
Combinatorics Assignment 6: Solutions

1. (a) We are given the set of k positions which are coloured red, so we
have to choose whether to colour each of the additional n − k elements blue
or green. There are two choices for each, and the choices are independent,
so the number is 2n−k.

(b) Now we are only given that there are k red elements but not told their

positions. There are

(
n

k

)
ways to choose the positions of the red elements,

and (by part (a)) 2n−k ways of colouring the remaining elements. So

Ak =

(
n

k

)
2n−k.

(c) The generating function is

n∑
k=0

(
n

k

)
2n−kxk = (x + 2)n,

where we have used the Binomial Theorem in the last step.

The total number of colourings is
n∑

k=0

Ak, which is what we get when

we substitute x = 1 into the generating function. So the total number is
(1 + 2)n = 3n.

(d) This is the total number of ways of colouring the n elements red,
green or blue. But we can simply observe that there are 3 choices for the
colour of each element, and the choices are independent.

2. (a) You cannot partition an odd number of objects into sets of size 2;
so fn = 0 if n is odd.

For n even, we proceed by induction. Clearly f2 = 1, so the induction
starts. Now suppose that the result is true for n − 2. (We go in steps of 2
in the induction.) Now given the numbers 1, . . . , n, consider the number n;
there are n − 1 choices for the number which is paired with n, and once we
have chosen this number, we have to partition the remaining n − 2 objects
into sets of size 2. So

fn = (n − 1)fn−2,

from which the required formula follows by induction.
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(b) For n = 2m, n! is the product of all the integers from 1 to n. Now

2m m! = (2 · 1)(2 · 2) · · · (2 · m)

is the product of the even numbers; so the quotient is the product of the odd
numbers.

(If you prefer, you can write the right-hand side out as a product and
cancel factors to get the result.)

Note: You can also prove this directly, and then “reverse engineer” (a)
from (b). How do we partition the set into parts of size 2? We take m boxes,
each with room for two numbers, and we put the numbers 1, . . . , 2m into the
boxes (which we can do in (2m)! ways). But we get the same partition if (i)
we put the boxes in a different order (there are m! orders for the boxes), or
if (ii) we put the two elements in each box in a different order (there are 2
orders for each box, and so 2m altogether).

(c) Now

∑
n≥0

fnx
n

n!
=

∑
m≥0

(2m)!x2m

(2m)!2mm!

=
∑
m≥0

x2m

2mm!

=
∑
m≥0

(x2/2)m

m!

= ex2/2.

3 (a) Given a permutation on {1, . . . , n}, its cycle decomposition gives
us a partition of {1, . . . , n}. Hence there is a map from permutations with
k cycles to partitions with k parts. This map is onto – for every partition,
we can construct a permutation which has the parts of the partition as its
cycles – though not in general one-to-one. So there are at least as many
permutations as partitions.

(b)
n∑

k=0

|s(n, k)| and
n∑

k=0

S(n, k) simply count the total number of permu-

tations of {1, . . . , n}, or partitions of {1, . . . , n}, respectively; these numbers
are respectively n! and the Bell number B(n).

Remark: From parts (a) and (b) you deduce that B(n) ≤ n!, which was
the content of an exercise on Assignment 4.
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(c) Use the recurrence relations:

S(n, 1) = 1, S(n, n) = 1,

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k) for 1 < k < n

and

s(n, 1) = (−1)n−1(n − 1)!, s(n, n) = 1,

s(n, k) = s(n − 1, k − 1) − (n − 1)s(n − 1, k) for 1 < k < n.

The required tables are, for S(n, k),

1
1 1
1 3 1
1 7 6 1
1 15 25 10 1

and for s(n, k),
1
−1 1
2 −3 1
−6 11 −6 1
24 −50 35 −10 1

Now multiply the matrices and check that the identity is obtained.

4. Here is one way to solve this problem. It depends on the following fact
(check that you can see why this should be true):

Let (x1, x2, . . . , xn) be a list of real numbers and y a real number.
Suppose that (at least) q elements of the list are greater than
y. Then, if we arrange the list in decreasing order, the largest q
elements of the list are all greater than y.

Let aij be the height of the soldier in row i and column j after the first
rearrangement. The rows are in decreasing order, so if j < k, then aij > aik

for i = 1, . . . ,m.
We are going to consider just columns j and k, so to simplify the notation

we will let bi = aij (the height of the ith soldier in column j) and ci = aik
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(the height of the ith soldier in column k). Now we are given that bi > ci for
i = 1, . . . ,m.

We look at the first row before going on to the general case. After
the second rearrangement, the soldiers in the first row in columns j and
k have heights which are the greatest elements of the lists (b1, . . . , bm) and
(c1, . . . , cm) respectively. Let the greatest element of the second list be ci1 .
Then at least one element of the b list, namely bi1 , is greater than ci1 ; hence
by our observation, the greatest element of the b list is greater than ci1 .

Now we do the general case. Let cis be the sth greatest element of the c
list. (The soldier with this height will go into the sth row after the second
rearrangement). Then there are at least s elements of the b list which are
greater than cis , namely bi1 , bi2 , . . . , bis : for bis > cis by assumption, and if
t < s then bit > cit > cis . So, by our observation, the s largest elements
of the b list are all greater than cs. These are the heights of the soldiers in
rows 1, . . . , s of column j after the second rearrangement. In particular, the
soldier in row s of column j has height greater than cis , the soldier in row s
of column k, after the second rearrangement.

So the theorem is proved.
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