
Mathematics for Computer Science/Software
Engineering

Notes for the course MSM1F3
Dr. R. A. Wilson

October 1996

Chapter 1

Logic

Lecture no. 1.
We introduce the concept of a proposition, which is a statement which is

either true or false (that is, it has a definite truth value). Questions, instructions,
interjections, etc. are not propositions.

Compound propositions can be formed by conjunction, that is p ∧ q, read ‘p
and q’, which is understood to be true when both p and q are true, and false
otherwise. Similarly the disjunction of p and q is p ∨ q, read ‘p or q’, which is
defined to be true when either p or q is true (or both). This is the so-called
inclusive or, as opposed to the exclusive or more often used in computing, which
means ‘p or q but not both’.

All these things are defined by truth tables, which list all possible truth values
for the simple propositions p, q, etc., and the corresponding truth values for the
compound proposition. Similarly, we can define the negation of p, written p and
read ‘not p’, to be true if p is false and false if p is true.

Examples such as (p∧q)∨r and p∧(q∨r) show that brackets are essential, as
these two propositions have different truth values in some circumstances. They
can both be read as ‘p and q or r’, but with the comma in different places, thus:
‘p and q, or r’ versus ‘p, and q or r’. Alternatively, you can think of it as the
distinction between ‘either p and q, or r’ and ‘p and either q or r’.

Conditional propositions are statements of the form ‘if p then q’. In order to
give this a truth value in all circumstances, we define it by the following truth
table.

p q p → q
T T T
T F F
F T T
F F T

Lecture no. 2.

1

2 CHAPTER 1. LOGIC

Heuristic justification for this definition: if p is true and q is false, then the
statement ‘if p is true then q is true’ obviously cannot be true, and therefore must
be false. On the other hand, if p is false, then the statement ‘if p is true then ...’
is an empty statement—it is saying nothing at all, and therefore cannot be false.
So it must be true.

If you work out the truth table of p∨ q, you will see that it is identical to the
truth table for p → q. Thus from a logical point of view there is no difference
between them: one is just a re-wording of the other. We say they are logically
equivalent, and write p → q ≡ p ∨ q.

Other useful examples include DeMorgan’s laws: p ∨ q ≡ p ∧ q and p ∧ q ≡
p ∨ q. These can easily be proved by working out the truth tables. Similarly
p ≡ p.

One very important result is that p → q ≡ q → p. The statement q → p is
called the contrapositive of p → q. This result can be proved by truth tables as
before, or alternatively we can argue as follows.

q → p ≡ q ∨ p ≡ q ∨ p ≡ p ∨ q ≡ p → q.

Warning: the statement q → p (called the converse of p → q) is not logically
equivalent to p → q.

In order to be able to dispense with truth tables altogether, you need also the
distributive laws p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) and p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

Introduce quantifiers: ‘x > 3’ is not a proposition, since its truth value de-
pends on the value of x. But we want to talk about mathematical statements of
the form ‘if x > 3 then x2 > 9’, which is undoubtedly a true statement! It really
means ‘for any x, if x > 3 then x2 > 9’. We introduce propositional functions
such as P (x) to denote statements which become propositions when we give a
particular value to the variable x. Thus if P (x) denotes ‘x > 3’, we can see that
P (1) is false, while P (5) is true. Now let Q(x) denote ‘x2 > 9’, so we can write
our full statement as ∀x(P (x) → Q(x)), which we read as ‘for any x, if P (x) is
true then Q(x) is true’.

Lecture no. 3.

The symbol ∀ is called the universal quantifier. Similarly there is the existen-
tial quantifier ∃, which can be read as ‘there exists’. Thus the statement ∃xP (x)
is true if there is some value of x for which P (x) is true.

Now to show in a given instance that ∀xP (x) is false, we need only find one
value of x for which P (x) is false. Such an x is called a counterexample. This
leads us to another form of DeMorgan’s laws: ∀xP (x) ≡ ∃xP (x). Similarly, if
∃xP (x) is false, then there is no x for which P (x) is true, so for all x, P (x) is
false, and we obtain the other of DeMorgan’s laws: ∃xP (x) ≡ ∀xP (x).

