any $\epsilon > 0$, there exists a value of x for which $|f(x) L| < \epsilon$.

Explain why the functions in your examples do not have the given value of L as a limit as $x \to x_0$.

2. Compute the following limits:

[2007 and 2008 exam questions]

(a)
$$\lim_{x \to -3^{-}} (x+4) \frac{|x+3|}{x+3}$$
, (b) $\lim_{u \to 3} \frac{u^3 - 27}{u^4 - 81}$, (c) $\lim_{x \to 0} \frac{6x + 6x \cos(6x)}{\sin(6x) \cos(6x)}$

3. Use the graph of the greatest integer function y = |x| to determine the limits

(a)
$$\lim_{\theta \to 3^+} \frac{\lfloor \theta \rfloor}{\theta}$$
, $\lim_{\theta \to 3^-} \frac{\lfloor \theta \rfloor}{\theta}$, (b) $\lim_{t \to 4^+} (t - \lfloor t \rfloor)$, $\lim_{t \to 4^-} (t - \lfloor t \rfloor)$.

Extra: Roots of a quadratic equation that is almost linear. The equation $ax^2 + 2x - 1 = 0$, where a is a constant, has two roots if a > -1 and $a \neq 0$, one positive and one negative:

$$r_{+}(a) = \frac{-1 + \sqrt{1+a}}{a}, \quad r_{-}(a) = \frac{-1 - \sqrt{1+a}}{a}$$

- (a) What happens to $r_+(a)$ as $a \to 0$? As $a \to -1^+$?
- (b) What happens to $r_{-}(a)$ as $a \to 0$? As $a \to -1^+$?
- (c) Support your conclusions by graphing $r_+(a)$ and $r_-(a)$ as functions of a. Describe what you see.