Strategy for Graphing y = f(x)

- 1. Identify the domain of f and any symmetries the curve may have.
- 2. Find v' and v''.
- 3. Find the critical points of f, and identify the function's behavior at each one.
- 4. Find where the curve is increasing and where it is decreasing.
- Find the points of inflection, if any occur, and determine the concavity of the curve.
- 6. Identify any asymptotes.
- 7. Plot key points, such as the intercepts and the points found in Steps 3–5, and sketch the curve.

y = f(x)

smooth, connected; graph may rise and fall

 $y' > 0 \Rightarrow$ rises from left to right; may be wavy

 $y' < 0 \Rightarrow$ falls from left to right; may be wavy

 $y'' < 0 \Rightarrow$ concave down

throughout; no waves;

 $y'' > 0 \Rightarrow$ concave up throughout; no waves; graph may rise or fall

y' changes sign \Rightarrow graph has local maximum or local minimum

y' = 0 and y'' < 0at a point; graph has local maximum

y' = 0 and y'' > 0at a point; graph has local minimum