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Lecture 1,
26/09/11

Combinatorics is the branch of mathematics that looks at combining objects
according to certain rules (for example: sudoku).

Typically we want to decide if this can be done, or more generally, in how
many ways it can be done.
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7.3 The Erdős–de Bruijn Theorem . . . . . . . . . . . . . . . . . . . . 71
7.4 Projective planes and MOLS . . . . . . . . . . . . . . . . . . . . . 72

3



4 CONTENTS



Chapter 1

Counting sequences, subsets,
integer partitions, and
permutations

1.1 Sequences

Example 1 How many sequences (order is important) of length 5 can we make
using letters of the alphabet?

Answer: Since repetition is allowed, each position can be filled by one of the
26 letters, hence the answer is 265.

Example 2 How many sequences in Example 1 use each letter at most once?

Answer: 26× 25× 24× 23× 22.

MULTIPLICATION PRINCIPLE: We want to count the number of ele-
ments of some set X. Suppose we can generate the elements of X using a process
consisting of n stages such that:

(a) The number of choices in the ith stage is ti, and this number is independent
of choices we make in the previous stages

(b) If we make a different choice at any stage we get a different element of X.

Then |X| = t1.t2. · · · tn.

Example 3 How many sequences in Example 2 start and end with a vowel?

(Wrong) answer: 5× 25× 24× 23× 4. This is wrong because we could have
chosen a vowel for one of the middle letters, and then there would be fewer than
4 choices for the last letter.

Correct answer:

5
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Stage 1: Choose 1st letter: 5 choices.

Stage 2: Choose 5th letter: 4 choices.

Stage 3: Choose 2nd letter: 24 = 26− 2 choices.

Stage 4: Choose 3rd letter: 23 choices.

Stage 5: Choose 4th letter: 22 choices.

Answer: 5× 4× 24× 23× 22.

Theorem 1 Let S be a set with m elements. Then the number of ordered se-
quences of length k using the elements of S is

(a) mk if we can use each element an arbitrary number of times.

(b) m.(m− 1). · · · .(m− k + 1) if we can use each element at most once.

Example 4 How many sequences of length 5 using {A,B, . . . , , Z} are there,
using each letter at most once, and containing exactly one vowel?

Reasoning:

Stage 1: Choose position for the vowel: 5 choices.

Stage 2: Choose the vowel: 5 choices.

Stage 3: Choose a consonant for the first available position: 21 choices.

Stage 4: Choose a consonant for the next available position: 20 choices.

Stage 5: Choose a consonant for the next available position: 19 choices.

Stage 6: Choose a consonant for the next available position: 18 choices.

Answer: 5× 5× 21× 20× 19× 18.

Example 5 How many sequences of length 5 use each letter at most once and
contain at least one vowel?

(Wrong) answer:

Stage 1: Choose position for the vowel: 5 choices.

Stage 2: Choose the vowel: 5 choices.

Stage 3: Choose any other letter for the first available position: 25 choices.

Stage 4: Choose a letter for the next available position: 24 choices.
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Stage 5: Choose a letter for the next available position: 23 choices.

Stage 6: Choose a letter for the next available position: 22 choices.

Answer: 5 × 5 × 25 × 24 × 23 × 22. Why is this wrong? Because it fails the
second condition for the multiplication principle: we can get the same sequence
in two different ways. For example, the sequence BEIOZ could be obtained by
first choosing the third position to put a vowel, then choosing the vowel I, and
then choosing the other letters. But it could also be obtained by first choosing
the fourth position to put a vowel, then choosing the vowel O, and then choosing
the other letters. So some sequences are being counted more than once.

Correct answer: (Total number of sequences with no repetition)
− (number of sequences with no vowels).

= (26× 25× 24× 23× 22)− (21× 20× 19× 18× 17).

Example 6 How many sequences of length 5 use each letter at most once and
contain at least two vowels?

Answer: (Total number of sequences with no repetition)
− (number of sequences with no vowels)
− (number of sequences with exactly one vowel).

= (26×25×24×23×22)− (21×20×19×18×17)− (5×5×21×20×19×18).

Definition 1 Let X be a finite set. A partition of X is a family (i.e. set) of
non-empty subsets X1, X2, . . . , Xn of X, such that every element of X belongs to
exactly one of these subsets Xi.

ADDITION PRINCIPLE: Suppose thatX is a set and F = {X1, X2, . . . , Xn}
is a partition of X. Then

|X| = |X1|+ |X2|+ · · ·+ |Xn|.

Example 6 revisited. Let X be the set of all sequences of length 5 with no
repetitions. Let

• X0 be the subset of sequences which have no vowels;

• X1 be the subset of sequences which have exactly one vowel;

• X2 be the subset of sequences which have at least two vowels.

