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Abstract

We show that the Suzuki group, Sz(32), is a subgroup of Eg(5),
and so is its automorphism group. Both are unique up to conjugacy in
Eg(FF) for any field F of characteristic 5, and the automorphism group
Sz(32) : 5 is maximal in Fg(5).

MSC number 20E28.

1 Introduction

Finite subgroups of simple exceptional Lie groups have received much atten-
tion recently. There are many interesting examples—see [4], [5], [7], [8], [11],
[12], [13] and [22]. If one allows the exceptional Lie group (over F = C) to be
replaced by an exceptional simple algebraic group over a field F of positive
characteristic, these plus further interesting embeddings occur. For example,
there is an embedding of L,(5) in Es(FF) precisely when F contains the Galois
field Fy [6]. There are further interesting examples in [16] and [17], where
the embeddings of sporadic simple groups are determined. More recently,
Liebeck and Seitz [19] have considered the question of cross-characteristic
embeddings of groups of Lie type in exceptional groups—see the survey pa-
per of Liebeck [18], where these and other related results are discussed. In
this paper we resolve one of the last two cases in [19] to be settled. In partic-
ular we show there is an embedding of the Suzuki group Sz(32) = 2B,(32)
into Eg(F) when F has characteristic 5.



Theorem 1 There is a unique conjugacy class of subgroups Sz(32) in Eg(F)
where F is a field of characteristic 5. The normalizer of this in Eg(F) is
the automorphism group Sz(32):5 of Sz(32). They both act on the 248-
dimensional module as a non-splitting extension of the two distinct 124-
dimensional irreducible modules. The group Sz(32):5 is a mazimal subgroup
of Es(5). The group Sz(32) does not embed in Es(F) for fields of character-
wstic not 5 or 2.

The fact that there are no embeddings in other characteristics (other
than 2) was established in [4] in characteristic 0 and in [19] for positive
characteristics. We outline some of the arguments below for completeness.
Our construction uses an embedding of the Borel subgroup 2°7°:31 of Sz(32)
into the well-known 2-local subgroup 2°71°L5(2) of Es. We remark that the
resulting subgroup Sz(32):5 is a maximal subgroup of Eg(5) using [19]: If
X were a proper subgroup of Eg(5) containing Sz(32) : 5 properly, it would
have to be simple, and in fact classical of characteristic 5; on the other hand,
Sz(32) has no nontrivial representations in characteristic other than 2 of
dimension less than 124.

2 Character considerations

Let £ = Ex(F), S = Sz(32). Here we assume F is a field of characteristic not
2 and assume S is a subgroup of E. By considering the ordinary and modular
character tables of S, we see that the 248-dimensional adjoint module V for £
must have the two irreducible constituents of dimension 124 when restricted
to S. This follows as V is self dual, and the only non-trivial irreducible
representation degrees in characteristic not 2 of dimension < 248 are the two
of dimension 124. Let W be a module for S of dimension 248 with character
the sum of the two distinct irreducibles y1, y2 of dimension 124.

We include an argument to show an embedding of Sz(32) in Eg(F) can
occur only for IF of characteristic 5 for completeness. It is also shown in [19].
Consider the skew symmetric square A*W of W. Notice, using [9], [15], or
using GAP, that neither y; nor y, appear as constituents of the character
of this, except in characteristic 5. Indeed this follows from considerations
of the Brauer tree and the fact that in characteristic 0, the skew symmetric
square is a sum of the trivial character, the fifteen characters of degree 1025,
and twice the six characters of degree 1271. In characteristic 5 only, these



last characters contain as constituents the irreducible characters of degree
124. This means that there is no embedding of S in E except possibly in
characteristic 5, since the existence of the Lie product and the Killing form
implies that A2V has a submodule isomorphic to V.

Thus from now on we assume that F has characteristic 5. Using the
theory of cyclic defect groups, we see that there are two possibilities at this
stage: either W is a direct sum of the two irreducible constituents, or it
is a nonsplitting extension. In this latter case, the order in which the two
constituents appear is determined by the Brauer tree. For a discussion of
this and the Brauer tree see [1].

3 The Borel of S2(32) in F

The Borel subgroup, B, of S = S2(32) is a subroup of type 2°75:31. The
Sylow 2 subgroup has centre, K, of order 32 of type 2°. The Sylow 2 subgroup
is P of type 2575 and all elements in P\ K have order 4. Moreover, once the
action of the element of order 31 is determined on K, the action on P/K is
also determined.

