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LÉVY motion(LÉVY motion(--s) s) →→ “LÉVY flight(“LÉVY flight(--s)” s)” 
P. P. LévyLévy →→ B. Mandelbrot:B. Mandelbrot:

Paradigm of nonParadigm of non--Brownian random motionBrownian random motion

2. Properties of α-stable 
Lévy probability laws

2. Properties of Gaussian 
probability laws 

1. Generalized Central

Limit Theorem
1. Central Limit Theorem

Lévy MotionBrownian Motion

Mathematical Foundations:



Paul Pierre Lévy (1886-1971)

Theory of Lévy stable probability 
distributions in mathematical 
monographs:

Lévy (1925, 1937)
Khintchine (1938)
Gnedenko & Kolmogorov (1949-53)
Feller (1966-71)
Lukacs (1960-70)
Zolotarev (1983-86, 1997)
Janiki & Weron (1994)
Samorodnitski & Taqqu (1994)



B.V. B.V. GnedenkoGnedenko, A.N. , A.N. KolmogorovKolmogorov, “Limit , “Limit 
DistributionsDistributions forfor SumsSums of Independent of Independent RandomRandom

Variables“ (1949)Variables“ (1949)

The prophecy: “All these distribution laws, called stable, 
deserve the most serious attention. It is probable that the
scope of applied problems in which they play an essential 
role will become in due course rather wide.”(but did not 
mention any !)

The guidance for those who write books on statistical
physics: “… “normal” convergence to abnormal (that is, 
different from Gaussian –A. Ch.) stable laws … , 
undoubtedly, has to be considered in every large textbook, 
which intends to equip well enough the scientist in the
field of statistical physics.”(fragmentary exposition in 
Balescu, Ebeling&Sokolov,...)



First remarkable property
of stable distributions
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1. Stability: distribution of sum of independent identically distributed stable random 

variables = distribution of each variable    (up to scaling factor)

ccnn = = nn1/a1/a , 0 < , 0 < αααααααα ≤≤≤≤≤≤≤≤ 2, 2, αααααααα is is LèvyLèvy indexindex

Gauss:  Gauss:  αααααααα = 2,  = 2,  ccnn = = nn1/21/2

CorollaryCorollary 2.2. Normal diffusion lawNormal diffusion law, , Brownian motionBrownian motion
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or the rule of summingor the rule of summingvariancesvariances

CorollaryCorollary 3.3. SuperdiffusionSuperdiffusion, , LL éévyvy

CorollaryCorollary 1.1. Statistical selfStatistical self--similaritysimilarity , , random fractal:random fractal:

When does the whole look like its parts When does the whole look like its parts ⇒⇒⇒⇒⇒⇒⇒⇒ description of random fractal description of random fractal ptocessesptocesses
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SECOND  remarkable  propertySECOND  remarkable  property
of  stable  distributionsof  stable  distributions

2. Power law  asymptotics ∼∼∼∼ x (-1-αααα)   (“heavy tails”)

⇒⇒⇒⇒⇒⇒⇒⇒

Particular casesParticular cases

1. 1. Gauss, Gauss, αααααααα = 2= 2

All moments are finiteAll moments are finite

2. Cauchy, 2. Cauchy, αααααααα = 1= 1

, 0
q

x q α< ∞ < <

Moments of order q < 1 are finiteMoments of order q < 1 are finite

CorollaryCorollary :: descriptiondescription of highly nonof highly non--equilibrium processesequilibrium processes
possessing  large bursts  and/or  outlierspossessing  large bursts  and/or  outliers



THIRDTHIRD remarkableremarkable propertyproperty
of stableof stable distributionsdistributions
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3. Generalized Central Limit Theorem : stable distributions are the limit ones 
for distributions of sums of random variables (have domain of attraction) ⇒⇒⇒⇒

appear, when evolution of the system or the result of experiment is 
determined by the sum of a large number of random q uantities

