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Lecture 25

Riemann sums and definite integral

Consider a typical continuous function over [a, b]:

Partition [a, b] by choosing n − 1 points between a and b:

a = x0 < x1 < x2 < . . . < xn−1 < xn = b ,

i.e., ∆xk = xk − xk−1, the width of the subinterval [xk−1, xk], may vary.
Choose ck ∈ [xk−1, xk] and construct rectangles:
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The resulting sums

Sp =

n
∑

k=1

f(ck)∆xk

are called Riemann sums for f on [a, b].
Then choose finer and finer partitions by taking the limit such that the width of the largest
subinterval goes to zero.
For a partition P = {x0, x1, . . . , xn} of [a, b] we write ||P || (called “norm”) for the width of
the largest subinterval.

shorthand notation:

I = lim
||P ||→0

n
∑

k=1

f(ck)∆xk =

∫ b

a

f(x)dx

with

note:
∫ b

a

f(t)dt =

∫ b

a

f(x)dx , etc.
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(idea of proof: check convergence of upper/lower sums; see p.345 of book for further details)
example of a nonintegrable function on [0.1]:

f(x) =

{

0 if x ∈ Q

1 if x ∈ R \ Q

upper sum is always 1; lower sum is always 0 ⇒
∫ 1

0
f(x)dx does not exist!

Theorem 2 For integrable functions f, g on [a, b] the definite integral satisfies the following
rules:

and (g) order of integration:

∫ a

b

f(x)dx = −
∫ b

a

f(x)dx

(for idea of proof of (b) to (f) see book p.348; (a), (g) are definitions!)
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Area under the graph and mean value theorem

example: f(x) = x, a = 0, b > 0

• area A = 1
2
b2

• definition of integral:
choose xk = kb/n with right endpoints ck

I = lim
n→∞

n
∑

k=1

f(ck)∆x

= lim
n→∞

n
∑

k=1

kb

n
· b

n

= lim
n→∞

b2

n2

n
∑

k=1

k

= lim
n→∞

b2

n2

n(n + 1)

2
=

b2

2



Lecture 26

Consider the (arithmetic) average of n function values on [a, b]:

1

n

n
∑

k=1

f(ck) =
1

n∆x

n
∑

k=1

f(ck)∆x → 1

b − a

∫ b

a

f(x)dx (n → ∞)

example: f(x) = x , x ∈ [0, b] (see above)

av(f) =
1

b − 0

∫ b

0

xdx =
1

b

x2

2

∣

∣

∣

∣

b

0

=
b2

2b
=

b

2

Theorem 3 (The mean value theorem for definite integrals) If f is continuous on
[a, b], then there is a c ∈ [a, b] with

f(c) =
1

b − a

∫ b

a

f(x)dx .

Interpretation, loosely speaking: “f assumes its average value somewhere on [a, b].”
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geometrical meaning:

(proof: see book p.357; not hard; based on max-min-inequality for integrals and intermediate
value theorem for continuous functions)
example for applying the mean value theorem for integrals:
Let f be continuous on [a, b] with a 6= b and

∫ b

a

f(x)dx = 0 .

Show that f(x) = 0 at least once in [a, b].
Solution: According to the last theorem, there is a c ∈ [a, b] with

f(c) =
1

b − a

∫ b

a

f(x)dx = 0 .

The fundamental theorem of calculus

For a continuous function f , define

F (x) =

∫ x

a

f(t)dt .

Geometric interpretation:
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Compute the difference quotient:

F (x + h) − F (x)

h
=

1

h

(
∫ x+h

a

f(t)dt −
∫ x

a

f(t)dt

)

(additivity rule and see figure below) =
1

h

∫ x+h

x

f(t)dt

(mean value theorem for definite integrals) = f(c)

for some c with x ≤ c ≤ x + h.

Since f is continuous,

lim
h→0

f(c) = f(x)

and therefore

F ′(x) = lim
h→0

F (x + h) − F (x)

h
= f(x) .

We have just proven (except a little detail - which one?)

examples:

1.
d

dx

∫ x

a

1

1 + 4t3
dt =

1

1 + 4x3
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2. Find
d

dx

∫ x2

2

cos t dt :

Define

y =

∫ u

2

cos t dt with u = x2

Apply the chain rule:

dy

dx
=

dy

du
· du

dx

=

(

d

du

∫ u

2

cos t dt

)

· du

dx
= cos u · 2x
= 2x cos x2

We know that
∫ x

a

f(t)dt = G(x)

is an antiderivative of f , as G′(x) = f(x), see theorem above.
The most general antiderivative is F (x) = G(x) + C (why?). We thus have

F (b) − F (a) = (G(b) + C) − (G(a) + C)

= G(b) − G(a)

=

∫ b

a

f(t)dt −
∫ a

a

f(t)dt

(zero width interval rule) =

∫ b

a

f(t)dt .

