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Abstract. We give an explicit construction of the simply-connected compact
real form of the Lie group of type E7, as a group of 28 × 28 matrices over
quaternions, acting on a 28-dimensional left quaternion vector space. This
leads to a description of the simply-connected split real form, acting on a 56-
dimensional real vector space, and thence to the finite quasi-simple groups of
type E7. The sign problems usually associated with constructing exceptional
Lie groups are almost entirely absent from this approach.

1. Introduction

The simple Lie groups over C are of eight types: three classical (orthogonal,
unitary and symplectic), and five exceptional (G2, F4, E6, E7 and E8). Over R,
each type is divided into a number of ‘real forms’: for example, the real forms of the
orthogonal groups are parametrized by the signature of the underlying quadratic
form (up to sign). In every case, there is exactly one compact real form, and one
split real form, and there may be others in between. In the case of the orthogonal
groups, the compact real form has a positive-definite quadratic form, while the split
real form has quadratic form with the numbers of positive and negative terms being
as nearly equal as possible.

Thus the compact real form of the orthogonal group O(n) acts on a real n-space
preserving the quadratic form

∑n
r=1 x2

r. Similarly the compact real form of the
unitary group SU(n) acts on a complex n-space preserving the Hermitian form∑n

r=1 xrxr. And the compact real form of the symplectic group Sp(n) acts on a
quaternionic n-space preserving the quaternionic norm

∑n
r=1 xrxr.

Each real form may further divide into different isomorphism types: there is
always an adjoint group (acting on the Lie algebra), and a simply-connected group
(which may or may not be the same), and sometimes others in between. In the
case of the orthogonal groups, the adjoint group is the projective group PO(n),
given by the action by conjugation on a suitable space of n × n matrices, and the
simply-connected group is the spin group, that is a double cover of the orthogonal
group, acting on the Clifford algebra.

The exceptional groups are generally constructed in the adjoint action of the split
real form, as this permits the most uniform approach. However, this has several
drawbacks. First, the adjoint representation is not the smallest (except in the case
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of E8); second, the centre of the group acts trivially; and third, the compact real
form often has nicer properties. The following table explains the situation:

Type G2 F4 E6 E7 E8

Lie algebra dimension 14 52 78 133 248
Smallest dimension 7 26 27 56 248
Centre 1 1 3 2 1

There are a number of constructions of the minimal representations in the lit-
erature, sometimes over C or R, sometimes over finite fields, with or without a
restriction on the characteristic. For example, in 1901 L. E. Dickson constructed
the finite groups of type E6 by defining an invariant cubic form with 45 terms in 27
variables [5, 6]. The same construction works over arbitrary fields. He later con-
structed G2 as the automorphism group of the Cayley numbers (octonions) [4]. The
interpretation of F4 as the automorphism group of the 27-dimensional exceptional
Jordan algebra came later (see for example [7] for an exposition). This algebra con-
sists of 3× 3 Hermitian matrices over octonions, with product AB +BA, and leads
to an interpretation of Dickson’s cubic form as the determinant of such matrices
(in the case when the split real form of the octonions is used).

The 56-dimensional representation of E7 was constructed by Brown [2], and
further studied by Aschbacher [1] and by Cooperstein [3], who were principally
interested in the finite case. Thus they did not make use of the fact that the
representation is symplectic, that is, writable over quaternions in half the number of
dimensions. In this paper we significantly simplify the treatment of E7 in [2, 1, 3] by
exploiting the quaternionic structure to the full. We first construct the compact real
form, and only later convert to the split real form in order to reduce modulo p. This
approach brings out the rather striking fact that this makes (the simply-connected
split real forms of) F4, E6 and E7 respectively 26-dimensional real, 27-dimensional
complex, and 28-dimensional quaternionic. In particular, the exceptional Jordan
algebra is not the end of the line, but is only part of a much richer 28-dimensional
structure.

In Section 2 we define a certain group G to be the group generated by certain
explicit 28 × 28 matrices over quaternions. In Section 3 we prove that G is the
simply-connected compact real form of E7. In Section 4 we discuss the invariant
quadrilinear form, and in Section 5 we describe some subgroups. Finally we consider
the split real form and the finite groups of type E7 in Section 6.

