
MTH6109 Combinatorics

Solutions 3 November 2011

1 (a) C1 = 1, C2 = 2, C3 = 4;

(b) Let the set be {1, 2, . . . , n}, and look at the part of the partition containing
n. Either this has size 1, and then there are Cn−1 ways of partitioning the
remaining points; or it has size 2, so is {x, n} for some x (so n−1 choices),
and there are Cn−2 ways of partitioning the remaining points. Therefore

Cn = Cn−1 + (n − 1)Cn−2.

2 (a) The characteristic equation is x2 − x − 6 = 0, with solutions x = 3,
x = −2, so the general solution is an = A.3n + B.(−2)n. Substituting
n = 0 and n = 1 gives A + B = 1 and 3A − 2B = 3, which have solution
A = 1, B = 0. Hence an = 3n.

(b) The characteristic equation is x2 − 6x + 9 = 0, i.e. (x− 3)2 = 0. Hence the
genral solution is bn = (A + Bn).3n. Substituting n = 0, 1 we get A = 1,
3(A + B) = 6, so B = 1 and the solution is bn = (1 + n)3n.

(c) This recurrence relation does not have constant coefficients, so the above
method does not work. But if you calculate a few values you will soon
realise that cn = 2n. Now you can prove it by induction. It is true for
n = 1, since c1 = 2, and if cn−1 = 2(n − 1), then

cn =
n − 1

n
.2(n − 1) = 2n.

3 The characteristic equation is x3 − 4x2 + 5x − 2 = 0 and it is easy to see that
x = 1 is a root, so we have

x3 − 4x2 + 5x − 2 = (x − 1)(x2 − 3x + 2) = (x − 1)2(x − 2).

Thus the general solution is an = A + Bn + C.2n. Substituting in n = 0, 1, 2
gives the equations A + C = 2, A + B + 2C = 4 and A + 2B + 4C = 7, and
solving these in the usual way gives A = B = C = 1, so an = 1 + n + 2n.

1



4 (a) This was done in the notes at the beginning of Chapter 2. Suppose the
number of ways is Wn. The first coin is either 1p or 2p. If it is 1p, there are
Wn−1 ways of paying the remaining n− 1 pence. If it is 2p, there are Wn−2

ways of paying the remaining n − 2 pence. Hence Wn = Wn−1 + Wn−2.
We also have the initial conditions W1 = 1 and W2 = 2, so these are the
Fibonacci numbers.

(b) The number of 2p coins used is either 0, 1, 2,. . . , or bn/2c, so the total
number of possibilities is bn/2c + 1.

5 Easy.

6 Claim an = 22n
. Proof by induction. For n = 0 we have 220

= 21 = 2 = a0. If
an−1 = 22n−1

then an = (an−1)
2 = (22n−1

)2 = 22n−1.2 = 22n
.

7 Routine.

8 The outermost bracketing must be as

(x1. · · · .xi).(xi+1. · · · .xn)

for some i = 1, 2, . . . , n − 1. Now there are ci ways to bracket the expression
x1. · · · .xi, and cn−i ways to bracket the expression xi+1. · · · .xn, so by the mul-
tiplication principle, there are cicn−i ways to complete the bracketing. By the
addition principle, we need to sum this over all values of i, giving

cn =
n−1∑
i=1

cicn−i.

Hence c4 = c1c3 + c2c2 + c3c1 = 2 + 1 + 2 = 5 and c5 = c1c4 + c2c3 + c3c2 + c4c1 =
5 + 2 + 2 + 5 = 14.
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