Then {X0, X1, X2} is a partition of X, so by the addition principle

|X| = |X0|+ |X1|+ |X2|.

Therefore |X2| = |X| − |X0| − |X1|, and we have already calculated all the terms
on the right-hand side, so we can calculate |X2|.
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Lecture 2,
27/09/11CONCLUSION: When using the multiplication principle and/or the addition

principle to count things, it is important to make sure that

(a) every element of the set has been counted, and

(b) no element has been counted twice.

Example 7 If A is a set of k elements, and B is a set of m elements, how many
functions are there from A to B?

Answer: Write A = {a1, a2, . . . , ak}, and choose our function f by a k-stage
process:

Stage 1: choose f(a1), in one of m ways;

Stage 2: choose f(a2), in one of m ways;

. . .

Stage k: choose f(ak), in one of m ways.

So the answer is mk.

Example 8 How many of the functions in Example 7 are injective?

Stage 1: choose f(a1), in one of m ways;

Stage 2: choose f(a2), in one of m− 1 ways;

. . .

Stage k: choose f(ak), in one of m− k + 1 ways.

So the answer is m.(m− 1). · · · .(m− k + 1).

1.2 Subsets

Example 9 Let X be a set with n elements. How many different subsets does
X have?

Answer: using the multiplication principle. Let X = {x1, x2, . . . , xn}. Then
we choose our subset S by an n-stage process, as follows.

Stage 1: either x1 ∈ S or x1 6∈ S (2 choices);

Stage 2: either x2 ∈ S or x2 6∈ S (2 choices);
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. . .

Stage n: either xn ∈ S or xn 6∈ S (2 choices).

Hence there are 2n subsets altogether.

Another method: we make each subset correspond to a sequence of 0s and
1s as follows. The ith digit in the sequence is 1 if xi ∈ S and is 0 if xi 6∈ S.
(For example, if n = 5 and S = {x1, x4, x5}, then the corresponding sequence is
10011.) Now it is easy to see that each subset gives a sequence, and given the
sequence, we can work out the corresponding subset. In other words, we have a
bijection between the set of subsets of X and the set of binary sequences of length
n. Since the number of sequences is 2n, it follows that the number of subsets of
X is also 2n.

CORRESPONDENCE PRINCIPLE: Let X and Y be finite sets. If there
is a bijection f : X → Y , then |X| = |Y |.

Theorem 2 Let X be a set with n elements. Then the number of distinct subsets
of X is 2n.

Proof. Let P be the set of all subsets of X. We want to show that |P| = 2n.

Let Y be the set of all sequences of length n using the symbols 0 and 1. We
know from the previous section that |Y | = 2n. We now show that |P| = |Y | by
defining a bijection f : P → Y , as follows.

Let X = {x1, x2, . . . , xn}, and for each S ⊆ X define f(S) ∈ Y by putting
f(S) = b1b2 . . . bn, where bi = 1 if xi ∈ S and bi = 0 otherwise. Then f : P → Y
is a bijection (since it has an inverse g given by g(b1b2 . . . bn) = {xi | bi = 1}).

Therefore, by the correspondence principle, |P| = |Y | = 2n.

Definition 2 If n is a positive integer, we define ‘n factorial’ (written n!) by

n! = n.(n− 1).(n− 2). · · · .2.1,

that is, the product of all the positive integers up to and including n. We also
define 0! = 1.

Note that the number of sequences of length k (without repetition) from a set
of size m is m(m− 1) · · · (m− k + 1) = m!/(m− k)!.

Example 10 How many subsets (order not important) of {A,B,C, . . . , Z} are
there of size 5?
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Answer: We already know that number of sequences of length 5 (without
repetition) is 26× 25× 24× 23× 22.

But we could also count these sequences in a different way: first pick the set
of 5 letters that are going to be used, say {l1, l2, l3, l4, l5}, and then put them in
order. Now each set can be ordered in 5! ways, and different subsets give rise to
different sequences, so, by the multiplication principle:

Number of sequences = 5!(Number of subsets)

and therefore

Number of subsets = (Number of sequences)/5! =
26× 25× 24× 23× 22

5× 4× 3× 2× 1
.

This can also be written as
26!

21!5!
.

Lecture 3,
29/9/2011 Theorem 3 Let X be a set with m elements. Then for each k with 0 ≤ k ≤ m,

the number of subsets of X of size k is

m!

(m− k)!k!
.

Definition 3 We write(
m

k

)
=

m!

k!(m− k)!
=
m(m− 1). · · · .(m− k + 1)

k(k − 1). · · · .1
,

and read ‘m choose k’.

Proof: essentially the same as the example. We count in two ways the number
of (ordered) sequences of length k (without repetition). First, by direct counting
(as above) the number is m(m− 1). · · · .(m− k + 1). Second, this equals

(the number of subsets of size k).k!

since there are k! orderings of the elements x1, x2, . . . , xk of the subset.
Hence the number of subsets of size k equals

m!

k!(m− k)!
.