Lemma 1 There is at most one conjugacy class of subgroups isomorphic to
B in Es(F), with F of characteristic 5.

Proof. We remark that the existence of such subgroups is not required in
the proof of Theorem 1. However, this follows from Theorem 1, and is also
proved in Section 8.

Now B has an elementary abelian normal subgroup of order 32, and an
element of order 31 normalizing it. Asin [6], Lemma 2.17, we see that there
is a unique such subgroup of type 2°:31 in E. This means that any embedding
of B in E can be conjugated in E so that this elementary subgroup 2° is a
particular conjugate, K, and our group B lies in the normalizer of K in F.

It is well known (see [2], [3] or [6]) that E has a subgroup M = 25T1015(2),
and there is a unique conjugacy class of such subgroups. Each is the full nor-
malizer of an elementary abelian group K of order 32, all of whose involutions
are conjugate and have trace —8 when acting on V. We may assume then
by the above paragraph that after conjugation, B is a subgroup of M, and
both B and M normalize K.



We write Q = Oy(M). By [6], the module /K for L;(2) is the skewsym-
metric square of a natural 5-dimensional module. This implies that an el-
ement of order 31 has two distinct irreducibles of dimension 5 when acting
on Q/K. Thus M contains just two classes of subgroups of type 2°7°:31 in
which the group 2° is K. Moreover, these are not isomorphic to each other,
and therefore at most one of them is isomorphic to the Borel subgroup of
Sz(32). This completes the proof.

4 Smith’s construction of the Dempwolff group
and generating matrices

In his thesis [23], Peter Smith constructed a certain subgroup D of Eg(C)
called the Dempwolff group. Here D is a nonsplit extension of 2° by Ls(2),
which was then used by Thompson to construct the Thompson sporadic
simple group Th. He produced 248 x 248 matrices which generate D and
preserve the natural Lie algebra structure. These matrices have rational
entries with denominators powers of 2. By reduction mod 5, these lead to an
embedding of D in F. This group D is a maximal subgroup of the group M
as described in the section above. The subgroups of type 2°:31 are conjugate
to the groups as described above, and the subgroup of order 32 can be taken
to be K.

We now produce matrices that generate M. In this section, we give an
overview of the method, and give more specific details in the later sections.
We take the matrices given by Peter Smith that generate D. In his construc-
tion, a subgroup of K of index 2 lies in a split torus 7', and an element z
outside is an involution corresponding to the centre of the Weyl group, in-
verting the torus. We found an involution ¢ centralizing K which is in 7'\ K,
of the form h,(—1), with « a fundamental root. Recall the torus is spanned
by elements in E of the form h,()) for A in F. When A = —1 this has order 2
and commutes with z. Computations as described in the next section give an
element 7 in D of order 31. Taking ¢ with this element 7 generates the group
25110 . 31, This follows as it contains an involution outside K. Using the fact
that the element 7 has two distinct minimal polynomials on the constituents
of Q/K, we can obtain the group P of type 2°7®. Now taking the group
generated by this together with our element 7 gives a group B isomorphic
to the Borel subgroup of S which is in £ and is uniquely determined up to



conjugacy. These are all over the field with 5 elements.

What is needed now is another element in S, not in B, which we take to
be an involution v inverting 7. We find one over the field with 5 elements.
This was found separately by computer as described below. We first found
a suitable nonsplit extension, V', of dimension 248, for S, with the right con-
stituents for S. Now V' has an S-submodule V;, for which B acts irreducibly
and differently on V] and V/V;. We are able to do this so that the elements
of B are in Fg. The extension to S by adjoining v fixes V' and so acts on
V/Vi. The action is unique on the irreducible constituents, because B acts
irreducibly. In terms of matrices, if we write the representation with respect
to a basis obtained by extending a basis for the 124-dimensional submodule,
then the lower left block of the matrices is non-zero; there are five different
extensions, obtained by multiplying this lower left block by scalars. Mul-
tiplying by 0, for instance, gives a direct sum. In each case, these are in
G Lays(5). We found that precisely one of the choices gave an element v of
order 2 which could possibly be in £. We determined this first by checking
orders of words in v and other generators. These orders did not divide the
order of E except in the one, nonzero, case. We later showed directly that
these other cases were not in £. The next sections describe in some detail
how these calculations were done.

