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Abstract

We survey recent computational results concerning the Monster spo-
radic simple group. The main results are: progress towards a complete
classification of the maximal subgroups, including showing that L2(27) is
not a subgroup; showing that the 196882-dimensional module over GF (2)
supports a quadratic form; a complete set of explicit conjugacy class rep-
resentatives; small representations of most of the maximal subgroups; and
a partial classification of the ‘nets’ (in the sense of Norton).

1 Introduction

Our aim in this paper is to update the survey [26] by describing the various
explicit computations which have been performed in the Monster group, and the
new information about the Monster which has resulted from these calculations.
We begin by summarising [26] for the benefit of readers who do not have that
paper to hand.

The smallest matrix representations of the Monster have dimension 196882 in
characteristics 2 and 3, and dimension 196883 in all other characteristics. Three
of these representations (over the fields of orders 2, 3, and 7) are now available
explicitly [14, 8, 24]. It is hoped that the data and programs to manipulate
them will be made available in the next release of Magma [15]. The generating
matrices are stored in a compact way, and never written out in full. The basic
operation of the system is to calculate the action of a generator on a vector of
the underlying module.

Our first construction [14] was carried out over the field GF (2) of two ele-
ments in the interests of speed, and proceeded by amalgamating various 3-local
subgroups. Unfortunately, these 3-local subgroups are too small to contain many
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useful subgroups, so we embarked on a second construction [8] over GF (3), in
order to utilise the much larger 2-local subgroups. In [26] we described how Beth
Holmes used this construction to find four new maximal subgroups, and obtain
a complete classification of subgroups of the Monster isomorphic to one of 11
listed simple groups (out of 22 still unclassified). The third construction [24] was
over GF (7), again using the 3-local subgroups, and the same generators as in the
GF (2) case. Thereby one can calculate character values modulo 14, and obtain
good conjugacy class invariants.

2 The 2-local construction

The 2-local construction, although not the first, is easier to describe than the 3-
local constructions, and is closely related to the Griess construction [5]. We shall
not describe the construction itself, merely the outcome, and refer the reader to
[8] for details. The idea is first to construct the involution centralizer 21+24.Co1,
in such a way that we can both calculate in this subgroup, and calculate its action
on the module of dimension 196882 over GF (3). Then we make a special ‘triality’
element which normalizes a subgroup 22.211.222.M24, the centralizer of a 4-group.

Now the 3-modular irreducible representation of degree 196882 for the Mon-
ster restricts to the subgroup 21+24.Co1 as the direct sum of three constituents, of
degrees 98304, 98280 and 298. The constituent of degree 98280 is monomial, and
that of degree 98304 is a tensor product of representations of the double cover, of
degrees 24 and 4096. Any element of this subgroup can therefore be specified by
three matrices (over GF (3), or more generally, any field of characteristic not 2),
of sizes 24, 4096, and 298, and a monomial permutation on 98280 points. (Note
however that this representation is not unique: negating the matrices of size 24
and 4096 gives a second representation of the same element.)

By careful choice of basis we can ensure that the triality element can be
written as a monomial permutation on 147456 points, followed by 759 identical
64 × 64 matrices, and an 850 × 850 matrix. In particular its action on a vector
can be quickly computed.

It is important to realise that the only elements of the Monster which are
stored in one of these two compact formats are the elements of 21+24.Co1 and the
triality element (or rather, eight triality elements, being the elements of order 3 in
the A4 generated by the normal 22 and a triality element). Every other element
of the Monster is stored as a word in these generators. (Some improvements on
this are possible, but seem not to be worth the extra effort. For example, it
would be possible to devise a compact format for most if not all of the subgroup
22.211.222.(M24 × S3).)
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3 The 3-local constructions

When we first seriously considered a computer construction of the Monster some
ten years ago, we decided to produce matrices over GF (2), since calculation with
such matrices is much faster than with matrices over any other field. The disad-
vantage, however, is that the maximal 2-local subgroups are no longer available
as ingredients of the construction. Thus we decided to use maximal 3-local sub-
groups instead. Here again we give only a sketch of the construction, and refer
to [14] for details.

The role of the involution centralizer is now taken by a maximal subgroup
of shape 31+12.2.Suz:2. The restriction of the representation to this subgroup
consists again of a ‘tensor product’ part, of dimension 131220, a ‘monomial’ part,
of dimension 65520, and a ‘small’ part. The small part has dimension 142 over
GF (2), or dimension 143 in any characteristic bigger than 3. The ‘monomial’
part is in reality induced from a 2-dimensional representation of a subgroup of
index 32760. The ‘tensor product’ part is again not exactly a tensor product: if
we restrict to the subgroup of index 2, it is the direct sum of two (dual) tensor
products over GF (4), each tensor being the product of one 90-dimensional and
one 729-dimensional representation.