2. The action of the root groups

First we describe the labelling of the 28 quaternionic coordinates in terms of
the 28 pairs of opposite minimal vectors in the dual E7 lattice E∗

7 . We label the
7 coordinates of R7 by the elements 0, 1, . . . , 6 of the field F7, and may then take
the 126 roots of the E7 lattice to be the images under sign changes and cyclic
permutations of the coordinates of the following vectors:

• 14 images of (2, 0, 0, 0, 0, 0, 0);
• 112 images of (1, 0, 0, 1, 0, 1, 1).

Then the 56 minimal vectors of E∗
7 (multiplied by 2 for convenience) are the images

under sign-changes and rotations of (0, 1, 1, 0, 1, 0, 0).
The Coxeter group of type E7 is generated by the 63 reflections in the roots.

For example, reflection in ±(2, 0, 0, 0, 0, 0, 0) negates coordinate 0, while reflection
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in (1, 0, 0, 1, 0, 1, 1) fixes coordinates 1, 2, 4 and acts as the matrix

−1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


on coordinates 0, 3, 5, 6. The monomial subgroup of the Coxeter group is of shape
27:PSL3(2), and is generated by the sign-changes together with the elements which
permute the coordinates by t 7→ t + 1, and t 7→ 2t and (1, 2)(3, 6).

Now label the 28 pairs of minimal vectors in E∗
7 by

h0 = {±(0, 1, 1, 0, 1, 0, 0)},
i0 = {±(0, 1,−1, 0,−1, 0, 0)},
j0 = {±(0,−1, 1, 0,−1, 0, 0)},
k0 = {±(0,−1,−1, 0, 1, 0, 0)},

where adding 1 to the subscript (modulo 7) corresponds to rotating the coordinates
backwards. We use the same labels for the 28 coordinate vectors in the left vector
space H28, and use corresponding capital letters for the coordinates of a typical
vector, thus

(H0, I0, J0,K0,H1, . . . , J6,K6) = H0h0 + I0i0 + · · ·+ K6k6 ∈ H28.

We are now ready to describe the action of 63 copies of SU(2) on this space, one
for each of the 63 pairs of opposite roots. First we take the roots ±(2, 0, 0, 0, 0, 0, 0).
This copy of SU(2) fixes all the coordinates with a subscript 0, 3, 5, 6. Now for
any element q ∈ SU(2) ⊂ H, that is q = z + wj with z, w ∈ C = R[i] and
qq = zz + ww = 1, we define an action of q as right-multiplication by(

z wj
wj z

)
on each of the quaternionic 2-vectors (H1, I1), (H2, J2), and (H4,K4), and as(

z wj
wj z

)
on each of (J1,K1), (K2, I2) and (I4, J4). To prove that this indeed defines an
action it suffices to check that the matrix product(

u vj
vj u

) (
z wj

wj z

)
=

(
uz − vw (uw + vz)j

(uw + vz)j uz − vw

)
corresponds to the quaternion product

(u + vj).(z + wj) = (uz − vw) + (uw + vz)j,

since the other action is obtained from this by conjugation by j.
We may apply a cyclic permutation of the 7 subscripts t ∈ F7 (i.e. map t 7→ t+1),

to get a total of seven such fundamental SU(2)s. It is easy to check that these SU(2)s
commute with each other, since the matrices

u vj
vj u

u vj
vj u

 ,


z wj

z wj
wj z

wj z
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commute. Notice that there is also a symmetry of order 3 permuting these seven
copies of SU(2), acting as t 7→ 2t on the suffices, and as (I, J, K) on the letters.
This symmetry will be called ‘triality’, for reasons which will become clear later.

Next consider the element R0 corresponding to q = j in the SU(2) just con-
structed. It maps

(H1, I1, J1,K1) 7→ (I1j, H1j, K1j, J1j),
(H2, I2, J2.K2) 7→ (J2j, K2j, H2j, I2j),
(H4, I4, J4,K4) 7→ (K4j, J4j, I4j, H4j).

The corresponding action in the Coxeter group is to negate coordinate 0 in the
vectors (1, 1, 0, 1, 0, 0, 0), (1, 0, 1, 0, 0, 0, 1) and (1, 0, 0, 0, 1, 1, 0). Hence by using
these sign-changes and rotations of the seven coordinates we have transitivity on
the remaining 56 pairs of roots. It is enough therefore to specify the action of one
more copy of SU(2), for example the one which acts as right-multiplication by(

z w
−w z

)
on each of the quaternionic 2-vectors (H1,K3), (H2, I6), and (H4, J5), and as(

z −w
w z

)
on each of (H3, J1), (H6,K2) and (H5, I4). Notice that this copy of SU(2) is cen-
tralized by the triality element.