5 5-modular representations of Sz(32)

All of our work is with the field with 5 elements only. Because of lemma 1,
and using [19] this is sufficient for theorem 1. In particular, after conjugation,
any two subgroups isomorphic to S can be assumed to have the same Borel
subgroup B. Then any extension by different involutions must fix the same
invariant series, and by [19] can only be S. Because the Sylow 5-subgroup of
Sz(32) is cyclic of order 25, the 5-modular representation theory is completely
determined by the Brauer tree, which is easy to calculate from the ordinary
character table [9] (see also [15]). In particular, using the theory of cyclic
blocks (see Chapter 5 of [1]) the extensions of one 124-dimensional irreducible
by the other form a one-dimensional space. The zero element of this space
corresponds to the direct sum, while the non-zero elements correspond to
four equivalent non-split extensions.

To make these 248-dimensional modules explicitly, we use the Meat-
axe [21], including a variant of the condensation method [20].



We begin with the 124-dimensional module over GF'(41) which is in the
world-wide-web group atlas [24], and can itself be obtained as a constituent
of the ‘natural’ permutation module on 1025 points. In the group, we find a
maximal subgroup 41:4, and then find a 1-space which is invariant under this
subgroup. We then make the permutation action of Sz(32) on the 198400
images of this 1-space.

In practice, we take the ‘standard’ generators a,b for Sz(32) as defined
in [24], which are defined by taking a of order 2, b of order 4, with ab of
order 5, abab® of order 25, and ab(abab?)?ab® also of order 25. It is quite
straightforward to check computationally that such a pair of generators is
unique up to automorphisms. A simple search will now produce generators
for a subgroup 41:4, such as y = (abab®)~>b(abab®)® of order 4, and = = ay?
of order 41.

6 Condensation

Next we ‘condense’ this permutation module modulo 5 in the following way.
As above, let z,y be generators of orders 41 and 4 for 41:4, so that the
elements of the subgroup are exactly the elements z%y” for 0 < o < 40 and
0 < 8 < 3. Let e denote the idempotent

e=— Z 2B )P
a,B

in the group algebra over GF(5)—this is actually the block idempotent for
one of the faithful irreducible characters (s, say) of the quotient Cy. Then
for any F'G-module V' we obtain a corresponding eF'Ge-module Ve, which
is the subspace of e-fixed points. In particular, if V' is one of the two 124-
dimensional irreducibles, then Ve has dimension 4, while in the other case it
has dimension 0.

Now we let V' be the mod 5 permutation module on 198400 points, and
condense to Ve, which turns out to have dimension 1146—in fact, this dimen-
sion can be easily calculated from the character table, since it is the number
of copies of y3 occurring in the restriction of the permutation character to the
subgroup 41:4. Then we find a submodule (actually of dimension 10) of Ve
which contains a 4-dimensional constituent. Lifting back to V' we find that
we generate a submodule of dimension 1271 which turns out to be uniserial
with constituents 1023, 124, 124 (the dual of 124) in ascending order. In
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particular, there is a uniserial, self-dual, quotient module of dimension 248.
It is now easy to make all the faithful self-dual 248-dimensional represen-
tations of Sz(32) over GF(5). Up to isomorphism there are just two—the
uniserial one just constructed, and the direct sum of the two 124-dimensional
representations.

7 The subgroup 2°™:31

Our main task is to find the isomorphism between the subgroups of shape
2°%5:31 in the two groups Sz(32) and Fg(5).

Now we know that there are two such groups in 2°719L5(2), but only
one of these is isomorphic to the Borel subgroup of Sz(32). We first define
‘standard generators’ for this subgroup as follows. First we choose an element
g of order 31, and determine its minimal polynomial m(z) in its action on
the normal subgroup of order 2°. Replacing g by a suitable power of itself,
we may assume that m(z) = x° + z* + 1. The minimal polynomial m/(z)
of the action of g on the quotient 2° = 2575/2° is now determined—since
this is different in the two subgroups 2°+5:31 in 25710:31, this enables us to
distinguish the two cases, and to choose the right one. We find that in one
case g> has minimal polynomial m(z) in its action on the quotient, while in
the other case ¢° has this property. The one which is a subgroup of Sz(32) is
the former. Moreover, by replacing one element by a suitable power of itself
if necessary, we can ensure that the elements of order 31 in the two copies
of 2572:31 are compatible, in the sense that there is an isomorphism of the
groups which carries one element to the other.