We have just proven (supplemented by considering F, G at the boundary points a, b)
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Recipe to calculate

∫ b

a

f(x)dx:

1. Find an antiderivative F of f

2. Calculate F (b) − F (a)

Notation:
F (b) − F (a) = F (x)|ba

example:

∫ 4

1

(

3

2

√
x − 4

x2

)

dx =

(

x3/2 +
4

x

)
∣

∣

∣

∣

4

1

=

(

43/2 +
4

4

)

−
(

13/2 +
4

1

)

= 4

Fundamental theorem of calculus: summary

d

dx

∫ x

a

f(t)dt =
dF

dx
= f(x)

∫ x

a

f(t)dt =

∫ x

a

dF

dt
dt = F (x) − F (a)

Processes of integration and differentiation are “inverses” of each other!
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Finding total areas

example:

To find the area between the graph of y = f(x) and the x-axis over the interval [a, b], do
the following:

1. Subdivide [a, b] at the zeros of f .

2. Integrate over each subinterval.

3. Add the absolute values of the integrals.

example continued:
f(x) = x3 − x2 − 2x , −1 ≤ x ≤ 2

1. f(x) = x(x2 − x − 2) = x(x + 1)(x − 2): zeros are −1, 0, 2

2.

∫ 0

−1

(x3 − x2 − 2x)dx =

(

x4

4
− x3

3
− x2

)
∣

∣

∣

∣

0

−1

=
5

12
∫ 2

0

(x3 − x2 − 2x)dx =

(

x4

4
− x3

3
− x2

)
∣

∣

∣

∣

2

0

= −8

3

3. A =
∣

∣

5
12

∣

∣ +
∣

∣−8
3

∣

∣ = 37
12

The substitution rule

motivation: develop more general techniques for calculating antiderivatives
Recall the chain rule for F (g(x)):

d

dx
F (g(x)) = F ′(g(x))g′(x)
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If F is an antiderivative of f , then

d

dx
F (g(x)) = f(g(x))g′(x)

Now compute

∫

f(g(x))g′(x)dx =

∫
(

d

dx
F (g(x))

)

dx

(fundamental theorem) = F (g(x)) + C

(u = g(x)) = F (u) + C

(fundamental theorem) =

∫

F ′(u)du

=

∫

f(u)du

We have just proven

method for evaluating
∫

f(g(x))g′(x)dx :

1. Substitute u = g(x), du = g′(x)dx to obtain
∫

f(u)du.

2. Integrate with respect to u.

3. Replace u = g(x).

example: Evaluate
∫

2z
3
√

z2 + 5
dz :

1. Substitute u = z2 + 5, du = 2z dz:

∫

2z
3
√

z2 + 5
dz =

∫

u−1/3du

2. Integrate:
∫

u−1/3du =
3

2
u2/3 + C



13

3. Replace u = z2 + 5:
∫

2z
3
√

z2 + 5
dz =

3

2
(z2 + 5)2/3 + C

Transform integrals by using trigonometric identities.

example: Evaluate

∫

sin2 x dx:

Use half-angle formula sin2 x = (1 − cos 2x)/2 to write

∫

sin2 x dx =

∫

1

2
(1 − cos 2x)dx

=
1

2

∫

dx − 1

2

∫

cos 2x dx

=
1

2
x − 1

4
sin 2x + C

Move on to substitution in definite integrals:

Theorem 6 If g is continuous on [a, b] and f is continuous on the range of g, then

∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du .

(note that u = g(x)! proof straightforward, see book p.377)

example: Evaluate

∫ 1

−1

3x2
√

x3 + 1dx.

Substitute u = x3 + 1, du = 3x2dx.
x = −1 gives u = (−1)3 + 1 = 0; x = 1 gives u = 13 + 1 = 2, and we obtain

∫ 1

−1

3x2
√

x3 + 1dx =

∫ 2

0

√
udu

=
2

3
u3/2

∣

∣

∣

∣

2

0

=
2

3
23/2 − 0

=
4
√

2

3


