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1 Introduction

This is the first talk in a projected series of five, which has two main aims. First,
to describe some research I did over the summer. And second, to introduce
some important pieces of mathematics to (especially) our research students. The
research topic is in effect a marriage between the octonions and the Leech lattice:
they have been flirting for years, but I can now report that the marriage has been
consummated. But our main purpose is to meet the wedding guests: the friends
and relatives of the bride and groom. As you would expect, they are a motley
crew, and include a number of colourful characters, particularly eccentric uncles
and the like.

Although the general title of my talks is ‘Construction of simple groups’, in
fact I want to de-emphasise the group theory, and talk mainly about lattices,
algebras and codes. Much of what I shall say is not new, but in many cases the
presentation may be non-standard. In other words, there will be something old,
and something new, something borrowed—and maybe even something blue.

2 2-dimensional reflection groups

Let us begin by meeting some of the bride’s older relatives, the dihedral groups.

Reflection in a vector r is the map which negates r and fixes everything per-
pendicular to r. Thus

x 7→ x− 2
(x.r)

(r.r)
r

In terms of complex numbers, reflection in 1 is the map

x 7→ −x

as you can easily check: 1 7→ −1 and i 7→ i.
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To get the reflection in r (without loss of generality, rr = 1), first multiply
by r to map r to 1, then reflect in 1, and then multiply by r to map 1 back to r.
Thus

z 7→ −rrz = −rzr

The product of these two reflections is the rotation

z 7→ rzr

Examples

triangle square pentagon hexagon
called: A2 B2 H2 G2

the dihedral groups: D6 D8 D10 D12

generating reflections: 1, eπi/3 1, eπi/4 1, eπi/5 1, eπi/6

in real numbers: (2, 0) (2, 0) (2, 0) (2, 0)

(−1,
√

3) (
√

2,
√

2) ((1 +
√

5)/2,
√

(5−
√

5)/4) (
√

3, 1)

The crystallographic restriction is that we only consider shapes which tes-
sellate the plane, i.e. the cases A2, B2 and G2. In these cases we can choose the
lengths of the roots (i.e. reflecting vectors) in such a way that they span a lattice
Z[roots].

A2 and G2 both give the lattice Z[ω], where ω = e2πi/3. The roots of A2

are ±1,±ω,±ω. These are also the short roots of G2. The long roots of G2 are
±(1−ω),±(ω−ω),±(ω− 1). Or take these as the short roots, and multiply the
others by 3 to make them the long roots!

B2 gives Z[i] with short roots ±1,±i and long roots ±1 ± i (or short roots
±1± i and long roots ±2,±2i).
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3 3-dimensional reflection groups

Classification of reflection groups can be done by induction on the dimen-
sion. There is no extension of G2 to three dimensions, and an essentially unique
extension of each of A2, B2 and H2.

tetrahedron cube dodecahedron
or octahedron or icosahedron

A3 B3 H3

group: S4 2× S4 2× A5

coordinates: 8V : (±1,±1,±1) 20V : (±1,±1,±1), (0,±τ,±σ)
12E : (±1,±1, 0) 30E : (±2, 0, 0), (±1,±σ,±τ)
6F : (±1, 0, 0) 12F : (0,±1,±τ)

where σ = (
√

5− 1)/2, τ = (
√

5 + 1)/2

In the case of B3 there are 6 short roots (±1, 0, 0) and 12 long roots (±1,±1, 0).
If we double the length of the short roots this time we get a different shaped
configuration, called C3.

Quaternions H = R[i, j, k] where i2 = j2 = k2 = −1, ij = −ji = k,
jk = −kj = i, ki = −ik = j can be used to describe these groups and the
corresponding lattices. Which means we might as well go to four dimensions
while we’re about it.

4 4-dimensional reflection groups

H3 extends uniquely, to H4, but A3 extends in two ways, to A4 and D4. Also B3

extends in two ways, to B4 and F4. In fact, F4 contains both B4 and D4, while
H4 contains A4 and D4.

The roots of D4 may be taken as all 24 vectors of shape (±1,±1, 0, 0). Or, on
a different scale, the 8 vectors of shape (±2, 0, 0, 0) together with the 16 of shape
(±1,±1,±1,±1).

The roots of F4 are of two different lengths, and consist of the two copies of
D4 just mentioned. You can scale them so that either of them gives the short
roots and the other one gives the long roots. To obtain B4, take all of the long
roots (±1,±1, 0, 0) of F4 and the eight short roots of shape (±1, 0, 0, 0).

The roots of H4 are those of D4, best taken as (±2, 0, 0, 0) and (±1,±1,±1,±1),
together with 96 more roots (0,±1,±σ,±τ), with any even permutation of the
coordinates allowed. Inside here you can find A4 consisting of 20 roots

(±2, 0, 0, 0), (0,±2, 0, 0),±(±1,±1, 1, 1),±(±1, 0, τ, σ),±(0,±1, σ, τ).
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Reflections in quaternion notation are just the same as in the complex num-
bers. That is, reflection in 1 is the map

q 7→ −q

where a + bi + cj + dk = a − bi − cj − dk. So reflection in r (assumed of norm
1) is the map

q 7→ −rrq = −rqr.

And the product of these two reflections is the rotation

q 7→ rqr.