Now if R1, . . . , R6 denote the images of R0 under repeatedly subtracting 1
from the subscripts modulo 7, then we can easily check that this copy of SU(2) is
centralized by R1, R2, and R4, and normalized by R0R3R5R6. Hence there are
exactly 56 images under conjugation by the Rt and the rotation.

(The calculations are as follows. First, R1 maps (H1,K3) to (J1j, H3j) and
(H3, J1) to (K3j, H1j) while centralizing all the other 2-spaces on which the SU(2)
acts. Since (

0 j
j 0

) (
z w
−w z

) (
0 −j
−j 0

)
=

(
z −w
w z

)
we see that R1 centralizes this SU(2). The symmetry (1, 2, 4)(3, 6, 5)(I, J, K) shows
the same is true for R2 and R4. Similarly, R0R6R5R3 maps the pairs

(H1,K3), (H2, I6), (H4, J5)

to the negatives of
(J1,H3), (K2,H6), (I4,H5)

and vice versa, and we calculate(
0 −1
−1 0

) (
z w
−w z

) (
0 1
1 0

)
=

(
−z w
−w −z

)
.

Hence R0R6R5R3 normalizes the SU(2), by mapping z + wj 7→ −z + wj.)
We have thus defined explicitly the actions of 63 root groups SU(2) on H28. Let

G be the group generated by these 63 copies of SU(2). It remains to prove that
G is a Lie group of type E7, rather than the whole of Sp(28), or something else
entirely.
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3. The torus and the Weyl group

Each of the 63 root SU(2) groups has a torus (given by q = z ∈ C) and a Weyl
group (given by q = j modulo the torus), and we can put all these together to get
the torus and Weyl group for G. The two types of tori are exemplified by

• multiplying by z on H1,H2,H4, I1, J2,K4 and by z on J1,K2, I4,K1, I2, J4;
• multiplying by z on H1,H2,H4,H3,H6,H5 and by z on K3, I6, J5, J1,K2, I4.

It is straightforward to check that these 63 tori together generate a 7-dimensional
torus. Indeed, the seven tori of the first type are independent (since they lie in
seven commuting SU(2) subgroups), and each of the other elements listed is the
square root of a suitable product of four of the first type. But C is algebraically
closed, so all these elements are contained in the 7-dimensional torus.

The two types of reflection act as follows on the quaternionic coordinates, where
the symbol (X, Y ) denotes the map X 7→ Y 7→ −X 7→ −Y 7→ X.

• (H1, I1j)(H2, J2j)(H4,K4j)(J1,K1j)(K2, I2j)(I4, J4j);
• (K3,H1)(I6,H2)(J5,H4)(H3, J1)(H6,K2)(H5, I4).

Now the permutation action on the quaternionic coordinates of the Weyl group in
each SU(2) is clearly the same as the action on the 28 pairs of minimal vectors in E∗

7

of the corresponding reflection in the Coxeter group. Hence we see that the Weyl
group is indeed isomorphic to the Coxeter group of type E7, that is, to 2× Sp6(2).
The central involution multiplies every coordinate by j.

It turns out that the part of the Weyl group which preserves the decomposition
of the 28-dimensional quaternionic space as a sum of seven 4-spaces is a subgroup
of shape 27PSL3(2) = 2.23.23.PSL3(2). This group is generated (modulo the torus)
by the following elements, and since it is a maximal subgroup of the Weyl group,
it is the stabilizer of the decomposition, as claimed.

(1) right-multiplication by j on all coordinates;
(2) negating coordinates labelled 0, and permuting coordinates as (H, I)(J,K)

when the label is 4 or 6, as (H,J)(K, I) when the label is 1 or 5, and as
(H,K)(I, J) when the label is 2 or 3.

(3) acting as j(H, I)(J,K) on coordinates labelled 1, as j(H,J)(K, I) when the
label is 2, and as j(H,K)(I, J) when the label is 4; thus H1 7→ I1j 7→ −H1

and so on;
(4) cyclically permuting the labels by t 7→ t + 1 (where t ∈ F7);
(5) permuting the labels by t 7→ 2t together with (I, J, K);
(6) (H0,−H0)(I0,−J0)(K0,−K0)(I5,K5)

(H1,H2)(I1, J2)(J1,K2)(K1, I2)
(H3,H6)(I3,K6)(J3, J6)(K3, I6)

As some of these elements (particularly (3) and (6)) are slightly awkward to
apply in practice, for example in getting the correct power of j in every coordinate,
we shall often restrict to a smaller symmetry group 2 × 23:7:3, generated by the
elements (1), (2), (4), and (5).