In all these examples, we need to understand the context of a given statement:
that is, if we say there exists an x with P (x) true, we are only talking about x

3

being within a certain domain of discourse, typically the set of real numbers, or
the set of integers.

Mathematical results are often of the form ∀x(P (x) → Q(x)). To prove
something like this, all we need to do is to consider all those values of x for which
P (x) is actually true, and show that in these cases Q(x) is also true. Such a proof
is called a direct proof.

But just as p → q is logically equivalent to q → p, we can see that ∀x(P (x) →
Q(x)) is logically equivalent to ∀x(Q(x) → P (x)). Thus an alternative strategy
is to consider all those values of x for which Q(x) is false, and show that in these
cases P (x) is also false. This is called a proof by contrapositive.

For example, let the domain of discourse be the set of integers, and let P (n)
be ‘n2 is an even number’, and Q(n) be ‘n is an even number’. In this case a
direct proof of ∀n(P (n) → Q(n)) is hard to find, but a proof by contrapositive is
easier: we consider all values of n for which Q(n) is false, that is all n such that
n is not even, so is odd. Then n = 2k + 1 for some integer k, so n2 = (2k + 1)2 =
4k2 +4k+1, which is odd. In other words we have proved that P (n) is false in all
circumstances where Q(n) is false. Thus we have given a proof by contrapositive
of the proposition ‘if n is an integer such that n2 is an even number, then n is an
even number’.

Lecture no. 4.

A more powerful method of proof than either a direct proof or a proof by
contrapositive, is a proof by contradiction. This uses the fact that p → q ≡
p∧ q → r∧ r. As usual, we prove this equivalence by examining a truth-table, or
we can argue heuristically by saying that to prove that p implies q, it is enough
to prove that you cannot have p true and q false—that is, p∧q is a contradiction.

For example, to prove that is m and n are positive integers, then
(

m
n

)2 6= 2,
we assume p ∧ q and try to deduce a contradiction. That is, we assume that m

and n are positive integers, and
(

m
n

)2
= 2. Now, if such positive integers exist,

then n < m, and we can assume that m and n are as small as possible. Then
m2 = 2n2, so m2 is even, so m is even, so m = 2k for some integer k. Therefore

2n2 = m2 = (2k)2 = 4k2, and so n2 = 2k2. This implies that
(

n
k

)2
= 2, with

smaller numbers than before since n < m. This is a contradiction, and therefore
we have proved the required result.

Having examined the overall outline of a proof, let us look more closely at the
detailed deductions or arguments used as individual steps in the proof. Each of
these is essentially of the same form: we know some propositions p, q, . . . (called
the hypotheses) to be true already, and we deduce a conclusion r, say. This

4 CHAPTER 1. LOGIC

argument may be written in the form

p
q
...

... r

Such an argument is said to be valid if whenever the hypotheses are all true, the
conclusion is also true. Otherwise, it is invalid, which means that under some
circumstances, all the hypotheses can be true, but the conclusion is not true. For
example, the argument

p → q
p

... q

is valid. We can prove this using a truth table: the only case where both of the
hypotheses are true is the case when both p and q are true, and in particular the
conclusion is true. On the other hand, the argument

p → q
q

... p

is invalid. To see this, we find one case where the hypotheses are both true but
the conclusion is false, such as the case p is false and q is true.

Lecture no. 5.

More complicated examples can be analysed with truth tables.

The first example above can be extended to

p
p → q
q → r

... r

or
p

p → q
q → r

... p ∧ q ∧ r

which is again a valid argument. Indeed, if we have a whole series of propositions

5

P (1), P (2), and so on, we can construct a valid argument in the form

P (1)
P (1) → P (2)
P (2) → P (3)

...

... P (1) ∧ P (2) ∧ P (3) . . .

which can also be written more compactly as

P (1)
∀k(P (k) → P (k + 1))

... ∀nP (n)

This form of argument is called the Principle of Mathematical Induction. It is
understood that the domain of discourse for these quantifiers is the set of positive
integers.