To generate the Monster, we adjoined a ‘duality’ element normalizing a certain
subgroup of shape 32.35.310.(M11 × 22). Again, by careful choice of basis we were
able to write this extra element as a combination of a ‘monomial’ permutation
on 87480 subspaces of dimension 2, two 324× 324 matrices (repeated 11 and 55
times respectively), and a 538× 538 matrix.

In fact these calculations are considerably simplified if there is a cube root of
unity in the field. For this reason, we repeated the calculations over the field of
order 7, and obtained the same set of generators for the Monster in this different
representation [24].

4 Basic calculations

There are just two basic operations available to us in any of the constructions we
have described. The first is to multiply together elements in our chosen maximal
subgroup to create new generators in this subgroup. The second is to act on a
vector by one of these generators, or by the extra ‘triality’ or ‘duality’ element.

An element of the Monster is stored as a word x1t1x2t2 . . ., where the xi are in
our maximal subgroup, and the ti are equal to the extra generator (or possibly its
inverse, in the 2-local version). If we take a ‘random’ vector v in the underlying
module, the chances are extremely good that it lies in a regular orbit under the
Monster. Thus the order of an element x is, with probability very close to 1, equal
to the smallest positive integer n such that vxn = v. In [14, 26] we described how
to improve this probability to exactly 1 at the expense of taking two (carefully
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chosen) vectors instead of one.
The first serious calculations we attempted used the GF (2) construction to

try to improve estimates for the symmetric genus of the Monster. By character
calculations alone, Thompson had shown that the Monster was a quotient of
the triangle group ∆(2, 3, 29) = 〈x, y, z | x2 = y3 = z29 = xyz = 1〉, and the
challenge was to find the minimal value of n such that the Monster is a quotient
of ∆(2, 3, n). From Norton’s work on maximal subgroups [17] it seemed very
likely that this minimal value was 7. However, the probability that a random
pair of elements of orders 2 and 3 has product of order 7 is around 10−8, so
we would need to look at something like 100 million pairs to have a reasonable
chance of finding (2, 3, 7)-generators for the Monster. This took some 10 years of
processor time. See [23] for more details.

5 The quadratic form

The 196882-dimensional representation of the Monster over the field of two el-
ements is self-dual, so the Monster preserves a symplectic form on the module,
and embeds in the symplectic group Sp196882(2). The question as to whether
the Monster also preserves a quadratic form seems difficult to answer from a
theoretical perspective. Beth Holmes and Steve Linton (and independently Jon
Thackray) calculated explicitly a quadratic form which is invariant. They did
not determine whether this form is of + or − type.

6 Traces and conjugacy classes

The trace of a matrix is easy to calculate, but it is less obvious how to calculate
the trace of a linear transformation given in the form of a computer program.
Ultimately it seems to be necessary to calculate the corresponding matrix, and
extract the diagonal entries. This is obviously rather time-consuming compared
to the tracing of individual vectors we have been doing up till now.

Now if p is any prime, the trace modulo p can only distinguish between dif-
ferent p′-parts of elements, since modulo p we have Tr(xp) = Tr(x). Thus in
order to distinguish conjugacy classes, it is necessary to calculate traces modulo
two distinct primes. Since we used exactly the same generators in the represen-
tations over GF (2) and over GF (7), we can calculate the trace mod 2 and the
trace mod 7 for the same element of the group, thus obtaining the value of the
degree 196883 character modulo 14. Combining this invariant with the order of
the element and the traces of its powers, we are able to identify the conjugacy
class of any element, up to a few ambiguities.

With this apparatus Richard Barraclough has produced a list of conjugacy
class representatives [2]. To do this, he first improved the efficiency of our pro-
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grams so that a trace modulo 7 now takes only a few hours to calculate. Then he
conducted a wide search through words of length 1 and 2. Most classes turned
up in this way, and the few that did not had representatives in the subgroup
31+12.2.Suz:2. Thus a more targeted search was conducted in this subgroup. For
example, this subgroup contains representatives of both classes 27A and 27B,
lying above class 9A in Suz. By finding elements of this type, and explicitly cal-
culating their centralizers, it was possible to find representatives of classes 27A
and 27B, since they have different centralizer orders in the Monster.

7 Shortening words

As is well-known, the main difficulty in computing with a group whose elements
are given as words is in preventing the words getting too long. We were able
to find two tricks which in combination overcome this obstacle in most cases.
The first trick takes two commuting 2B-involutions, and produces a short word
conjugating one to the other. The second trick is a method of rewriting a word
known to be in the involution centralizer 21+24.Co1, as a word of length 1.