Our construction shows that this Weyl group is generated by any one reflection
of each type together with the element (4) of order 7. We proved in the previous
section that the first reflection, that is the element (3), preserves the set of 63 root
SU(2)s.

Next we show that the second reflection also preserves the set of 63 root groups.
We already showed that this reflection commutes with R1, R2, R4 and R0R6R5R3,
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as well as the triality element (5). Now it is easy to see that this centralizing group
of order 48 has orbits of sizes (1 + 3 + 3) + (1 + 1 + 3 + 3 + 24 + 24) on the 7 + 56
root groups. Hence it is enough to check the action of our reflection on one group
in each orbit, which is now an easy calculation. For example, this reflection maps
the coordinates

(H2, I2;H3, J3;H5,K5), (J2,K2;K3, I3; I5, J5)

respectively to

(−I6, I2;J1, J3; I4,K5), (J2,−H6;H1, I3; I5,H4),

which goes under a suitable rotation of element (3) to

(−I6,H2j;J1,H3j; I4,H5j), (K2j,−H6;H1,K3j;J5j, H4).

The action of the root group on the various 2-spaces can be computed by conjuga-
tion of matrices: for example the action on (H1,K3) is given by(

1 0
0 j

) (
z wj

wj z

) (
1 0
0 −j

)
=

(
z w
−w z

)
.

Similar conjugations on the other five 2-spaces, and re-writing the quaternion z+wj
as z′ + w′j, gives us the second copy of SU(2) defined above. (The rest of this
calculation is left as an exercise for the reader. The reflection swaps two of the
orbits of size 1, and two pairs of orbits of size 3, while centralizing the rest, so there
are six cases to check, of which we have sketched one.)

It follows from these calculations that G is generated by a single SU(2) together
with the Weyl group. In particular, it is of type E7. Clearly it must be the simply-
connected compact real form.

4. The quadrilinear form

The cited references [2, 3, 1] all define E7 (in the relevant context: usually over a
finite field) as the stabilizer of a pair of forms, one bilinear, the other quadrilinear in
the 56 complex coordinates. Although we do not need this as part of our definition,
it is useful for further investigations to have the (totally symmetric) quadrilinear
form explicitly. We have already taken care of the bilinear form by ensuring that
our representation commutes with left-multiplication by j, so is symplectic. In fact,
the quadrilinear form is invariant not only under the compact real form, but under
the whole of the complexification E7(C).

To describe this complexification, we take as our basis for the complex 56-space
the original quaternionic basis {ht, it, jt, kt} together with the multiples by j, that
is {jht, jit, jjt, jkt}. The corresponding complex coordinates of a vector will be
written X ′

t, X
′′
t , where Xt = X ′

t + X ′′
t j. The symbol j now loses its quaternionic

meaning, and just acts as a formal symbol permuting coordinates (up to sign),
though still with the understanding that j2 = −1. With this interpretation, the
Weyl group permutes the complex coordinates, up to sign, so it suffices to deal with

one root group. We re-compute the action of
(

z wj
wj z

)
on (H1, I1), etc., to be(

z w
−w z

)
on both (H ′

1, I
′′
1 ) and (I ′1,H

′′
1 ). Similarly, the action of

(
z wj

wj z

)
gives

the transpose-inverse matrix
(

z w
−w z

)
acting on (J ′

1,K
′′
1 ) etc.. Next we extend
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from SU(2) to SL(2, C), by allowing all matrices
(

a b
c d

)
of determinant 1 in this

place (and, of course, the transpose-inverse
(

d −c
−b a

)
in the appropriate places).

Note that conjugation by j can now be interpreted as the transpose-inverse map.
It turns out that we may then define the quadrilinear form by defining it on

three quadruples of complex basis vectors:

[h0, h0, jh0, jh0] = −1
[h0, jh0, i0, ji0] = 1/2

[h0, i0, j0, k0] = 1

and images under the action of the Weyl group. Equivalently, the quartic form is
defined as the sum of monomials of the form

−(H ′
0H

′′
0 )2,

1
2
H ′

0H
′′
0 I ′0I

′′
0 ,H ′

0I
′
0J

′
0K

′
0.