Gauss: attracts Gauss: attracts f(xf(x)) withwith finitefinite
variancevariance

LL éévyvy: attract : attract f(xf(x)) withwith infiniteinfinite variancevariance
and           the and           the samesameasymptotic behaviorasymptotic behavior
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Due to the three remarkable properties of 
stable distributions it is now believed that the 
Léévy statistics provides a framework for the 
description of many natural phenomena in 
physical, chemical, biological, economical, … 
systems from a general common point of view



Electric Field Distribution in an Ionized Gas Electric Field Distribution in an Ionized Gas 
((HoltzmarkHoltzmark 1919)1919)

Application:Application: spectral lines broadening in plasmasspectral lines broadening in plasmas
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RelatedRelated examplesexamples::
Systems Systems withwith LongLong--Range Range interactionsinteractions

• gravity field of stars (=3/2)

• electric fields of dipoles (= 1)

• velocity field of point vortices in fully developed 
turbulence (=3/2) ……

(to name only a few)

• also: asymmetric Levy stable distributions in the first 
passage theory, single molecule line shape cumulants in 
glasses …
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SelfSelf--Similar Structure of Brownian and Similar Structure of Brownian and LévyLévy MotionsMotions
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““ If, veritably, one took the position from If, veritably, one took the position from 
second to second, each of these rectilinear second to second, each of these rectilinear 
segments would be replaced by a polygonal segments would be replaced by a polygonal 
contour of 30 edges, contour of 30 edges, each being as complicatedeach being as complicated
as the reproduced designas the reproduced design, and so forth.” , and so forth.” 

J.B. J.B. PerrenPerren

““ The stochastic process which we call linear The stochastic process which we call linear 
Brownian motion is a schematic Brownian motion is a schematic representarepresenta--
tiontion which describes well the properties of real which describes well the properties of real 
Brownian motion, observable  on a small Brownian motion, observable  on a small 
enough, but not infinitely small scale, and enough, but not infinitely small scale, and 
which assumes that the which assumes that the same properties existsame properties exist
on whatever scaleon whatever scale.”   .”   P.P. P.P. LL éévyvy



NORMAL NORMAL vsvs ANOMALOUS DIFFUSIONANOMALOUS DIFFUSION

Brownian motion of a small Brownian motion of a small 
grain of puttygrain of putty

ForagingForaging movementmovementbyby LLéévyvy flights: flights: 
optimal strategy to search for food optimal strategy to search for food 
resources  distributed at random ?resources  distributed at random ?

(Jean Baptiste Perrin: 1909)                     Gabriel Ramos-Fernandes et al. (2004)

2( )R t t∝ 2( ) , 1.7R t t µ µ∝ ≈ Spider monkeysSpider monkeys





Diffusion of tracers in fluid flows.Diffusion of tracers in fluid flows.

Large scale structures (eddies, jets or convection rolls) dominaLarge scale structures (eddies, jets or convection rolls) dominate the transport.te the transport.

Example. Experiments Example. Experiments 
in a rapidly rotating in a rapidly rotating 
annulus (annulus (SwinneySwinneyet al.).et al.).

Ordered flow:Ordered flow:
Levy diffusionLevy diffusion

(flights and traps)(flights and traps)
µµµµµµµµ ≈≈≈≈≈≈≈≈ 1.5 1.5 –– 1.81.8

Weakly turbulent Weakly turbulent 
flow:flow:

Gaussian diffusionGaussian diffusion
µµµµµµµµ ≈≈≈≈≈≈≈≈ 11



Anomalous Diffusion inAnomalous Diffusion in ChannelingChanneling

Fig.1. NORMAL DIFFUSION:               Fig.1. NORMAL DIFFUSION:               
randomlyrandomlydistributeddistributedatomatom
stringsstrings

Fig.2. SUPERDIFFUSION: Fig.2. SUPERDIFFUSION: positivelypositivelyand and negativelynegatively
chargedchargedparticlesparticlesin a in a periodicperiodicfieldfield of of atomatomstringsstringsalongalong
thetheaxisaxis<100> in a <100> in a siliconsilicon crystalcrystal..