Another way of thinking of this is that we choose the ‘first’ element of the set
in m ways, the ‘second’ in m − 1 ways, and so on. But then we have counted
each subset of size k exactly k! times, so we must divide by k!.

Example 11 How many sequences of length six can be made from the letters of
FLEECE, using each letter exactly once?
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Answer: 6!/3! = 6× 5× 4 = 120.
Reason 1: Choose the letters one at a time, in 6! ways. But each sequence is

then counted 3! times, as if I re-order the three Es, the result is the same. Hence
the answer is 6!/3!

Reason 2: Another way to count the arrangements is:

Stage 1: Choose the position to put the F (6 choices)

Stage 2: Choose the position to put the L (5 choices)

Stage 3: Choose the position to put the C (4 choices)

Then the remaining three letters are E, so the total number of choices is 6×5×4.
Reason 3: Using the theorem, we count as follows:

Stage 1: Choose the three positions to put the Es (number of choices is
(
6
3

)
).

Stage 2: Choose the order of the other three letters in 3! ways.

Hence the answer is (
6

3

)
3! =

6!

3!
.

Theorem 4 (One form of the binomial theorem.) If m is any positive integer,
then

(1 + x)m =
m∑

k=0

(
m

k

)
xk.

Proof: Consider (1 + x)m as a product of m factors B1.B2. · · · .Bm, where

B1 = B2 = · · · = Bn = (1 + x).

To get a term xk in this product we need to choose an x from exactly k of the
factors B1, B2, . . . , Bm, and a 1 from the remaining factors. The number of ways
of doing this is (

n

k

)
.

Hence in the expansion of the product there are exactly
(

n
k

)
terms xk. In other

words, the coefficient of xk is
(

n
k

)
.

Corollary 1 Put x = 1 to get

2m =
m∑

k=0

(
m

k

)
.
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A combinatorial interpretation of this result is that the left-hand side is the
number of subsets of a set of size m, whereas the right-hand side is the sum
over all possible sizes k of subsets, of the number of subsets of that size. So we
don’t really need the binomial theorem to prove this result: it is combinatorially
obvious!

Corollary 2 What happens if we put x = −1? We get

0 =

(
m

0

)
−
(
m

1

)
+

(
m

2

)
−
(
m

3

)
+ · · ·

which we can re-arrange as(
m

1

)
+

(
m

3

)
+

(
m

5

)
+ · · · =

(
m

0

)
+

(
m

2

)
+

(
m

4

)
+ · · ·

that is the number of subsets of odd size is equal to the number of subsets of even
size.

In fact, for m odd this is more or less obvious, but not so for m even.Lecture 4,
03/10/11

Example 12 If m = 5, we have
(
5
1

)
+
(
5
3

)
+
(
5
5

)
= 5+10+1 and

(
5
0

)
+
(
5
2

)
+
(
5
4

)
=

1+10+5, and we get not only equality of the sums, but equality of the individual
terms, in reverse order.

If m = 6, we have
(
6
1

)
+
(
6
3

)
+
(
6
5

)
= 6 + 20 + 6 and

(
6
0

)
+
(
6
2

)
+
(
6
4

)
+
(
6
6

)
=

1 + 15 + 15 + 1, and the equality is much less obvious.

Indeed, we have the following binomial identity :(
n

k

)
=

(
n

n− k

)
.

One way to see this is to set up a bijection f between the set Ak of subsets of
size k and the set An−k of subsets of size n − k, by defining f(Y ) = Y c, the
complement of Y . Clearly, if |Y | = k then |Y c| = n − k, and (Y c)c = Y , so this
is a bijection. But |Ak| =

(
n
k

)
and |An−k| =

(
n

n−k

)
, so the result follows.

An alternative method is to substitute into the formula:(
n

k

)
=

n!

k!(n− k)!
,

so (
n

n− k

)
=

n!

(n− k)!(n− (n− k))!
=

n!

(n− k)!k!
.

Example 13 Suppose I want to pick a team of k players from a class of m people,
and a captain of the team. How many ways can this be done?
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One way to do this is pick the team first, which can be done in
(

m
k

)
ways,

since order is not important. Then we can choose any of the k members of the
team to be the captain. Thus the answer is k

(
m
k

)
.

But this isn’t necessarily the way you’d actually do it in practice: you might
choose the captain first (m possible choices), and then choose the remaining k−1
members of the team from the other m−1 members of the class. hence the answer
is m

(
m−1
k−1

)
.

Since we have counted the same things in two different ways, we must get the
same answer, in other words

k

(
m

k

)
= m

(
m− 1

k − 1

)
.