Scaling the roots of D4 to norm 1 in the quaternions, we have ±1,±i,±j,±k
together with 1

2
(±1 ± i ± j ± k). These units form a group variously known as

2.A4 or SL2(3) or the binary tetrahedral group. The first 8 of these form the
quaternion group Q8.

The full reflection group of F4 has shape 2.(A4×A4).2.2 in which the central
2 is negation of the whole 4-space, modulo which the two copies of A4 are left-
and right-multiplication by the units. Then the maps q 7→ 1

2
(1 + i)q(1 + i) and

q 7→ q extend this to the whole group.
There is a similar description of the reflection group of type H4. This time

the roots form a group of order 120, which is a double cover of A5, also known
as SL2(5) or the binary icosahedral group. The full reflection group has shape
2.(A5 × A5).2 in which we see left- and right-multiplications by this group of
units, together with the map q 7→ q again.

A complex description of D4 is as the vectors (2r, 0), (0, 2r), (r1, r2), where
r is a short root of B2 and r1, r2 are long roots. Depending on our choice of basis
for B2, this gives either

(±2, 0), (±2i, 0), (0,±2), (0,±2i), (±1± i,±1± i)

or
(±1± i, 0), (0,±1± i), (±1,±1), (±1,±i), (±i,±1), (±i,±i).

5 Dimensions bigger than 4

It turns out that A4, B4 and D4 extend indefinitely, to arbitrary dimensions, but
F4 and H4 do not extend at all. Also, D5 extends in a different way to E6, E7

and E8, at which point this series stops.
It is significant (I think) that the various series of reflection groups stop in

dimensions 2, 4, and 8, precisely the dimensions of the complex numbers, quater-
nions, and octonions (Cayley numbers).
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6 An eightfold path to E8

There are innumerable ways to make E8. I shall describe just a few of my
favourites.

1. From F4: take 48 roots (2r, 0) where r is a short root of F4, together with
24× 8 = 192 roots (r, qr) where r is a long root and q ∈ Q8.

2. If F4 is labelled so that ±1± i are short and ±2, etc, are long, this gives

(±2,±2, 0, 0 | 0, 0, 0, 0) 48
(±2, 0, 0, 0 | ±2, 0, 0, 0) 64

(±1,±1,±1,±1 | ±1,±1,±1,±1) 128

where in the last case there must be an even number of minus signs. Clearly
we now see more symmetry, fusing the first two orbits of roots.

3. We can twist this by changing sign on one coordinate, so that there is an
odd number of minus signs instead.

4. If F4 is labelled so that ±1,±i etc are short, and ±1 ± i etc are long, we
get

(±2, 0, 0, 0 | 0, 0, 0, 0) 16
(±1,±1,±1,±1 | 0, 0, 0, 0) 32
(±1,±1, 0, 0 | ±1,±1, 0, 0) 6.4.2.4 = 192

where in the last case the right hand pair of 1s can either be in the same
positions as the left hand pair, or in the complementary positions.

5. Labelling the coordinates ∞, 0, 1, 3, 2, 6, 4, 5 in that order enables us to de-
scribe the supports of the vectors of shape (±14, 04): they are either ∞
with a line t, t + 1, t + 3 (mod 7) of the projective plane of order 2, or the
complement thereof.

6. From B2, take 16 roots (2r, 0, 0, 0) where r is a short root of B2, and
6.4.4 = 96 roots (r1, r2, 0, 0) where ri are long roots of B2, and 128 roots
(r1, r2, r3, r4) where the ri are short roots of B2 and their product is ±1.

7. Or twist this so that the product is ±i instead.

8. From H4: define N : Q[
√

5] → Q by N(a+ bσ) = a, and define a new norm
N(qq) on H4. Now the things of norm 1 are the original things of norm 1,
together with their multiples by σ. Thus we obtain 240 roots.

(If we apply this process to H2 we get A4, and if we apply it to H3 we get
D6.)
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7 Properties of E8

Reducing modulo 2 the lattice Λ = Z[roots] ∼= Z8 (as additive groups) gives
Λ/2Λ ∼= (Z/2Z)8. The Euclidean norm (on a suitable scale) reduces to a quadratic
form mod 2, such that the 240 roots become the 120 vectors of norm 1. The
reflections become orthogonal transvections, and generate the orthogonal group
O+

8 (2) = Ω+
8 (2).2 (or, in Atlas notation O+

8 (2)). Thus the reflection group modulo
{±1} is this orthogonal group.

The 135 isotropic vectors i.e. the non-zero vectors of norm 0 in Λ/2Λ come
from congruence classes (modulo 2Λ) of vectors of twice the norm of a root.
There are 16 vectors in each class, forming a cross. The stabilizer of a cross is
27S8 (even sign changes and all coordinate permutations) so we can calculate the
order of the reflection group as 214.35.52.7.

Self-duality On the scale where the roots have norm 2, all the inner products
of roots are integers. Conversely, any vector which has integer inner products
with all the roots is in Λ.

To prove this, take our roots to be (±1,±1, 06) and (±1
2

8
) with even signs.

• Inner product with (2, 07) implies all coordinates are in 1
2
Z

• Inner product with (1, 1, 06) implies either all coordinates are in Z or all
coordinates are in Z + 1

2
.

• Inner product with (1
2

8
) implies the sum of the coordinates is 0 mod 2,

which gives the sign condition.

In fact, this property characterizes E8: it is the unique self-dual even (i.e. all
norms are even integers) integral (i.e. all inner products are integers) lattice in
eight dimensions.
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