Since the Weyl group can be taken to permute our 56 coordinates, up to signs,
it permutes exactly 28 monomials which are images of the first of those listed, since
any sign-changes cancel out. Similarly, the second gives rise to 378 terms, one for
each pair of the 28 coordinates. In order for our quartic form to be well-defined,
we must show that H ′

0H
′′
0 I ′0I

′′
0 is not negated by any element in the part of the

Weyl group which fixes the pair {h0, i0} of quaternionic coordinates. This is a
straightforward calculation. Indeed, the relevant subgroup of the Weyl group is
2× 25S5. This subgroup has a centre of order 4, in which the central involution of
the whole Weyl group acts as right-multiplication by j, and the central reflection
swaps h0 with i0. The outer half of S5 may be taken to act trivially.

The third type of monomial is more interesting. The 630 monomials of this type
fall into three orbits, of sizes 14+168+448, under the action of the subgroup 27:7:3
described above. These are represented respectively by H ′

0I
′
0J

′
0K

′
0, H ′

0I
′
0I

′
1K

′
1 and

H ′
0I

′
3J

′
6K

′
5. For convenience we also give the orbits under 2× 23:7:3:

• 14 images of H ′
0I

′
0J

′
0K

′
0;

• 42 images of each of H ′
0I

′
0I

′
1K

′
1, H ′

0I
′
0H

′′
1 J ′′

1 , J ′
0K

′
0H

′
1J

′
1 and J ′

0K
′
0I

′′
1 K ′′

1 ;
• 112 images of H ′

0I
′
3J

′
6K

′
5;

• 336 images of H ′
0I

′
3H

′′
6 J ′′

5 .
(Notice that, although the coefficients of all the displayed monomials are +1, nev-
ertheless our symmetry group has minus signs, which introduce many minus signs
into the quartic form. There are 105 terms with all single dashes, 105 terms with
all double dashes, and 420 terms with two of each.)

In this third case, the relevant subgroup of the Weyl group has shape 2×[25]S3S4,
and its action on the 4-dimensional quaternionic space 〈h0, i0, j0, k0〉 is 2 × S4,
generated by right-multiplication by j together with all coordinate permutations.
This completes the proof that the quartic form (and the corresponding quadrilinear
form) is well-defined, and (therefore, by definition) invariant under the action of
the Weyl group.

Now to prove that this form is invariant under the complexification of G, we
must show it is invariant under an arbitrary element of our fundamental SL(2, C),
corresponding to a pair of opposite roots, say (±(2, 0, 0, 0, 0, 0). First we compute
the orbits of the root stabilizer in the Weyl group, on the quadruples used in the
definition of the form. There are just two orbits on the 28 images of the first
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quadruple, corresponding to the quaternionic 1-spaces spanned by h0 and h1. The
first case is obviously fixed, while the second gives, as required,

[h1, h1, jh1, jh1] = [ah1 + bji1, ah1 + bji1, djh1 + ci1, djh1 + ci1]
= (ad)2[h1, h1, jh1, jh1] + (bc)2[ji1, ji1, i1, i1]

+abcd([h1, ji1, jh1, i1] + [h1, ji1, i1, jh1]
+[ji1, h1, jh1, i1] + [ji1, h1, i1, jh1])

= −(ab− cd)2 = −1.

On the 378 images of the second quadruple, there are four orbits, of lengths 6,
60, 120, and 192, represented respectively by

[h1, jh1, i1, ji1], [h1, jh1, j1, jj1], [h0, jh0, i0, ji0], [h0, jh0, h1, jh1].

Of these, the third is obviously fixed by the SL(2, C), and the other three are
straightforward calculations. For example, the last case is

[h0, jh0, h1, jh1] 7→ [h0, jh0, ah1 + bji1, djh1 + ci1]
= ad[h0, jh0, h1, jh1] + bc[h0, jh0, ji1, i1]
= (ad− bc)[h0, jh0, h1, jh1]

by applying a suitable Weyl group element (for example, H1 7→ jI1 7→ −H1, I1 7→
jH1 7→ −I1) to the second term. Similarly,

[h1, jh1, i1, ji1] 7→ [ah1 + bji1, djh1 − ci1, ai1 + bjh1, dji1 − ch1]
= (ad)2[h1, jh1, i1, ji1] + (bc)2[ji1, i1, jh1, h1]