Example: prove that for all positive integers n,

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2

We let P (n) denote the given statement 1+2+3+ · · ·+n = n(n+1)
2

, so that P (1)
is the statement 1 = 1×2

2
, which is true. Now we assume that P (k) is true, that

is 1 + 2 + 3 + · · · + k = k(k+1)
2

and deduce that 1 + 2 + 3 + · · · + k + (k + 1) =
k(k+1)

2
+ (k + 1) = (k+1)(k+2)

2
, in other words P (k + 1) is true. Thus we have

proved mathematically that P (1) is true, and that for all k, if P (k) is true then
P (k + 1) is true. Hence by the Principle of Mathematical Induction, it follows
that ∀nP (n) is true.

Lecture no. 6.
More examples of induction:

1. Prove that for all integers n, 5n − 1 is divisible by 4.

For n = 1, the statement is ‘5 − 1 is divisible by 4’, which is true. Now if
5k − 1 is divisible by 4, then 5k+1 − 1 = 5 × 5k − 1 = (4 + 1) × 5k − 1 =
4× 5k + 5k − 1, which is divisible by 4, since both parts 4× 5k and 5k − 1
are divisible by 4.

2. Prove that for all integers n ≥ 4, n! > 2n. (Here we first define n! =
1× 2× 3× · · · × n, called n factorial.)

For n = 4, the statement is 4! > 24, i.e. 24 > 16, which is true. Now if
k! > 2k, then (k + 1)! = (k + 1)× k! > (k + 1)× 2k > 2× 2k = 2k+1.

6 CHAPTER 1. LOGIC

The Principle of Mathematical Induction can also be expressed in the so-called
strong form:

∀k((∀j(j < k → P (j)) → P (k))

... ∀nP (n)
,

which is a shorthand for

T → P (1)
P (1) → P (2)

P (1) ∧ P (2) → P (3)
P (1) ∧ P (2) ∧ P (3) → P (4)

...

... P (1) ∧ P (2) ∧ P (3) . . .

One example where we need the strong form is the following: prove that
every positive integer (is either 1, or a prime, or) can be factorised as a product
of primes. (Here we do not count 1 as a prime.)

Chapter 2

Basic concepts

Lecture no. 7.
The idea of a set as a collection of elements, without regard to ordering

or repetitions. Examples {1, 2, 3, 4} and {x|x is an even integer }. If a is an
element of the set A we write a ∈ A. The cardinality of set X is the number of
elements in it, written |X|. The empty set ∅ = {} has no elements in it. Two
sets are equal if they have the same elements, that is, X = Y if and only if
∀x(x ∈ X → x ∈ Y and x ∈ Y → x ∈ X). A set X is a subset of a set Y ,
written X ⊆ Y , if all elements of X are elements of Y . If also X 6= Y , then X is

a proper subset of Y , written X ⊂ Y or sometimes X
⊂
6= Y . For example, ∅ ⊆ A

and A ⊆ A for any set A. The set of all subsets of a set X is called the power
set of X, written P(X). If |X| = n then |P(X)| = 2n—this can be proved by
induction.

Lecture no. 8.
There are various ways of combining sets: the union X ∪Y of X and Y is the

set of elements that are either in X or in Y , or both, X∪Y = {x|x ∈ X or x ∈ Y }.
Similarly the intersection X ∩ Y consists of those elements that are in both,
X ∩ Y = {x|x ∈ X and x ∈ Y }. These operations obey many rules analogous to
the rules of logic we studied earlier. For example, A∪(B∩C) = (A∪B)∩(A∪C)
for the same reason that in logic p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r).

To introduce an analogue of negation, we need to introduce first the notion
of a universal set U (cf. domain of discourse) which all elements of all our sets
are supposed to belong to. Then the complement A of a set A is the set of all
elements which are not elements in A, that is A = {x|x ∈ U and x 6∈ A}.