If you’re not convinced by this combinatorial argument, you can verify the
identity using the formula:

k

(
m

k

)
=

k.m!

k!(m− k)!
=

m!

(k − 1)!(m− k)!

while

m

(
m− 1

k − 1

)
=

m.(m− 1)!

(k − 1)!((m− 1)− (k − 1))!
=

m!

(k − 1)!(m− k)!
.

Example 14 Suppose I want to pick a team of k people from a group of m + 1
people, including myself. Either I include myself in the team or I do not. If I am
in the team, there are

(
m

k−1

)
ways of choosing the rest of the team. If I am not

in the team, there are
(

m
k

)
ways of choosing the whole team. Since exactly one of

these two cases must occur, the total number of ways of choosing the team is(
m

k − 1

)
+

(
m

k

)
.

But we already know that the number of ways of choosing a team of k from m+1
people is

(
m+1

k

)
. Hence (

m

k − 1

)
+

(
m

k

)
=

(
m+ 1

k

)
.

Again you can verify this using the formula if you prefer: the left-hand side comes
to

m!

(k − 1)!(m− k + 1)!
+

m!

k!(m− k)!
=

m!

k!(m− k + 1)!
(k+(m−k+1)) =

(m+ 1).m!

k!(m+ 1− k)!
.
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1.3 Counting ordered partitions of integers

Example 15 How many solutions are there to the equation

x1 + x2 + x3 + x4 = 11

where x1, x2, x3, x4 are non-negative integers?

Answer: given a solution, we draw a picture of 14 boxes in a row, of which 11
are empty and 3 contain plus signs. There are x1 boxes before the first plus sign,
x2 between the first and second, x3 between the second and third, and x4 boxes
after the last plus sign. Conversely, given such a picture, we get a solution to the
equation, as we read off x1 as the number of empty boxes before the first plus
sign, etc. Hence each xi is a non-negative integer, and since the total number of
empty boxes is 11 we have x1 + x2 + x3 + x4 = 11.

Thus we have set up a bijection between the set of solutions to the equation,
and the set of pictures. We can easily count the pictures, as all we need to do is
choose which 3 of the 14 boxes have plus signs in them. So there are

(
14
3

)
pictures.

Hence (by the correspondence principle) there are
(
14
3

)
solutions to the equation.

The same argument proves:Lecture 5,
04/10/11

Theorem 5 The number of solutions to the equation

x1 + x2 + · · ·+ xk = n

where x1, x2, . . . , xk are non-negative integers, and where n is a non-negative
integer and k is a positive integer, is(

n+ k − 1

k − 1

)
.

Example 16 How many ways are there of distributing 15 (identical) bottles of
beer among 6 (different) students?

Answer: if the first student gets x1 bottles, and so on, then we want the number
of solutions in non-negative integers to the equation

x1 + x2 + x3 + x4 + x5 + x6 = 15.

So the answer is (
15 + 6− 1

6− 1

)
=

(
20

5

)
.

Example 17 In how many of these cases does every student get at least one
bottle?
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Answer: let us give each student one bottle first, and then distribute the remain-
ing 9 bottles in

(
9+6−1
6−1

)
=
(
14
5

)
ways.

More generally, the number of solutions in positive integers to the equation

x1 + x2 + · · ·+ xk = n

is the same as the number of solutions in non-negative integers to the equation

y1 + y2 + · · ·+ yk = n− k,

where yi = xi − 1, that is(
n− k + k − 1

k − 1

)
=

(
n− 1

k − 1

)
.

1.4 Counting permutations

Definition 4 A permutation of a set X is a bijection f : X → X.

Theorem 6 If X is a set with n elements, then the number of permutations of
X is n!.

Proof: Let X = {x1, x2, . . . , xn}. Then the permutations of X can be chosen by
an n-stage process:

Stage 1: Choose f(x1): there are n choices;

Stage 2: Choose f(x2): there are n− 1 choices, since f(x2) 6= f(x1);

Stage 3: Choose f(x3): there are n− 2 choices;

· · ·

Stage n: Choose f(xn): there is only 1 possibility left.

Example 18 Let X = {1, 2, 3, 4, 5, 6}, and define f : X → X by f(1) = 1,
f(2) = 4, f(3) = 5, f(4) = 6, f(5) = 3, f(6) = 2. One way to write this is as(

1 2 3 4 5 6
1 4 5 6 3 2

)
where the top row just list the elements x of the set, and the bottom row the
corresponding f(x).

Another way is to draw a picture with dots for the six elements of the set, and
arrows from x to f(x) for each x. Then you see that the picture consists of a
collection of cycles. In this case the cycles are (2, 4, 6) and (3, 5) and (1), so we
write this permutation as (2, 4, 6)(3, 5)(1) or (2, 4, 6)(3, 5) for short.
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But note that we can start a cycle anywhere: (2, 4, 6) = (4, 6, 2) = (6, 2, 4).