+abcd([h1, i1, jh1, ji1] + [ji1, jh1, i1, h1]
+[h1, jh1, jh1, h1] + [ji1, i1, i1, ji1])

=
1
2
(ad− bc)2 =

1
2
,

[h1, jh1, j1, jj1] 7→ [ah1 + bji1, djh1 + ci1, dj1 − cjk1, ajj1 − bk1]
= (ad)2[h1, jh1, j1, jj1] + (bc)2[ji1, i1, jk1, k1]

+abcd([h1, jh1, jk1, k1]− [h1, i1, j1, k1]
+[ji1, i1, j1, jj1]− [ji1, jh1, jk1, jj1])

= (ad− bc)2/2.

On the 2× 315 = 630 images of the third quadruple, there are just three orbits,
of lengths 30, 120, and 480. These are represented respectively by

[h1, i1, j1, k1], [h0, i0, j0, k0], [h3, j3, j2, k2].

Again, the second is obviously fixed, and the other two are straightforward calcu-
lations:

[h1, i1, j1, k1] 7→ [ah1 + bji1, ai1 + bjh1, dj1 − cjk1, dk1 − cjj1]
= (ad)2[h1, i1, j1, k1] + (bc)2[jh1, ji1, jj1, jk1]

−abcd([h1, jh1, j1, jj1] + [h1, jh1, jk1, k1]
+[ji1, i1, j1, jj1] + [ji1, i1, jk1, k1]

= (ad)2 − 2abcd + (bc)2 = 1,
[h3, j3, j2, k2] 7→ [h3, j3, aj2 + bjh2, dk2 − cji2]

= ad[h3, j3, j2, k2]− bc[h3, j3, jh2, ji2]
= (ad− bc)[h3, j3, j2, k2]
= [h3, j3, j2, k2].

In fact, in order to prove that the fundamental SL(2, C) preserves the quadrilinear
form, we must also check that it preserves all the zero values. Now the only way



A QUATERNIONIC CONSTRUCTION OF E7 9

one of these zero values could not be preserved, is if one of the non-zero values we
have just studied gets added to it. This means that the only zero values we need
to consider are those which were actually used in the above calculations. These are
as follows:

[h1, h1, jh1, i1], [h0, jh0, h1, i1], [h1, h1, i1, i1],
[h1, h1, jh1, i1], [h1, i1, jk1, jj1], [h1, i1, jk1, k1].

Thus we have a little more calculation to do of the same kind we’ve already done:
this is left as an exercise for the reader.

Having completed these calculations, we have proved from first principles that
the group elements defined above preserve the quadrilinear form defined in this
section.

5. Some subgroups

If we take a sub-root system of E7, then the subgroup generated by the corre-
sponding root SU(2) subgroups is often of interest. For example, the subsystem
spanned by all the roots of the shape ±(2, 06) gives rise to a central product of
seven copies of SU(2), in which the centre is reduced from 27 to 23. This subgroup
stabilizes the seven 4-dimensional spaces 〈ht, it, jt, kt〉, for t ∈ F7, and the Weyl
group induces a transitive permutation action of PSL3(2) on these seven subspaces,
as well as (a different action) on the seven SU(2) factors of the group.

This subsystem extends to a system of type A1A1A1D4 by adjoining all the
roots (±1, 0, 0,±1, 0,±1,±1) with 0s on coordinates 1, 2, 4. This subsystem group
fixes the quaternionic 4-space 〈h0, i0, j0, k0〉, and is normalized by a triality element
which acts as

(i, j, k)(1, 2, 4)(3, 6, 5).

We may extend further to A1D6, consisting of all the roots equal or perpendicular
to ±(2, 0, 0, 0, 0, 0, 0). The corresponding subsystem group splits the space into the
part with suffices 1, 2, 4, on which the A1 and D6 both act naturally, that is as
SU(2) ⊗ O(12); and the part with suffices 0, 3, 5, 6, on which the A1 acts trivially
and the D6 acts in its spin representation.

Another maximal rank subsystem which is of interest is A7. While there is no
particularly symmetrical copy of A7 to choose, this maximal rank subgroup is the
one used by Cooperstein [3] in his construction of E7.

