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Question 1 (a) Give, with explanation, an explicit formula for
(
n
k

)
. [4]

(b) By counting the number of subsets of a set of size n in two ways, show that

n∑
k=0

(
n

k

)
= 2n.

[4]

(c) Prove that (
n

k

)
=

(
n− 1

k

)
+

(
n− 1
k − 1

)
.

[4]

Question 2 (a) How many solutions of the equation x1 + x2 + x3 + x4 = 11 are
there in non-negative integers xi? [3]

(b) How many solutions are there in positive integers xi? [3]

(c) How many solutions have at least one of the xi = 0? [3]

(d) How many solutions have exactly one of the xi = 0? [3]

Question 3 Let A = {1, 2, 3, 4, 5, 6, 7}.

(a) How many sequences of length 4 can be constructed from the elements of A,
if repetitions are not allowed? [3]

(b) How many sequences of length 4 can be constructed from the elements of A,
if repetitions are allowed? [3]

(c) How many of the sequences in (a) contain exactly two odd numbers? [3]

(d) How many of the sequences in (a) contain at least two odd numbers? [3]

Question 4 Let (an) be the sequence of integers defined by the recurrence relation

an = an−1 + 2an−2

for n ≥ 2, and the initial conditions a0 = 1, a1 = 1.

(a) Derive a formula for an, for all n ≥ 0. [7]

(b) Use the recurrence relation to find the generating function for the sequence
(an). [7]
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Question 5 (a) Define the term partition of a set. [4]

(b) Define the Stirling numbers of the second kind S(n, k). [3]

(c) Determine S(3, k) for all 0 ≤ k ≤ 3. [3]

(d) Write down a recurrence relation for S(n, k) and use it to determine S(4, 3). [5]

Question 6 (a) Explain what it means for two Latin squares to be orthogonal. [3]

(b) Use the integers modulo 3 to construct two orthogonal 3× 3 Latin squares. [6]

Question 7 Let X be a finite set and let F = {A1, A2, . . . , An} be a family of
subsets of X.

(a) Explain what it means to say that F has a system of distinct representatives. [3]

(b) State the theorem of Hall giving a necessary and sufficient condition for F to
have a system of distinct representatives. [4]

(c) Determine whether the following family of subsets of {a, b, c, d, e} has a system
of distinct representatives:

F = {A1, A2, A3, A4, A5}

where A1 = {a, b, e}, A2 = {a, c}, A3 = {c, e}, A4 = {a, b, d}, A5 = {a, c, e}. [4]

Question 8 (a) State the Principle of Inclusion and Exclusion. [3]

(b) Define the term derangement. [2]

(c) Use the Principle of Inclusion and Exclusion to derive a formula for the number
of derangements of n points. [7]

(d) Deduce that the number of derangements of n points is approximately n!/e. [3]

End of Paper
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