Then we can write down DeMorgan’s laws for sets: A ∩B = A ∪ B and
A ∪B = A ∩B.

Moreover, we can identify the empty set with a contradiction (something that
is always false), and the universal set with a tautology (something that is always
true). Then there are several other useful rules such as A∩A = ∅ corresponding
to p ∧ p = F , and A ∪ A = U corresponding to p ∨ p = T .

7

8 CHAPTER 2. BASIC CONCEPTS

All these things can be illustrated in Venn diagrams.

If we have infinitely many sets, we may take the union (or intersection) of all of
them, as follows. Suppose S is a set whose elements are themselves sets. We define⋃
S = {x|x ∈ S for some S ∈ S} and

⋂
S = {x|x ∈ S for all S ∈ S}. Thus we

obtain analogues of the two quantifiers also. In particular, if S = {A1, A2, . . .},
we write

⋃
S =

⋃∞
i=1 Ai = A1 ∪ A2 ∪ · · · and similarly for intersections.

Lecture no. 9.

The difference or relative complement of two sets A and B is A−B = {x|x ∈
A and x 6∈ B}. This is a generalisation of the complement B = U − B where U
is the universal set. The symmetric difference A4B = (A−B) ∪ (B −A) is the
set of elements in one or other (but not both) of A and B. Two sets are called
disjoint if their intersection is the empty set.

A partition is obtained by chopping up a set into non-empty, non-overlapping
(i.e. pairwise disjoint) subsets. More formally, S is a partition of A if

⋃
S = A,

∅ 6∈ S, and if S ∈ S and T ∈ S with S 6= T , then S ∩ T = ∅. Exam-
ples: {{1, 2, 4}, {3, 6}, {5, 7, 8}} is a partition of the set {1, 2, 3, 4, 5, 6, 7, 8}, and
{{even integers}, {odd integers}} is a partition of the set Z of all integers.

Lecture no. 10.

Ordered pairs, where order does matter, are written (a, b) to distinguish them
from sets {a, b} where order does not matter (cf. vector notation). The Cartesian
product of two sets A and B is the set of all ordered pairs where the first element
is in A and the second is in B: that is, A × B = {(a, b)|a ∈ A and b ∈ B}. We
can generalise to ordered triples (a, b, c) and the Cartesian product of three sets
A×B × C = {(a, b, c)|a ∈ A, b ∈ B, c ∈ C}, and so on.

Notion of a string of length n—an ordered n-tuple, but often written with-
out the brackets and commas. Notation

∑n
i=1 ai = a1 + a2 + · · · + an and∏n

i=1 ai = a1 × a2 × · · · × an. Compare also
⋃n

i=1 Ai = A1 ∪ A2 ∪ · · · ∪ An,
etc. Concatenation of two strings over an alphabet A: if (a1, a2, . . . , am) and
(b1, b2, . . . , bn) are two strings over A (i.e. ai ∈ A and bj ∈ A), then their con-
catenation is (a1, a2, . . . , am, b1, b2, . . . , bn), of length m + n.

A sequence is like an infinite string, written a1, a2, . . . or sometimes {ai}∞i=1

(note that, confusingly, curly brackets are usually used instead of round brackets
here).

Lecture no. 11.

Define relations between two sets as subsets of the Cartesian product. Infor-
mal discussion as tables. Examples. The special case of relations on a set: illus-
tration in a digraph. A relation R on a set A is reflexive if everything is related
to itself, i.e. ∀x ∈ A(xRx). It is anti-symmetric if two things cannot be related
both ways round, unless they are equal, i.e. ∀x ∈ A∀y ∈ A(xRy∧yRx → x = y).
It is symmetric if two things are always related both ways round or not at all,
i.e. ∀x ∈ A(xRy → yRx). Examples in pictures.