Definition 5 A cyclic permutation of length k on a set X of size n is any permu-
tation of the form (x1, x2, . . . , xk), for some distinct xi ∈ X, that is f(xi) = xi+1

for i < k, and f(xk) = x1.

Example 19 How many cyclic permutations of length 6 are there on the set
{1, 2, 3, 4, 5, 6}?

Answer: each cycle can be written as (x1, x2, x3, x4, x5, x6), for some ordering of
the elements of the set. There are 6! such orderings. But each cycle is counted 6
times, so the number of cycles is 6!/6 = 5! = 120.

Example 20 How many permutations of {1, 2, 3, 4, 5, 6} are there of the shape
(x1, x2, x3, x4)(x5, x6)?

Answer: Again there are 6! ways of ordering the elements of the set. Now each
permutation is counted 8 times, since the cycle of length 4 can start with any of
the 4 elements x1, x2, x3, x4, and the cycle of length 2 can start with either x5 or
x6.

Example 21 How many permutations of the set {1, 2, 3, 4, 5, 6} can be expressedLecture 6,
06/10/11 as the product of two disjoint cycles of length 3?

Answer: Any such permutation is of the form (x1, x2, x3)(x4, x5, x6), and we can
choose the (ordered) sequence x1, x2, x3, x4, x5, x6 in 6! ways, as before.

But the cycle (x1, x2, x3) = (x2, x3, x1) = (x3, x1, x2) has three different names,
and similarly the cycle (x4, x5, x6) has three different names. This suggests the
answer is 6!/9 = 80. Is this right?

No! Because we also have

(x1, x2, x3)(x4, x5, x6) = (x4, x5, x6)(x1, x2, x3).

In other words, since the two cycles have the same length, we can interchange the
two cycles, and hence get twice as many ways to represent the same permutation.

Thus (by the multiplication principle) each permutation can be written in
2×3×3 ways: first choose which of the two cycles to put first, then choose which
of the three possible numbers to start the first cycle with, then choose which of
the three possible numbers to start the second cycle with.

Hence the answer is 6!/18 = 40.



Chapter 2

Recurrence relations and
generating functions

2.1 Examples of recurrence relations

Example 22 (Fibonacci numbers) How many (ordered) sequences of 1s and 2s
are there which sum to n, for a fixed integer n?

Let this number be Fn. For small n we have:

n Sequences summing to n Fn

0 empty sequence 1
1 1 1
2 1 + 1, 2 2
3 1 + 1 + 1, 1 + 2, 2 + 1 3
4 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 2 + 1 + 1, 2 + 2 5

Getting a formula for Fn directly is not so easy, but we can get a recurrence
relation expressing Fn in terms of Fk for smaller k.

Claim: Fn = Fn−1 + Fn−2 for n ≥ 2.
Proof: Let Sn be the set of all (ordered) sequences of 1s and 2s summing to

n, so that Fn = |Sn|.
Example: S3 = {(1, 1, 1), (1, 2), (2, 1)} and F3 = |S3| = 3.
Let Xn be the set of all sequences in Sn which end with a 1, and let Yn be the

set of all sequences in Sn which end with a 2, so that by the addition principle

|Sn| = |Xn|+ |Yn|.

Example: X3 = {(1, 1, 1), (2, 1)} and Y3 = {(1, 2)}, and |S3| = 2 + 1 = 3.
Now if (x1, x2, . . . , xk) ∈ Xn then xk = 1 and x1 + x2 + · · · + xk = n, so

x1 + x2 + · · ·+ xk−1 = n− 1. Hence the map (x1, x2, . . . , xk) 7→ (x1, x2, . . . , xk−1)

17
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which deletes the last term of each sequence is a map from Xn to Sn−1. Is it
obvious that this is a bijection? If not, how do we prove it?

So, by the correspondence principle, |Xn| = |Sn−1|.
Example: g : X3 → S2 is the map given by g(1, 1, 1) = (1, 1), g(2, 1) = (2):

just delete the last element in the sequence.
Similarly, the map (x1, x2, . . . , xk) 7→ (x1, x2, . . . , xk−1) is a bijection from Yn

to Sn−2. Hence |Yn| = |Sn−2|.
Putting all this together we get

Fn = |Sn| = |Xn|+ |Yn| = |Sn−1|+ |Sn−2| = Fn−1 + Fn−2.

Example 23 Let Gn be the number of sequences of positive integers (of any
length) which sum to n.

Applying the same ideas as above, the last number in the sequence can be any
of the numbers 1, 2, 3, . . . , n, and in these cases the rest of the sequence sums to
n− 1, n− 2, n− 3, . . . , 0. Hence by the addition principle we have

Gn = Gn−1 +Gn−2 + · · ·+G1 +G0.

