University of London

MTH4100

Exercise sheet 1

Calculus 1, Fall 2008 Rainer Klages

- Make sure you attend the excercise class that you have been assigned to!
- The instructor will present the starred problems in class.
- You should then work on the other problems on your own.
- The instructor and helper will be available for questions.
- Solutions will be available online after the exercise class took place.
${ }^{(*)} 1$. Determine the set of all real numbers $x \in \mathbb{R}$ that satisfy

$$
x^{2}-3 x-4<0
$$

(a) by solving the inequality, and
(b) by plotting the graph of $y=x^{2}-3 x-4$.
2. Determine the set of all real numbers $x \in \mathbb{R}$ that satisfy

$$
|2 x-1|+|4 x+1|<3
$$

$\left.{ }^{*}\right)($ a) by solving the inequality (instructor will give you some hints), and
(b) by plotting the graph of $y=|2 x-1|+|4 x+1|$.
3. Determine the set of all real numbers $x \in \mathbb{R}$ that satisfy

$$
\sqrt{1-x^{2}} \leq-x
$$

(a) by solving the inequality, and
(b) by plotting the graphs of $y=-x$ and $y=\sqrt{1-x^{2}}$.

Extra: Prove that for all positive real numbers $x, y \in \mathbb{R}^{+}$

$$
\frac{2}{\frac{1}{x}+\frac{1}{y}} \leq \sqrt{x y}
$$

(a) by direct proof, and
(b) by using the arithmetic-geometric inequality.

