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Introduction

The ‘ATLAS of Finite Groups’ [5] was originally conceived by its authors as
Volume 1 of a series, as its subtitle ‘Maximal subgroups and ordinary char-
acters for simple groups’ might suggest. In the event, subsequent volumes
have been rather slow to appear, with Volume 2, the ‘Atlas of Brauer Char-
acters’ (or ‘ABC’ for short [8]), being published in 1995, just in time for this
conference. Indeed, even this is only Part 1 of Volume 2, as the accidentally
undeleted subtitle on page 1 proclaims, in that it only includes groups of
order up to 10°.

At this conference, several suggestions for Volume 3 have been made, most
involving large quantities of data stored on computers. It seems likely that
whatever Volume 3 eventually turns out to be, it will not be a big heavy book
of the type hitherto associated with the word ‘Atlas’.

My own submission as a candidate for Volume 3 is a collection of explicit
representations of groups. A number of these were mentioned in the ‘Atlas of
Finite Groups’ under the now notorious phrase ‘Explicit matrices have been
computed.” Many others have been computed since. In fact, it is difficult
to know where to stop with such a collection of representations, and it (like
many databases) could easily be allowed to expand to fill all the disk-space
available.

For the moment, this ‘Atlas of group representations’ is restricted to the
sporadic simple groups, and we now have (in principle) representations of all
of these and their covers and automorphism groups, with the two exceptions
of the Monster and the double cover of the Baby Monster. A list of the
groups and representations that are included is given in Table 1, though it
will surely be out-of-date by the time it is printed. The reader may object
that there is no representation of 6 F'igs or 6° Fligg:2 in the list, but this should
not matter too much, as representations of 2:Fiy9:2 and 3'Fig9:2 are given.
(In fact, there seems to be no convenient faithful representation of 6° Figs:2 to



construct. Perhaps the best would be as a group of permutations on 370656
points.)

One obvious direction in which this ‘Atlas’ could be extended is to include
all exceptional covers of generic groups. There seems to be no serious obstacle
(except lack of time and energy) to doing so, although it may be quite a
challenge to construct a representation of (22 x 3)?E4(2):S3. Another possible
direction is to consider characteristic 0 matrix representations of reasonably
small degree—this is an obvious area for application of R. A. Parker’s new
Integral Meat-axe [23].

The representations collected here have been obtained in various ways,
which can be roughly divided into the following four categories.

1. From existing literature on hand constructions, or constructions involv-
ing limited use of a computer. For example, some representations of
the Mathieu groups and Leech lattice groups, as well as J; and Ru.

2. From existing computer constructions. For example, representations of
3"J3, 3 McL, the Fischer groups, Ly, Th, and J,.

3. By constructing representations ab initio. For example, representations
of 4 Msy, HN, B, and new representations of O’N, Ly, Fiys and He.

4. By constructing new representations from old ones. For example, other
representations of the Mathieu groups, Ji, Ru, Suz, Fisy, and others.

We now consider these various methods in more detail.

1 Existing ‘hand’ constructions

Here we also include some constructions which were originally computer-
assisted, but which are small enough for group generators to be entered by
hand. Most of these constructions are derived either from the constructions of
M5 and My, by Mathieu [16], [17], or the construction of C'o; by Conway [2].
In particular, all the listed permutation representations of the Mathieu groups
are easily obtained in this way. Similarly, the 24-dimensional characteristic
zero matrix representation of 2°Co; can be written over the integers and
reduced modulo any prime, and easily gives rise to all the listed matrix repre-
sentations of C'oy, C'o3, Suz and its decorations, as well as those of dimension
20-22 for HS and McL.