Perhaps the most interesting subsystem is E6, which may be spanned by all the
roots perpendicular to (0, 1, 1, 0, 1, 0, 0). Thus it is clear that the stabilizer of the
quaternionic 1-space 〈h0〉 corresponding to this vector is a copy of (the simply-
connected compact real form of) E6, extended by a 1-dimensional torus, and a
duality map induced by the central involution in the Weyl group. To see this in
a ‘classical’ way, consider all the terms in the quadrilinear form which involve h0

once only, and remove this factor h0 from them. We obtain a symmetric trilinear
form in 27 variables which is the polarized form of Dickson’s cubic form for E6.
An explicit correspondence between our coordinates and Dickson’s is given by the
following table, where each quaternionic coordinate q is split into its complex and
imaginary parts as q = q′ + q′′j with q′, q′′ ∈ C. The entries in the body of the
table are zrs = −zsr.
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r 1 2 3 4 5 6
s ys\xr H ′′

1 H ′′
2 H ′′

3 H ′′
4 H ′′

5 H ′′
6

1 K ′′
3 K ′

4 I ′0 −J ′
2 J ′

6 −I ′5
2 I ′′6 −K ′

4 K ′
5 I ′1 −J ′

3 J ′
0

3 −J ′′
1 −I ′0 −K ′

5 K ′
6 I ′2 −J ′

4

4 J ′′
5 J ′

2 −I ′1 −K ′
6 K ′

0 I ′3
5 −I ′′4 −J ′

6 J ′
3 −I ′2 −K ′

0 K ′
1

6 −K ′′
2 I ′5 −J ′

0 J ′
4 −I ′3 −K ′

1

The 45 terms of Dickson’s cubic form are xryrzrs and zrsztuzvw, where rstuvw is
an even permutation of 123456. In our notation, the latter are I ′0J

′
0K

′
0, I ′3J

′
6K

′
5,

−I ′5J
′
3K

′
6 and the images under the triality element (1, 2, 4)(3, 6, 5)(I, J, K) of

I ′0I
′
1K

′
1, I

′
0I

′
3J

′
3, J

′
2K

′
1K

′
5,−I ′1I

′
2I

′
5.

The former are the images under triality of the following 10 terms:

I ′0H
′′
1 J ′′

1 , I ′0H
′′
3 K ′′

3 , I ′3H
′′
6 J ′′

5 ,−I ′5H
′′
6 K ′′

3 ,
−I ′1H

′′
2 J ′′

5 ,−I ′2H
′′
5 J ′′

1 ,−I ′5H
′′
1 K ′′

2 ,K ′
1H

′′
5 K ′′

2 , J ′
2H

′′
1 J ′′

5 ,K ′
5H

′′
2 J ′′

1 .

Finally we remark that E6 has a subgroup of type F4, which in our representation
fixes a quaternionic 2-space, such as 〈h0, i0 + j0 + k0〉.

6. The split real form and finite groups of type E7

To construct the split real form we take the complexification as defined above,
and simply restrict the matrix entries to lie in R, so that the root groups become
SL(2, R). This now defines an action of the Weyl group and a root SL(2, R) on a
56-dimensional real vector space, where the typical vector is written as

(H ′
0,H

′′
0 , I ′0, . . . ,K

′
6,K

′′
6 ).

Hence we have generators for the (simply-connected) split real form of E7. To be
precise, the action of generators for our standard root SL(2, R) is given by(

1 1
0 1

)
,

(
λ 0
0 λ−1

)
,

(
0 1
−1 0

)
acting on the real 2-vectors

(H ′
1, I

′′
1 ), (I ′1,H

′′
1 ), (H ′

2J
′′
2 ), (J ′

2,H
′′
2 ), (H ′

4,K
′′
4 ), (K ′

4,H
′′
4 )

and as (
1 0
−1 1

)
,

(
λ−1 0
0 λ

)
,

(
0 1
−1 0

)
acting on the real 2-vectors

(J ′
1,K

′′
1 ), (K ′

1, J
′′
1 ), (K ′

2I
′′
2 ), (I ′2,K

′′
2 ), (I ′4, J

′′
4 ), (K ′

4,H
′′
4 ).

The same matrices can be interpreted over any field F whatever, and give gen-
erators for the (simply-connected) split real form of E7(F ). (Over finite fields all
forms of E7 are split.)

The symplectic form is defined by (x′, jx′) = −(jx′, x′) = 1, for each of the 28
possible values of x, and all other inner products are 0. The quadrilinear form needs
no change to its definition in any odd characteristic. In characteristic 2, as usual,
the situation is more complicated. However, we can just define [h0, i0, j0, k0] = 1,
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together with its images under the Weyl group, and let all the other terms be 0.
Then the arguments of Section 4 go through also in characteristic 2.

