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Question 1 [total: 40 marks]

(a) Determine the set of real numbers x ∈ R that satisfy the inequality

|4x− 3| ≤ 8 .

[4 marks]

(b) Find the limit

lim
h→0

√
13h + 1− 1

h
.

[4 marks]

(c) Find the limit

lim
x→3

2x− 6
5x2 − 45

.

[4 marks]

(d) Find the horizontal, vertical and oblique asymptotes, if any, of

f(x) =
3x2

x− 2
.

[5 marks]

(e) Find the derivative g′(x) of

g(x) =
9x− 7
3x + 1

, x 6= −1
3

.

[5 marks]

(f) Find the derivative h′(x) of

h(x) = x tan
(
8
√

x
)

+ 2 , x ≥ 0 .

[6 marks]

(g) Evaluate ∫
1√

7x(
√

7x + 3)
dx

for x > 0. Simplify your answer. [6 marks]

(h) Evaluate ∫ 3

1/2
6x ln(2x) dx .

Simplify your answer. [6 marks]
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Question 2 [total: 30 marks] Consider the curve y = f(x) for the function

f(x) = x2 +
2
x

.

(a) Identify the domain of f and any symmetries the curve may have. [3 marks]

(b) Find f ′(x) and f ′′(x). [2 marks]

(c) State the definition of a critical point. Find the critical points for f , and
identify the function’s behaviour at each one. [7 marks]

(d) Find where the curve is increasing and where it is decreasing. [3 marks]

(e) State the definition of an inflection point. Find the inflection points for f , if
any occur, and determine the concavity of the curve. [8 marks]

(f) Identify any asymptotes. [2 marks]

(g) Plot key points, such as intercepts, critical points, and points of inflection, and
sketch the curve. [5 marks]

Question 3 [total: 10 marks]

(a) State the definition of the derivative of the function f(x) with respect to the
variable x. [4 marks]

(b) Differentiate from first principles, that is, by using the above definition of the

derivative, f(x) =
1
x2

. [6 marks]

Question 4 [20 marks] For the function f(x) = x + x2 over the interval [0, 1], find
a formula for the upper sum obtained by dividing the interval [0, 1] into n equal
subintervals. Then take the limit of this sum as n →∞ to calculate the area under
the curve over [0, 1].

End of Paper
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