For small n, we calculate directly that G0 = 1, G1 = 1, G2 = 2. Now use the
recurrence relation to get G3 = 2 + 1 + 1 = 4, G4 = 4 + 2 + 1 + 1 = 8, etc. Do
you see the pattern?

Gn = 2n−1. Can you prove it? By induction on n?
Can you simplify the recurrence relation? Consider the expression for Gn−1:

Gn−1 = Gn−2 +Gn−3 + · · ·+G1 +G0.

So all the terms from Gn−2 onwards in the expression for Gn can be replaced by
Gn−1, and we get

Gn = 2Gn−1.

Example 24 We have already seen an example of a recurrence relation for bi-
nomial coefficients: (

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

A recurrence relation always gives you a recursive method of calculating the
answer you want: in this case, you construct Pascal’s triangle one row at a time.
The nth row contains the numbers(

n

0

)
,

(
n

1

)
,

(
n

2

)
, . . . ,

(
n

n

)



2.1. EXAMPLES OF RECURRENCE RELATIONS 19

in order, and the recurrence relation tells you to calculate each entry as the sum
of two specified entries in the row above.

A recurrence relation may or may not give you a nice formula for calculating
the answer directly. In this case we have used the formula(

n

k

)
=

n!

k!(n− k)!

to deduce the recurrence relation, but you could (and in general it is more useful
to) use the recurrence relation to prove (by induction on n) the above formula.

Lecture 7,
10/10/11Bell numbers: counting partitions of a set. The nth Bell number Bn is

defined as the number of partitions of a set with n elements. The names of the
elements do not matter, so we might as well suppose our set is Sn = {1, 2, . . . , n}.

If n = 0, then S0 = ∅, and there is a unique partition of S0, namely ∅. Hence
B0 = 1.

If n = 1, then S1 = {1}, and there is a unique partition of S1, namely {{1}},
so B1 = 1.

If n = 2, then S2 = {1, 2}, and there are exactly two partitions of S2, one
partition into two pieces and one partition into just one part, that is {{1}, {2}}
and {{1, 2}}. So B2 = 2.

When n = 3, we have one partition into a single part, {{1, 2, 3}}, and one
partition into three parts, {{1}, {2}, {3}}, and three partitions into two parts,
{{1}, {2, 3}}, {{2}, {1, 3}}, and {{3}, {1, 2}}. Therefore B3 = 5.

Theorem 7 The Bell numbers satisfy the following recurrence relation:

Bn =
n∑

k=1

(
n− 1

k − 1

)
Bn−k.

Proof: Let Sn = {1, 2, 3 . . . , n} and let Pn be the set of all partitions of Sn, so
that Bn = |Pn|.

Now we partition Pn according to the size of the part of the partition con-
taining n: let Tk be the set of those partitions F of Sn which have the property
that the part of F which contains n has size k. In symbols,

Tk = {F | n ∈ X ∈ F with |X| = k}.

Now every partition F of Sn has a unique part X ∈ F such that n ∈ X, and
this part must have some size, between 1 and n inclusive. So

Bn = |Pn| =
n∑

k=1

|Tk|.

Next we need to work out the size of Tk, for each k. We can pick the partitions
in Tk by a two-stage process: first pick the part of the partition which contains
n; then pick the rest of the partition.
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Stage 1: We need to pick the set X, of size k, such that n ∈ X. In other words, we
need to pick k− 1 more elements of X, from the set Sn \ {n} of size n− 1.
Therefore there are

(
n−1
k−1

)
ways of doing this.

Stage 2: We have already put k elements into one part of the partition, so now we
have to partition the remaining n− k elements. This can be done in Bn−k

ways.

Hence, by the multiplication principle, we have

|Tk| =
(
n− 1

k − 1

)
Bn−k.

The final result follows from the addition principle.

Example 25 We can use this recurrence relation to compute more Bell numbers:

B4 =

(
3

0

)
B3 +

(
3

1

)
B2 +

(
3

2

)
B1 +

(
3

3

)
B0

= 5 + 3× 2 + 3 + 1 = 15
B5 = B4 + 4B3 + 6B2 + 4B1 +B0

= 15 + 20 + 12 + 4 + 1 = 52

2.2 Linear recurrence relations with constant

coefficients

Suppose f1, f2, . . . is a sequence of real numbers. Then a recurrence relation for
the fn is a formula which expresses fn in terms of fn−1, fn−2, . . . , f1. Thus any
recurrence relation enables you to calculate fn recursively.

Some recurrence relations can be ‘solved’ to give a nice closed formula for fn,
but most cannot.

A k-term recurrence relation is one which expresses fn in terms of fn−1, fn−2,
. . ., fn−k only. That is, it only uses the previous k terms, not all terms.