Other constructions of this type are the 28-dimensional representation of
2'Ru by Conway and Wales [4] (see also Conway’s later simplification [1]),
as well as the 36-dimensional representation of 3-J3:2 [3]. Easiest of all is
the 7-dimensional representation of .J; described by Janko [7]. Perhaps here
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Table 1: Available representations of sporadic groups

Group

Degree Field

Mll

M1222
2'M12
2'M1222

i

M2222

Q'MQQ
2'M2222
3'M22

3'M2222

11
12
10
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16
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10
24
48
10
12
266
1045
1463
1540
1596
2926
4180
20
26
26
31
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10
10
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21
12
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Group Degree Field
4- Moo 56 25
16 49

56 121

4'M2212 32 7
6" Moo:2 72 11
24 121

12- Mos:2 48 11
Jo 6 4
Jy:2 100 1
14 )

2 Jy:2 12 3
Mo 23 1
11 2

280 23

HS 100 1
176 1

HS:2 100 1
352 1

15400 1

20 2

22 3

21 5)

896 11

2°HS 28 )
2°HS:2 112 3
o6 )

J3 18 9
J3:2 6156 1
36 3

3 J3:2 18 2
M24 24 1




Group Degree Field

McL 21
1200

MecL:2 21
3 McL 396
45

3 McL:2 90
He 51
51

He:2 2058
102

102

50

Ru 4060
28

2'Ru 16240
28

Suz 1782
Suz:2 64
1782

2-Suz 12
2°Suz:2 12
3 Suz 12
3 Suz:2 24
5346

6" Suz 24
6°Suz:2 24
O'N 154
O'N 406
O’N:2 154
O’N:4 154
3O'N 153
3'O’N:2 90
306

Cos 22
22

276

)
25
)
4
25
)
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Group  Degree Field

Coy 2300
4600

22

24

23

Fig 3510
Fi2222 3510
78

7

176

352

2'Fig9:2 352
2'Figy4 352

3'Fi22 27
3'Fi2222 54
HN 132
HN:2 264
133

Ly 111
651

2480

Th 248
248

Fligg 31671
782

253

001 24
2:Coy 24
Jy 112
Fi,:2 306936
781

3-Fi,, 920808
783

3Fi,:2 1566
B 4370
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Note: we adopt the convention that an underlying ‘field” of order 1 signifies
a permutation representation.



we should also mention the 9-dimensional representation of 3-J3 over GF(4),
first found by Richard Parker using the Meat-axe, later tidied up by Benson
and Conway into the form given in the ATLAS.

Some small permutation representations which can be obtained by hand
include the representations of HS and .J;, and their automorphism groups,
on 100 points, and H.S:2 on 352 points.

2 Existing computer constructions

Under this heading there are some famous constructions, as well as a number
of unpublished ones which have often been duplicated. In addition, there
are some constructions which were essentially done by hand, but which are
simply too big to enter into a computer in any simple-minded manner.

Perhaps the most important original matrix construction was that of Jy in
dimension 112 over GF'(2) by Norton and Parker [20], pioneering a technique
that has since become standard (see [24]). Other important ones to mention
are Parker’s construction [18] of the Lyons group in O;11(5), and 3'O’N in
GLys5(7) (see [27]), as well as 3'Fligg in GUy7(2). The Thompson group was
constructed by Smith [30] in characteristic 0, and an analogous construction
in characteristic 3 was given by Linton [12]. An explicit construction of the
Held group was given by Ryba [26].

There are also some important constructions of permutation representa-
tions by coset enumeration. An early example was the construction of J3
by Higman and McKay as a permutation group on 6156 points [6]. The
permutation representations of the Fischer groups can also be considered in
this category, especially the representations of Fligs and 3'F'igy which were
provided for us by Steve Linton, using his double-coset enumerator [13].

3 Ab initio constructions

The impetus to start making a systematic collection of matrix representa-
tions of the sporadic groups came in June 1991 when Klaus Lux asked me for
representations of several of the large sporadic groups. Searching through my
files, I found two or three of these, but did not find HN or Fisy. Accordingly,
I tried to construct H N, choosing the 133-dimensional orthogonal representa-
tion over GF'(5). This construction took me three days [29], so I next tackled
the 781-dimensional orthognal representation of Fioy over GF'(3), which took
only two days [36]. The following week I constructed the 4370-dimensional
representation of the Baby Monster over GF'(2) (see [35]). In each case, the
construction follows Parker’s method [24].