“Paradoxical” Diffusion in Chemical Space (Sokolov et al.1997)

Optimal Target Search on a FastOptimal Target Search on a Fast--Folding Polymer Chain (Folding Polymer Chain (LomholtLomholt et al.2005)et al.2005)

•• IntersegmentalIntersegmental jumps permitted jumps permitted 
at chain contact points due to polymer loopingat chain contact points due to polymer looping
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•• Contoured length |x| stored Contoured length |x| stored 
in a loop between contact pointsin a loop between contact points

Protein diffusion to next Protein diffusion to next neighborneighbor sitessitesonon foldingfolding DNA DNA ((ddeoxyribonucleiceoxyribonucleic acidacid))
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•• Motion of binding proteins or enzymes Motion of binding proteins or enzymes 
along DNA: detach to a volume along DNA: detach to a volume →→→→→→→→ reattach reattach 
before reaching the targetbefore reaching the target
(Berg(Berg –– von von HippelHippel model)model)



SuperdiffusionSuperdiffusion of of bankbank notesnotes in in thethe US, US, µµ ≈≈ 22
(Brockmann, Hufnagel, Geisel, Nature 2006)

www.wheresgeorge.comwww.wheresgeorge.com

FigureFigure: : trajectoriestrajectoriesof of banknotesbanknotesoriginatedoriginatedfromfrom 4 4 placesplaces::
reminiscentreminiscentof Lof Léévyvy flightsflights

Geographical displacementr between two report
location of a bank note
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A Lévy Flight for Light
(P. Barthelemy et al, Nature 2008)

•••••••• New optical material in New optical material in 
which light performs a which light performs a 
LL éévyvy flightflight

•••••••• Ideal experimental Ideal experimental 
system to study system to study LL éévyvy
flights in a controlled wayflights in a controlled way

•• Precisely chosen Precisely chosen 
distribution of glass distribution of glass 
microspheresmicrospheresof of 
different diameters ddifferent diameters d

P(dP(d) ) ~ d~ d--((2 + 2 + αααααααα))

Figure: Figure: LL éévyvy walker trajectory in a scale walker trajectory in a scale –– invarianinvarian Levy glassLevy glass



Lévy flights of photons in hot atomic vapours
(Mercadier et al. Nature Physics 2009)
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•••• Measuring the step 
size distribution of 
photons

Figure:  Double cell configuration to measure the s tep   
size PDF

•••• Under Gaussian 
assumptions of 
emission and 
absorption spectra 
(Doppler broadening)

Figure: power law exponent αααα of the step size 
distribution vs number n of scattering events 
(multiply scattering)



Impulsive Impulsive NoisesNoises ModeledModeled withwith thethe Lévy Lévy StableStable
DistributionsDistributions

Naturally serve for the description of the processesNaturally serve for the description of the processes
withwith large large outliersoutliers , far , far fromfrom equilibriumequilibrium

Examples include:

•••• economic stock prices and current exchange rates (1963)
•••• radio frequency electromagnetic noise
•••• underwater acoustic noise
•••• noise in telephone networks
•••• biomedical signals
•••• stochastic climate dynamics
•••• turbulence in the edge plasmas of thermonuclear devices (Uragan
2M, ADITYA, 2003; Heliotron J, 2005 ...)

Examples include:

•••• economic stock prices and current exchange rates (1963)
•••• radio frequency electromagnetic noise
•••• underwater acoustic noise
•••• noise in telephone networks
•••• biomedical signals
•••• stochastic climate dynamics
•••• turbulence in the edge plasmas of thermonuclear devices (Uragan
2M, ADITYA, 2003; Heliotron J, 2005 ...)



LLéévy vy noisesnoises and Land Léévy vy motionmotion

LÉVY NOISES

Lévy index ↓↓↓↓ ⇒⇒⇒⇒ outliers ↑↑↑↑

LÉVY MOTION:
successive additions of the noise values

Lévy index ↓↓↓↓ ⇒⇒⇒⇒ “flights” become
longer



EXPERIMENTAL OBSERVATION OF LEXPERIMENTAL OBSERVATION OF LÉÉVY FLIGHTS  IN  WIND  VY FLIGHTS  IN  WIND  
VELOCITYVELOCITY ((LammefjordLammefjord, , denmarkdenmark, , 20062006; ; GoncharGonchar et al.et al.))