9

Lecture no. 12.
Definition and examples of transitive relations. Examples of relations which

are (i) symmetric and not anti-symmetric, (ii) anti-symmetric and not symmetric,
(iii) both, (iv) neither. An equivalence relation is one which is reflexive, symmetric
and transitive. Examples: ‘is the same colour as’—corresponds to a partition into
different colours. We will see later that an equivalence relation always corresponds
to a partition. A partial order is a relation which is reflexive, anti-symmetric and
transitive. Examples: ‘≤’ on Z, and ⊆ on P(X). First look at the example
X = {1, 2}, then arbitrary sets. If we have a partial order relation we can
simplify the digraph to a Hasse diagram by leaving out redundant information,
i.e. loops, arrows (all assumed to go up the page), and all edges which can be
deduced from transitivity.

Lecture no. 13.
Example: the Hasse diagram of the relation ‘⊆’ on A = P(X), where X =

{1, 2, 3}.
Now equivalence relations correspond to partitions in the following way. If

S is a partition of A, define a relation R on A by aRb whenever a and b are
in the same part of the partition, i.e. whenever there is a set T ∈ S with
a ∈ T and b ∈ T . Then we show that R is an equivalence relation. Example:
S = {{1, 3, 4}, {5}, {2, 6}}. Conversely, if R is an equivalence relation on A, we
first define [a] = {x ∈ A|aRx}, the equivalence class of a, for each a ∈ A. Then
we prove that if aRb then [a] = [b]. For if aRb and x ∈ [a], then aRx, so xRa,
so xRb by transitivity, so bRx, i.e. x ∈ [b]. This gives [a] ⊆ [b], and a similar
argument gives [b] ⊆ [a], and so [a] = [b]. This enables us to prove that the
equivalence classes form a partition of A. So, let S = {[a]|a ∈ A}. First, for
any a ∈ A we have aRa and so a ∈ [a], so a ∈

⋃
S, whence A =

⋃
S. Second,

since a ∈ [a], it is obvious that [a] 6= ∅. Third, if [a] ∩ [b] 6= ∅, then there is some
x ∈ [a] ∩ [b], so aRx and bRx, so xRb, so aRb, and by what we have already
proved, [a] = [b]. These are the three conditions that define a partition, so we
have proved that S is a partition of A.

Example: Let A = {1, 2, 3, 4, 5, 6, 7, 8}, and define R by aRb whenever a− b is
an integer multiple of 3. Then R is reflexive, since for all a, a−a = 0 is a multiple
of 3; and R is symmetric, since if aRb, then a − b = 3x, so b − a = 3(−x) and
bRa; and R is transitive, since if aRb and bRc then a− b = 3x and b− c = 3y, so
a−c = (a−b)+(b−c) = 3(x+y), and therefore aRc. The equivalence classes are
[1] = {1, 4, 7} = [4] = [7] and [2] = {2, 5, 8} = [5] = [8] and [3] = {3, 6} = [6], and
the set of equivalence classes, S = {{1, 4, 7}, {2, 5, 8}, {3, 6}}, forms a partition
of A.

Lecture no. 14.
Return to considering more general relations. Define the matrix of a relation,

useful for computer storage of some relations, and we can recognise reflexive and
symmetric relations from the matrix. The inverse relation of R ⊆ A × B is

10 CHAPTER 2. BASIC CONCEPTS

R−1 = {(b, a)|(a, b) ∈ R} ⊆ B × A. If R ⊆ A × B and S ⊆ B × C, then the
composition of R and S is S◦R defined by S◦R = {(a, c)|∃b ∈ B such that (a, b) ∈
R and (b, c) ∈ S}.

So far we have only considered binary relations, that is subsets of Cartesian
products A × B. Similarly we can define ternary relations, which are subsets of
A × B × C, or more generally, n-ary relations, which are subsets of A1 × A2 ×
· · · × An, say. Example: ‘between’ is a ternary relation on real numbers.

Informal definition of functions. Examples.

Lecture no. 15.
Also more formal: a relation f ⊆ A × B is a function if and only if for all

a ∈ A, there is a unique b ∈ B with (a, b) ∈ f . More normal notation for
(a, b) ∈ f is f(a) = b, and if f ⊆ A×B we prefer to write f : A → B.