Subsequently I returned to the subject at intervals when suitable inter-
esting construction problems presented themselves. Ibrahim Suleiman and I
gave the first (so far as we are aware) explicit construction of 4:Mas, a group
which a few years previously had been ‘proved’ not to exist.

While working with Christoph Jansen on computing modular character
tables, we decided to tackle the very challenging problem of determining the
2-modular character table of the O’Nan group. After some exploratory cal-
culations Christoph suggested that it was possible that the reduction of the
degree 495 characters modulo 2 might contain a degree 342 character—if so
then 3'O’N would have an irreducible (unitary) 153-dimensional representa-
tion over GF'(4). It seemed clear to me that the easiest way to prove this
would be to construct the representation from scratch—which we did the next
day [9]. (In fact, we went on to complete the 2-modular character table [10]
soon afterwards.)

By a remarkable coincidence, a very similar chain of events led us to
the construction of a 154-dimensional orthogonal representation of O’ N over
GF(3). This suggested to us that we should look for other such ‘surprising’
representations to construct, and in fact we showed that there was only one
more (with a suitable definition of ‘surprising’), namely a 651-dimensional
orthogonal representation of the Lyons group over GF'(3), a construction of
which is described in [11]. A similar construction gives the 2480-dimensional
unitary representation over GF(4) (see [37]).

4 Standard generators

Before considering the various ways of constructing new representations from
old ones, it is worth pausing briefly to discuss generators for the groups. Each
representation is most conveniently stored as a list of matrices (or permuta-
tions) giving the images of certain group generators in that representation.
For various reasons it is important to standardize the generators for each given
group. For example, the tensor product of two representations of a group G
can only be made if the same generators for G are available in both represen-
tations. A discussion of some of the issues involved in choosing such ‘standard
generators’ can be found in [38], and some implications and applications are
explored in [33], using the specific example of the group Js.

Here we simply list in Tables 2 and 3 the defining properties of our stan-
dard generators for the groups G and G:2, where G is a sporadic simple group.
For the present, we consider generators for covering groups to be standard
if they map to standard generators of G or GG:2 under the natural quotient
map. Thus they are not (yet) defined up to automorphisms.



Table 2: Standard generators of sporadic simple groups

Group Triple (a, b, ab)

Further conditions

My, 2,411
M, 2B,3B,11
Ji 2,3,7
Mo 24,44, 11
J 2B,3B,7

Moy 2,4,23
HS 24,5A, 11
J 24,3A,19
Mo, 2B,34,23
McL  2A,5A,11
He 24,7C, 17
Ru 9B,4A,13
Suz  2B,3B,13
O'N 24,44, 11
Cos 34,44, 14
Coy 24,5A,28
Flig 924,13, 11
HN  2A,3B,22
Ly 2,54, 14
Th 2,34,19
Fiy;  2B,3D,28
Co, 2B, 30,40
Ja 24,4A,37
Fligg 24,3E, 29
B 20,34, 55
M 24,3B,29

o((ab)?*(abab?®)?*ab*) = 4
none
o(abab®) =19

o(abab?®) = 11( <= o(ab*) = 5)

o([a,b]) =12
o((ab)?(abab*)?ab*) = 8
o([a,b]) =9
o(ab(abab?)?ab?) = 4
o((ab)?(abab?®)?ab?®) = 7
o([a,b]) =15
EE)(IEL%)?(abaW)?abQ) =12
o(la,b]) =5

o(ababab®) = 67
.

