Linear Algebra |
||
Richard Kaye and Robert Wilson |
From the review in the Mathematical Gazette, March 1999:
`Familiarity is apt to dull the senses when reviewing
mainstream texts such as this one, but make no mistake,
this is a clearly and carefully written book
that lecturers could easily lecture from and learners readily learn from:
it merits a wide circulation.'
From the review in the Nieuw Archief voor Wiskunde, July 1999:
`... this book can be strongly recommended.'
If \((v_1,v_2)^T\) is the coordinate form of a vector \(\mathbf v\) with respect to \(\mathbf b_1,\mathbf b_2\), then \(\mathbf Q(v_1,v_2)^T\) is the coordinate form of \(\mathbf v\) with respect to the usual basis. Then \(\mathbf P^{-1}\mathbf Q(v_1,v_2)^T\) is the coordinate form of \(\mathbf v\) with respect to \(\mathbf a_1,\mathbf a_2\), so the base-change matrix from \(\mathbf a_1,\mathbf a_2\) to \(\mathbf b_1,\mathbf b_2\) is \begin{align*} \mathbf P^{-1}\mathbf Q &= \begin{pmatrix} 1 & 1 \\ i & 1+i \end{pmatrix}^{-1} \begin{pmatrix} i & 1 \\ -i & 1 \end{pmatrix}= \begin{pmatrix} 1+i & -1 \\ -i & 1 \end{pmatrix} \begin{pmatrix} i & 1 \\ -i & 1 \end{pmatrix}\\ &= \begin{pmatrix} -1+2i & i \\ 1-i & 1-i \end{pmatrix}. \end{align*}
Now \((\mathbf A-\lambda_n\mathbf I)\mathbf e_n\) is a linear combination of \(\mathbf e_1, \ldots, \mathbf e_{n-1}\). Also, the linear transformation given by \(\mathbf A\) on the subspace \(\mathrm{span}(\mathbf e_1,\ldots,\mathbf e_{n-1})\) has upper triangular matrix with respect to this basis, with diagonal entries \(\lambda_1,\ldots,\lambda_{n-1}\), so by the induction hypothesis we have \[ (\mathbf A-\lambda_1 \mathbf I)\ldots(\mathbf A-\lambda_{n-1} \mathbf I) \mathbf e_i =\mathbf 0 \] for all \(i < n\). Thus \[ (\mathbf A-\lambda_n\mathbf I) (\mathbf A-\lambda_1 \mathbf I)\ldots(\mathbf A-\lambda_{n-1} \mathbf I) \mathbf e_i =\mathbf 0 \] for \(i < n\). Moreover, \[ (\mathbf A-\lambda_1 \mathbf I)\ldots(\mathbf A-\lambda_{n-1} \mathbf I) (\mathbf A-\lambda_n\mathbf I)\mathbf e_n \] is a linear combination of the\[ (\mathbf A-\lambda_1 \mathbf I)\ldots(\mathbf A-\lambda_{n-1} \mathbf I) \mathbf e_i \] for \(i < n\), all of which are \(\mathbf 0\). Therefore \[ (\mathbf A-\lambda_1 \mathbf I)\ldots(\mathbf A-\lambda_{n-1} \mathbf I) (\mathbf A-\lambda_n\mathbf I) \mathbf e_i =\mathbf 0 \] for all \(i\le n\).