A k-term recurrence relation is linear if it is of the form

fn = a.fn−1 + b.fn−2 + · · ·+ z.fn−k,

where a, b, . . . , z may be functions of n, but do not involve any fj. If a, b, . . . , z are
constants, we say the recurrence relation has constant coefficients. The easiest
recurrence relations to solve are those which are linear with constant coefficients.
(Compare differential equations.)
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Lecture 8,
11/10/11 Selected solutions to the first set of exercises. The first question was

generally answered well, but many of you need to include more detailed explana-
tion. Only the last part caused any real difficulty: how many sequences of five
distinct numbers from {1, 2, 3, 4, 5, 6, 7} contain exactly 2 of the numbers 1, 2, 3?
Probably the easiest way to count them is to count the subsets first, and then
put the numbers into order. Thus there are

(
3
2

)
= 3 ways of choosing 2 numbers

from {1, 2, 3}, and
(
4
3

)
= 4 ways of choosing 3 numbers from {4, 5, 6, 7}, making

12 choices of subsets of size 5. For each of these subsets there are 5! = 120 ways
of ordering it. Hence the answer is 12× 120 = 1440.

Question 2(iii) asked for the number of subsets of size 5 of {A,B,C,D,E, F,G,H, I}
which contain at least two vowels. Since there are only three vowels altogether,
we get the answer by adding together the number of subsets with two vowels,
and the number with three vowels. In the first case, we choose two vowels from
three in

(
3
2

)
= 3 ways, and choose three consonants from six in

(
6
3

)
= 20 ways,

making 3× 20 = 60 in all. In the second case, we take all the vowels, and choose
two of the six consonants in

(
6
2

)
= 15 ways. Hence the answer is 60 + 15 = 75.

Question 2(iv) asked for the number of sequences of length 11 made out of
the letters of MISSISSIPPI. If we first choose the place to put the M, we have(
11
1

)
= 11 places to put it. If we next choose two of the remaining places to put

the two Ps, we have
(
10
2

)
= 45 choices. Finally we choose 4 of the last 8 places

to put the Is, in
(
8
4

)
= 70 ways. Hence the answer is 11 × 45 × 70 = 34650.

Comment: if we write out the formula for these binomial coefficients, we get

11!

1!10!
.
10!

2!8!
.

8!

4!4!
=

11!

1!2!4!4!
.

This can be interpreted by saying we have 11! orderings, but then we have counted
each sequence 1!2!4!4! times, since any permutation of the two Ps, or the four Is,
or the four Ss, makes no difference to the sequence.

Question 3 was deliberately hard: only one person managed to do it without
a hint. We let A = {1, 2, 3, . . . , n}, and X = {B ⊆ A | |B| is even}, and
Y = {C ⊆ A | |C| is odd}, and we want to construct a bijection between X and
Y . This is easy if n is odd, and was done in lecture 4. However, it is much more
difficult if n is even. The trick is to define f : X → Y by f(B) = B4{1}. Thus
|f(B)| = |B| ± 1, so f really does map X to Y . Moreover, f has an inverse,
namely the map g : Y → X defined by the same formula, that is g(C) = C4{1}.
Hence f is a bijection, and |X | = |Y|.

Back to recurrence relations.

Example 26 • fn = fn−1 + fn−2fn−3 is a non-linear 3-term recurrence rela-
tion, because it expresses fn in terms of the previous 3 terms fn−1, fn−2, fn−3;
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• fn = nfn−1 + n2fn−2 is a linear 2-term recurrence relation, with non-
constant coefficients;

• fn = 2fn−1 − fn−2 is a linear 2-term recurrence relation, with constant
coefficients;

• fn = fn−1 + fn−2 + · · ·+ f1 + f0, should probably not be regarded as linear,
since the number of terms is unbounded.

If we are given a k-term recurrence relation for fn, together with the first k
values f0, f1, . . . , fk−1, then we can calculate successively fk, fk+1, . . . , using the
recurrence relation.

A general k-term linear recurrence relation is of the form

fn = c1fn−1 + c2fn−2 + · · ·+ ckfn−k.

Lemma 1 If fn and gn satisfy the same k-term linear recurrence relation, then
so does hn = Afn +Bgn, for any constants A and B.

We have

fn = c1fn−1 + c2fn−2 + · · ·+ ckfn−k

⇒ Afn = c1Afn−1 + c2Afn−2 + · · ·+ ckAfn−k

gn = c1gn−1 + c2gn−2 + · · ·+ ckgn−k

⇒ Bgn = c1Bgn−1 + c2Bgn−2 + · · ·+ ckBgn−k

⇒ Afn +Bgn = c1(Afn−1 +Bgn−1) + c2(Afn−2 +Bgn−2) + · · ·+ ck(Afn−k +Bgn−k)
⇒ hn = c1hn−1 + c2hn−2 + · · ·+ ckhn−k

Example 27 If fn = 3fn−1, and f0 = 2, write down a simple formula for fn.