Next we choose an element of order 4 to be our second generator. There
are exactly 32 x 31 elements of order 4 in the group, which are fused into
32 orbits of length 31 under conjugation by our first generator (of order
31). Since all elements in one orbit are equivalent, we have 32 essentially
distinct possibilities, which we distinguish computationally by calculating
a ‘fingerprint’ (in the sense of Parker [21]) on one of the 124-dimensional
representations. We then look at all 32 possibilities to determine the one
which is a group isomorphism.



8 Standard basis

Having found the isomorphism between the two groups 2°%°:31 at the ab-
stract level, we now need to find it at the matrix level. There is a standard
algorithm for doing this, called the ‘standard basis algorithm’, described by
Parker [21]. The output of this algorithm is a matrix whch conjugates one of
these matrix groups to the other. In particular, this provides an explicit ver-
ification that the two groups are isomorphic, and hence that Es(5) contains
a subgroup isomorphic to the Borel subgroup of Sz(32).

Note that the representation restricts to this subgroup as the direct sum
of two (mutually dual) 124-dimensional submodules. Thus the centralizer of
259:31 in the general linear group is C; x Cj, consisting of scalar multipli-
cations on the two constituents. Conjugating by these centralizing elements
(modulo scalars) fixes the isomorphism, but makes an orbit of four copies
of Sz(32), all of which contain the same subgroup 2°%°:31, in the case when
Sz(32) acts indecomposably. On the other hand, in the direct sum case,
there is a unique such copy of Sz(32).

Thus we have precisely five cases to check. In each case we have groups
S2(32) and Eg(5) intersecting in at least 2°7°:31, and we need to check
whether the whole of the group Sz(32) is contained in the given group Eg(5).
It is easy to eliminate four cases, by taking the product of an element of
Sz(32) and an element of Eg(5), and finding its order—or, raising it to the
power of the exponent of Eg(5), and checking that the result is not the iden-
tity matrix. In the remaining case, the result is the identity, which strongly
suggests that Sz(32) is contained in Eg(5), but does not prove it.

9 The proof

We now have to check that our extra generator for Sz(32) is contained in
Ex(5), by verifying that it preserves the multiplication on the Lie algebra
L. For technical reasons it is easier to check the coalgebra structure instead.
In representation theoretic terms, we can describe the algebra structure as
a homomorphism from L ® L to L, in other words as a quotient of L ® L
which is isomorphic to L. But L is self-dual, and therefore so is L ® L, which
means that L ® L contains a submodule isomorphic to L.

More explicitly, we can express elements of L® L as 248 x 248 matrices, on
which G acts by conjugation in the usual way. Moreover, the 248-dimensional



submodule N is spanned by the matrices ad(v) where v € L, or indeed where
v runs through a Chevalley basis for L. We merely have to check that N is
invariant under our extra generator for Sz(32). But this is an elementary
exercise in Gaussian elimination.

More explicitly still, we take the 248 matrices ad(e;), where e; runs
through a Chevalley basis for L, and conjugate each by the group element
g. (Note that ad(e;g) = g~'ad(e;)g so this is the correct action.) We write
out the 248 x 248 matrices as vectors of length 248 x 248 = 61504, and put
the resulting basis for NV into echelon form. Now it is easy to check whether
ad(e;g) is in this 248-space or not.

For our peace of mind, we also checked that the 248-space was invariant
under the generators of Fg(5), as well as checking that it was not invariant
under any of the other four copies of Sz(32) which contain the same 2°75:31.

10 The outer automorphism

In fact, it is now easy to see that Sz(32):5 is contained in Fg(5). For, the
normalizer in GLagg(5) of the group 2°75:31 is just 4 x 4 x 2575:31:5, so there
is a unique extension of 2°7°:31 to 2°*°:31:5, which is contained in both
Sz(32):5 and Eg(5).

We also checked this computationally, by working with Sz(32):5 through-
out, rather than Sz(32), and carrying out an explicit check as above.
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