o((ab)®b) = 33
o((ab)?*(abab?®)*ab?) = 23

none




Table 3: Standard generators of automorphism groups of sporadic groups

Group Triple (a,b,ab) Further conditions
M2:2 2C,3A,12  ab e 12A( < o([a, b)) = 11)
Mos:2 2B,4C, 11 none
Jo:2 2C,5AB,14 none
HS:2 2C,5C, 30 none
J3:2 2B;3A,24  o([a,b]) =9
McL:2  2B,3B,22  o((ab)?(abab*)?ab?) = 24
He:2 2B,6C, 30 none
Suz:2 2C', 38,28 none
O’'N:2 2B,4A,22 none
Figg:2 2A,18FE,42  none
HN:2 2C 5A, 42 none
Figy':2 2C, 8D, 29 none

5 New representations from old

There are many techniques available for obtaining new representations for
a group from old ones. The basic method, which was the rationale behind
the original development of the Meat-axe [22], is to tensor two matrix rep-
resentations (over the same field) together, and then chop up the result into
irreducibles. This enables many representations in the same characteristic
as the original to be constructed. Various technical refinements can be used
to extend the range of this basic technique. For example, use of symmetric
and exterior squares, and other higher symmetrized powers, in addition to
tensor products. The ideas of condensation, exploited by Ryba [28], Lux and
Wiegelmann [14], and others, can also be used here.

A matrix representation will yield a permutation representation by cal-
culating the action of the group on an orbit of vectors (or 1-dimensional
subspaces, or k-dimensional subspaces, or any other convenient objects). A
permutation representation can be reduced modulo any prime and chopped
up with the Meat-axe into irreducibles—in this context the condensation
method really comes into its own (see for example [10], among many others).
These two ideas together enable one to change characteristic—that is, given
a representation of G' over a field of characteristic p, obtain one over a field
of characteristic q.

Some of these techniques can change the group being represented. For
example, the tensor product of two faithful irreducible representations of a
double cover 2'G will represent only G, since the central involution acts as
the scalar (—1) x (—1) = +1. Another useful example here is the following: to



obtain a representation of 12° Mys, take the tensor product of a representation
of 3:Msy, and a representation of 4-Myy. Similarly, if an orbit of subspaces
is permuted in a matrix representation, then in the resulting permutation
representation the scalars act trivially.

There are two other important ways of changing the group. Firstly, if
H is a subgroup of GG, and we can find words in our generators of G which
give generators of H, then any representation of G can be restricted to H.
Secondly, if we have a representation of G then we can construct a repre-
sentation of G.(7), where 7 acts as an outer automorphism of G. Examples
are described in [31], [9], [33], among others. Essentially, given a set {g;} of
standard generators for GG, words in the g; are found giving images h; of g;
under an outer automorphism 7. Then a ‘standard basis’ method (see [22])
is used to find explicitly a matrix (or permutation) conjugating the g; to the
h;.

6 Future developments

There is clearly a great deal of room for further development of this ‘Atlas
of group representations’. Firstly there are other representations of the spo-
radic groups which are not easy to obtain from the given ones, but which
may be interesting in their own right. Secondly, it would be very nice to
have characteristic 0 matrix representations. Of course, permutation repre-
sentations can be made into characteristic 0 matrix representations, but they
are often far too big to handle in this way. A number of examples exist in
the literature, in varying degrees of explicitness (see for example, Conway
and Wales [3], [4], Norton [19], [21], Margolin [15]), and some work has been
done by Stephen Rogers [25] on integrating these and others into the ‘Atlas
of group representations’.

Thirdly, there are other interesting groups which could be included. For
example, as the referee pointed out, the exceptional covers of generic groups
are closely related to the sporadic groups, and should be included. Since
receiving the referee’s report, I have made siginificant progress on constructing
representations of these groups, but plenty remains to be done in this area.

Another way of extending the database would be to include the maximal
subgroups of the sporadic groups. This could be done by including a library
of procedures which, given standard generators for a group GG, would produce
a representative of each class of maximal subgroups of G. Some work on this
has already been done by Peter Walsh [34].
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