To take the second part first, note that if we find a word in the generators,
representing an element which commutes with the original 2B-element, then it be-
longs to the original subgroup 21+24.Co1. Therefore it can be written in ‘standard’
form (in two ways) as a combination of a 24×24 matrix, a 4096×4096 matrix, a
monomial permutation on 98280 points, and a 298× 298 matrix. This standard
form can be determined by calculating just 36 rows of the full 196882 × 196882
matrix for this element, so can be obtained fairly quickly. Moreover, if necessary
we can even express this standard form as a word in the original generators for
the subgroup.

The first trick relies on the fact that all 2B-elements in 21+24.Co1 can be
obtained from the central involution by a subset of the operations: (1) conjugate
by the triality element to take it to a non-central involution of 21+24, (2) conjugate
by a random element of 21+24.Co1, (3) conjugate by the triality element again to
move it outside 21+24, and (4) conjugate again by a random element of 21+24.Co1.
Thus to conjugate an arbitrary 2B-element in this group to the central involution,
it suffices to conduct two random searches to find the correct conjugating elements
to reverse the above operation.

Combining these tricks with Ryba’s method for conjugating an involution in
a group to an involution in a known subgroup [13], we can in principle shorten
any word to one of length less than about 20. Specifically, given an arbitrary
element g which powers to a 2B-element x, there is a good chance that xz will
power to a 2B-element y, where z is our original 2B-element. Since x and z both
centralize y, we can use the first trick to conjugate y to z, say yw1 = z where
w1 has length at most 4. Using the trick again, we can conjugate xw1 to z, say
xw1w2 = z where w1w2 has length at most 8. We then use the second trick to
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write gw1w2 as a word of length 1, and thus obtain a word of length at most 17
for g. More generally, if h is an arbitrary word, we can multiply it by a random
word of short length (preferably length 1) until we find an element g satisfying
the above hypotheses. This is likely to produce a word of length at most 18 for
h.

8 Maximal subgroups

A great deal of theoretical work on classifying the maximal subgroups of the
Monster has been done in [22, 16, 17, 18], which reduced the problem to classifying
conjugacy classes of simple subgroups of just 22 isomorphism types, subject to
a variety of other conditions. In her PhD thesis [6] Beth Holmes dealt with
11 of the 22 isomorphism types, namely L2(q) for q = 9, 11, 19, 23, 29, 31, 59, 71
and L3(4), U4(2) and M11. Since then she has completed the cases L2(q) for
q = 7, 8, 16, 17, 27, and L3(3), U3(3), and U3(4). This leaves just the cases L2(13),
U3(8) and Sz(8).

The only really effective method of classifying such simple subgroups in a
computational setting is to choose an abstract amalgam generating the desired
isomorphism type of subgroup, and to classify all embeddings of that amalgam
in the Monster. We then look at each embedding to decide whether it indeed
generates a subgroup of the required isomorphism type.

The most successful calculation of this type has been the classification of
subgroups generated by two copies of A5 intersecting in D10 (see [6]). This
amalgam can generate L2(q), for any q ≡ ±1 (mod 5), as well as L3(4), so
this deals with eight of the required cases. In particular, we found four new
maximal subgroups by this method, including subgroups isomorphic to L2(59)
and L2(71), thus answering a long-standing question. In addition, we found new
maximal subgroups L2(29):2 and L2(19):2. (In fact, the L2(29) case was done
by a different method, but with hindsight it would have been easier to use this
method.)

Four more of these cases, namely L2(7), L2(17), L3(3) and U3(3), were dealt
with by an amalgam of two copies of S4, intersecting in D8 (see [7]). The case
U3(4) used a subgroup 5×A5, extending a diagonal C5 (there are two classes, so
both need to be considered) to D10. In the case L2(8) we can assume the 7-element
is in class 7B, so from the 2-local analysis [16] we know the 23:7 centralizes a 2B-
element, and most of the calculation can then be done inside the corresponding
subgroup 21+24.Co1.

The case L2(27) relies on an amalgam of 33:13 and D26 intersecting in 13,
and the fact that there are just two classes of 33:13 in the Monster (this follows
fairly easily from the results of [22]). In one case a simple counting argument
shows that there is no such L2(27), while in the other case we needed to check a
handful of cases computationally. In particular, there is no subgroup isomorphic
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to L2(27) in the Monster, which answers another long-standing question.
Regarding the three outstanding cases, L2(13), U3(8) and Sz(8), our comput-

ers are currently working through the cases for L2(13). After that, the case of
U3(8) should present no serious problems. Our strategy in this case is to take a
subgroup 3×L2(8), and extend one of the diagonal elements of order 9 to a D18.