The same argument as in the complex case shows that the centralizer of the
2-space 〈h0, jh0〉 is (the simply-connected version of) E6(q). The whole stabiliser
of the 1-space 〈h0〉, therefore, is generated by E6(q), together with one more di-

mension of torus, acting as
(

λ 0
0 λ−1

)
on (h0, jh0), and 27 root groups which add

multiples of 27 coordinates (these are exactly the coordinates corresponding to the
27 variables of Dickson’s cubic form, as specified above) onto jh0. Thus the sta-
biliser of 〈h0〉 (a 1-space over Fq) is a group of shape q27:(Cq−1 × E6(q)), in the
case when q ≡ 2 mod 3, or 227:3.(C(q−1)/3 × E6(q)).3 if q ≡ 1 mod 3.

Now we need to count the images of 〈h0〉. The Weyl group maps h0 to one
of the 56 coordinate 1-spaces, and each of these 56 spaces is in an orbit under the
stabiliser of 〈h0〉 of size a power of q. It is possible to show, with a sufficient amount
of tedious but not difficult work, that these powers of q are as follows:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27

and that therefore the number of images of 〈h0〉 is

(1 + q5)(1 + q9)(q14 − 1)/(q − 1).

It follows that the order of the group is

q63(q18 − 1)(q14 − 1)(q12 − 1)(q10 − 1)(q8 − 1)(q6 − 1)(q2 − 1).

In odd characteristic, there is a centre of order 2, so the simple group E7(q) has
order half this. In characteristic 2, the group is already simple as the centre is
trivial.

7. Further remarks

7.1. The labelling by pairs of 8 points. The 28 objects permuted by the Weyl
group of type E7 are traditionally labelled by the unordered pairs from 8 points,
so we here label our 28 coordinates thus. We label the 8 points by the projective
line F7 ∪ {∞} and then label

h0 = {∞, 0}, i0 = {1, 3}, j0 = {2, 6}, k0 = {4, 5}

and let the map t 7→ t + 1 on subscripts also act as t 7→ t + 1 on the projec-
tive line. There is a subgroup S8 of the Weyl group which acts by permuting
{∞, 0, 1, 2, 3, 4, 5, 6, 7}. Fixing ∞, 0 gives a subgroup S6 which has orbits of sizes
6 + 6 + 15 on the 27 remaining objects, and shows clearly the correspondence with
Dickson’s cubic form for E6.

7.2. The second copy of the quaternions. The reason for labelling the 7 sets
of four quaternionic coordinates with the letters H, I, J, K is that these behave in
many ways like the quaternions 1, i, j, k. Thus we define products of these as in
the quaternion group: IJ = −JI = K, JK = −KJ = I, KI = −IK = J and
I2 = J2 = K2 = −H, with H acting as the identity element. Analogous to the
element ω = 1

2 (−1 + i + j + k) of order 3 we have Ω = 1
2 (−H + I + J + K).
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Now consider our 28-dimensional quaternionic space as a 7-dimensional ‘space’
over the tensor product of these two copies of the quaternions. A ‘vector’ may be
represented (X0, X1, X2, X3, X4, X5, X6), and the actions of some of the elements
given above are as follows:

• the element t 7→ t + 1 acts as (Xt) 7→ (Xt+1);
• the triality element is (Xt) 7→ (XΩ

2t);
• (Xt) 7→ (−XI−J

0 , XΩ
2 , XΩ

1 , XI−K
6 , X4, X

I−K
5 , XI−K

3 ).
In order to express the action of our typical element of a fundamental SU(2), we
write z = a + bi, wj = cj + dk, where a, b, c, d ∈ R. It now acts as

X1 7→ X1a− IX1Ibi−KX1Jcj − JX1Kdk
X2 7→ X2a− JX2Jbi− IX2Kcj −KX2Idk
X4 7→ X4a−KX4Kbi− JX4Icj − IX4Jdk

In effect, the quaternion group generated by right-multiplication by i and j has
been replaced by a different quaternion group in each of the three coordinates. The
non-trivial element of the Weyl group in this SU(2) has a = b = d = 0, c = 1, that
is

• (X1, X2, X4) 7→ (−KX1Jj,−IX2Kj,−JX4Ij).
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