Almost everything in computer programming can be considered to be a func-
tion: e.g. + is a function from R× R to R.

If f is a function from A to B, then (in the sense defined earlier for relations)
the domain of f is A, and in general the range is a subset of B. If the range is
actually the whole of B, then f is called onto, or surjective. This means that
every element of B occurs as f(a) for some a. In general it may occur as f(a)
for many different values of a: a function where this does not happen is called
one-to-one, or injective. A function which is both injective and surjective is called
bijective—in such a function, each element of A gives rise to a unique element of
B, and vice versa, so this is sometimes called a one-to-one-correspondence.

Lecture no. 16.
Examples of functions which are or are not injective, surjective, bijective.

Definition of inverse relation of a function f . Discussion of when it is an inverse
function: we need f to be surjective and injective, i.e. bijective. In fact f has an
inverse function if and only if it is bijective. Examples: f = {(1, c), (2, a), (3, b)}
is a bijection between A = {1, 2, 3} and B = {a, b, c} and has an inverse function
f−1 = {(c, 1), (a, 2), (b, 3)}. Similarly f : R → R defined by f(x) = x3 has inverse
function f−1(y) = 3

√
y.

Lecture no. 17.
The idea of an algorithm as a precise set of instructions for computing a

function. Thus it should have the properties of:

1. Precision. To enable a computer to follow the instructions.

2. Input.

3. Output.

4. Uniqueness. The output (and intermediate steps) are uniquely deter-
mined by the input.

11

5. Generality. It should apply to a whole set of possible inputs.

6. Finiteness. It must stop and output the answer after a finite nunber of
steps.

Example: the Division Algorithm—If a and b are positive integers, to divide
a by b and get a quotient q and remainder r (satisfying a = bq+r and 0 ≤ r < b).

Example: Euclid’s algorithm. If a and b are positive integers, then c is a
common divisor if c divides a and c divides b. Define also the greatest common
divisor, written g.c.d.(a, b). Then if a = bq + r we can show that g.c.d.(a, b) =
g.c.d.(b, r). Hence by repeated application of the division algorithm we eventually
get a remainder of 0, at which point b is the greatest common divisor. Working
backwards, we can express g.c.d.(a, b) in the form ax + by where x and y are
integers (in fact one will be positive and the other negative). Examples.

12 CHAPTER 2. BASIC CONCEPTS

Chapter 3

Counting methods

Lecture no. 18.
Multiplication principle. That is, |A× B| = |A| × |B|. Example: if a set has

n elements, then it has 2n subsets. Addition principle. That is, if A and B are
disjoint sets, then |A∪B| = |A|+ |B|. In general, |A∪B| = |A|+ |B| − |A∩B|,
since the elements of |A∩B| have been counted twice. (This is the simplest case
of inclusion–exclusion.) Generalize this to |A ∪ B ∪ C| = |A|+ |B|+ |C| − |A ∩
B|− |A∩C|− |B∩C|+ |A∩B∩C|. First proof: how many times is each element
counted? Second proof: formally from the previous result. Examples.

Lecture no. 19.
Permutations and combinations. Define: r-permutation of n things. The

number of such is P (n, r) = n(n− 1) . . . (n− r + 1). Define: r-combinations of n
things. Here the ordering of the r things doesn’t matter, so the number of such
things is C(n, r) = P (n, r)/n! Examples. (Poker hands, etc.)

Lecture no. 20.
Generalised permutations and combinations. Example: number of ‘anagrams’

of MISSISSIPPI is 11!
4!4!2!1!

. The general formula. Another example; number of
ways of distributing six pints of beer between John, Fred and Tom. Another
example: the coefficient of x2y3z4 in the expansion of (x + y + z)9.

Lecture no. 21.
Either some formulae like

n∑
k=0

C(n, k) = 2n

and the binomial theorem; or more examples of what we’ve just done; or revision.

Lecture no. 22.
Revision.
Unfortunately, the graph theory seems to have fallen off the end of the syl-

labus.

13