The final case, Sz(8), is proving more tricky. The only approach we can
think of is to start with a group 23:7 and extend a 7-element to D14. We can
use the fact that Sz(8) contains 23+3:7 to reduce the number of possibilities for
the 23:7. Nevertheless, it is not easy to classify these subgroups. We know
that the involutions are in class 2B. Now there are three classes of 2B-pure
subgroups of order 4, whose normalizers involve composition factors M24, M12

and A8 respectively. A fairly easy counting argument shows that the first of
these cannot occur in a putative subgroup Sz(8).

In the second case, the normalizer of the 4-group has the shape (22×21+20).(S3×
M12:2) inside 21+24.3.Suz:2 inside 21+24.Co1. Now in Sz(8) we have 23+3/22 ∼=
4 ◦ Q8, which embeds uniquely (up to conjugacy) in M12:2. In this embedding
the central involution is of M12-class 2B. Thus the 23 we are looking for is either
entirely inside 21+24, or maps to a 2B-element in M12. In the former case, the
whole of 23+3:7 must lie inside 21+24.Co1, and it is straightforward to show that
this does not happen. In the latter case it turns out that the 23:7 lies in the
maximal subgroup 23.26.212.218.(L3(2) × 3S6), with the 23 lying in the normal
23.26.212 but not in the 23.26. It can be shown that it is unique up to conjugacy.
At this stage it seems to be necessary to resort to computer calculations.

A similar analysis of the third type of 2B2 is in progress.

9 Explicit representations of subgroups

The Monster contains many interesting subgroups, which it may be useful to
study independently. To facilitate such study, we have tried to construct small
representations of these groups, whenever such representations exist [3]. These
representations are available from the Monster page of [25]. In many cases one
of these subgroups may be described as a certain non-split extension of a group
acting (not necessarily faithfully) on a module. While previous constructions
have concentrated on representing p-local subgroups irreducibly in characteristic
different from p, the smallest faithful (reducible) representations are usually to
be found in characteristic p. John Bray has developed effective methods of con-
structing such non-split extensions explicitly by gluing together indecomposable
(but reducible) modules for the quotient group. Various techniques are then em-
ployed to ensure that the group constructed is indeed isomorphic to the desired
subgroup of the Monster.

In two of the larger cases, namely the 3-local subgroups 32.35.310.(M11 × 2S4)
and 33.32.36.36.(L3(3)× SD16), we felt that the only reliable method of ensuring
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that we obtained a group of the right isomorphism type was to find it explicitly
as a subgroup of the Monster. We then employed ad hoc techniques to try to
find some smaller representations—in this case permutation representations.

To date we have representations of all the maximal subgroups except some
of the 2-local subgroups. The latter do not appear to have faithful permutation
representations of reasonable degree, and new methods will be required for these
cases.

10 Character tables

Richard Barraclough is in the process of calculating the character table of the
group 31+12.2.Suz:2 used in some of our constructions of the Monster, along
with various closely related groups. There are many subtleties which make this
calculation difficult, not the least of which is the fact that there are two non-
isomorphic groups of this shape, whose character tables look very similar.

It would be interesting to have the character tables of other maximal sub-
groups. From the representations described in the previous section, it should be
possible to calculate some of these character tables without difficulty. However,
the larger subgroups still present a formidable challenge.

11 Nets and their classification

Norton has generalised the ideas of Moonshine to commuting pairs of elements
of the Monster, introducing functions F which are invariant under the action of
the modular group via F (g, h) = F (gαhβ, gγhδ) when αδ − βγ = 1. This even
makes sense for non-commuting elements g and h, in the case when g = ab and
h = bc, and a, b, c are involutions. In this case, the action of the modular group
corresponds to an action of the three-string braid group on triples of involutions.

In the case when a, b, c are in class 2A, there are about 1.4 × 106 conjugacy
classes of triples (a, b, c), which fall into about 14,000 orbits under the action of
the braid group. These orbits are (roughly speaking) what Norton calls ‘nets’:
they have a combinatorial structure of a polyhedron of genus 0 or 1. A complete
classification of these nets would be of great interest in clarifying and developing
the ideas of generalised moonshine.

There are various ways of dividing up the set of nets into more manageable
subsets, for example according to the product abc, or the group generated by
a, b, c, or the centralizer of a, b, c. So far, Richard Barraclough has a complete
classification of the nets which are centralized by any element of prime order
bigger than 3, and is working on the ones centralized by an element of order 3
[1].

The classification of nets with trivial centralizer will be difficult, however.
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Ultimately it requires calculating the orbits of certain groups on the nearly 1020

involutions in class 2A. This is a major challenge for the future.

12 A presentation for the Monster, and a new

existence proof?

Norton has shown how to produce a presentation for the Monster on generators
closely related to the 2-local subgroups we used in one of our constructions.
The proof of this presentation, however, requires deep arguments. We hope to
be able to verify that certain elements in our group satisfy the relations of this
presentation. It may then be possible to provide for the first time a computational
proof of existence of the Monster, independent of Griess’s proof.
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