Measuring masts           Velocity increments          Distribution  of  increments
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Important for reliable prediction of fatique loads



««LévyLévy TurbulenceTurbulence» » in boundaryin boundary plasmaplasma of of 

stellaratorstellarator ««UraganUragan 3М»3М» ((GoncharGonchar et al., 2003)et al., 2003)

Helical magnetic coilsHelical magnetic coils
((from abovefrom above))

Poincare section of magnetic linePoincare section of magnetic line
, ЛЗ , ЛЗ –– Langmuir proveLangmuir prove
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Ion saturation currentIon saturation current
at different probe positionsat different probe positions::

аа) ) RR = = 111 с111 сmm ;  ;  бб) ) RR = 112 с= 112 сmm ;;

вв) ) RR = 112.5 с= 112.5 сmm ;  ;  гг) ) RR = 113 с= 113 сmm..

Boundary region is important for confinementBoundary region is important for confinement



««LévyLévy TurbulenceTurbulence» » in boundaryin boundary plasmaplasma of of 

stellaratorstellarator ««UraganUragan 3М» 3М» 

1. 1. Kurtosis  and  “chiKurtosis  and  “chi--square” square” criteriumcriterium : : evidence of nonevidence of non--GaussianityGaussianity..

2. 2. Modified method of percentilesModified method of percentiles: : LL éévyvy index of  turbulent  fluctuationsindex of  turbulent  fluctuations

Ion saturation currentIon saturation current ∼∼∼∼∼∼∼∼ δδδδδδδδnn Floating  potentialFloating  potential ∼∼∼∼∼∼∼∼ δϕδϕδϕδϕδϕδϕδϕδϕ

•••••••• Fluctuations of density and potential measured in boundary plasmFluctuations of density and potential measured in boundary plasma of a of stellaratorstellarator
““ UraganUragan 3M”  obey  3M”  obey  LL éévyvy statisticsstatistics



•••••••• similar conclusions  about the similar conclusions  about the LL éévyvy statistics of plasma fluctuations have been statistics of plasma fluctuations have been 
drawn fordrawn for

•••••••••••••••• ADITYAADITYA
•••••••••••••••• LL --22MM
•••••••••••••••• LHDLHD , , TJTJ--IIII
•••••••••••••••• HeliotronHeliotron J J 

““ burstybursty” character of fluctuations in other devices ” character of fluctuations in other devices ((DIIIDIII --DD, , TCABRTCABR , …), …)

““ Levy turbulence”Levy turbulence” is a widely spread phenomenonis a widely spread phenomenon⇒⇒⇒⇒⇒⇒⇒⇒ Models are strongly needed !Models are strongly needed !



Two advanced conceptsTwo advanced concepts

Truncated Levy Flights: Truncated Levy Flights: PDFsPDFsresembles resembles LévyLévy stable stable 
distribution in the central part, however  at greater scales thedistribution in the central part, however  at greater scales the
asymptoticsasymptoticsdecay faster, than the decay faster, than the LévyLévy stable ones,                 stable ones,                 ⇒⇒⇒⇒⇒⇒⇒⇒
the Central Limit Theorem is applied  the Central Limit Theorem is applied  ⇒⇒⇒⇒⇒⇒⇒⇒
at large times the PDF tends to Gaussian, however, at large times the PDF tends to Gaussian, however, sometimes sometimes 
very slowlyvery slowly

Levy Walks: finite velocity when the motion of a massive Levy Walks: finite velocity when the motion of a massive 
object is consideredobject is considered

Might be important for  the bumblebees in a finite box ???Might be important for  the bumblebees in a finite box ???

2x < ∞
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Recent  reviewsRecent  reviews



Thank you for attention !Thank you for attention !