Answer: you can probably see immediately that fn = 2.3n. In any case, it is
not hard to guess that the solution should be of the form fn = A.xn for some x
and some A. Substituting in gives A.xn = 3A.xn−1, and cancelling A.xn−1 gives
x = 3. Then we find A by substituting in the initial conditions: f0 = A so A = 2.

Lecture 9,
13/10/11 Example 28 If fn = fn−1 + 2fn−2 for n ≥ 2, and f0 = 0, f1 = 1, find a simple

formula for fn.

Answer: the previous example suggests we try solutions of the form fn = xn. So
substitute this into the recurrence relation, to get

xn = xn−1 + 2xn−2.

Re-writing this as xn − xn−1 − 2xn−2 = 0 gives

0 = xn−2(x2 − x− 2) = xn−2(x+ 1)(x− 2),
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so x = 0, −1, or 2. The case x = 0 gives the trivial solution fn = 0. The other
two cases give solutions (−1)n and 2n.

Now the lemma tells us that A(−1)n + B2n is a solution to the recurrence
relation, for any constants A and B, so let us try to put fn = A(−1)n +B2n, and
see what happens. We can substitute in the known values f0 and f1 to get the
equations

0 = f0 = A+B
1 = f1 = −A+ 2B
⇒ 1 = 3B

⇒ B =
1

3

⇒ A = −1

3

Hence the solution is

fn =
1

3
(2n − (−1)n) =

1

3
(2n + (−1)n−1).

Example 29 (Fibonacci numbers.) The Fibonacci numbers Fn are defined by
the recurrence relation Fn = Fn−1 + Fn−2 (for n ≥ 2), and the initial conditions
F0 = 1, F1 = 1.

Suppose there is a solution to the recurrence relation of the form Fn = xn.
Substituting into the recurrence relation we get xn = xn−1 + xn−2, that is

xn(x2 − x− 1) = 0.

Hence x = 0 or x = (1 ±
√

5)/2. Therefore we get two independent solutions of
the form Fn = αn and Fn = βn, where α = (1 +

√
5)/2 and β = (1−

√
5)/2. So

by the lemma, the general solution is

Fn = Aαn +Bβn,

for arbitrary constants A,B.
Now substitute in the initial conditions F0 = F1 = 1 to get

F0 = 1 = A+B
F1 = 1 = Aα+Bβ
⇒ α = Aα+Bα

⇒ α− 1 = B(α− β)
⇒ (

√
5− 1)/2 = B

√
5

⇒ B = −β/
√

5
⇒ A = α/

√
5

since α− β =
√

5. Hence

Fn = Aαn +Bβn =
1√
5
(αn+1 − βn+1).
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Example 30 This method is not going to work if we have a repeated root of the
quadratic equation, for example if fn = 4fn−1 − 4fn−2. So how do we solve this
recurrence relation, for example with initial conditions f0 = 1, f1 = 4?

In this case putting fn = xn yields the equation xn−2(x− 2)2 = 0, with repeated
root x = 2, so certainly fn = 2n is a solution to the recurrence relation. The key
point is to notice that actually fn = n.2n is also a solution: for in this case

fn − 4fn−1 + 4fn−2 = n.2n − 4(n− 1)2n−1 + 4(n− 2)2n−2

= 2n(n− 2(n− 1) + (n− 2)) = 0

So we try the general solution

fn = (A+Bn)2n.

Now substitute in the initial conditions, to get

f0 = 1 = A
f1 = 4 = 2A+ 2B
⇒ B = 1

so the solution is fn = (n+ 1)2n.

General method for solving k-term linear recurrence relations with constant
coefficients. Suppose we want to solve the recurrence relation

fn = c1fn−1 + c2fn−2 + · · ·+ ckfn−k

(for n ≥ k), where c1, . . . , ck are constants, subject to initial values f0 = a0,
f1 = a1, . . . , fk−1 = ak−1.

Step 1: find the roots of the characteristic equation:

xk − c1x
k−1 − c2x

k−2 − · · · − ck−1x− ck = 0.

Suppose the roots are α1 with multiplicity m1, and α2 with multiplicity m2, and
so on, up to αr with multiplicity mr. Then m1 +m2 + · · ·+mr = k.

Step 2: the solutions corresponding to each αi are

(Ai +Bin+ Cin
2 + · · ·+ Zin

mi−1)αn
i .

The number of arbitrary constants in this expression is mi. Putting fn equal to
the sum of all of these, for 1 ≤ i ≤ r, gives an expression withm1+m2+· · ·+mr =
k arbitrary constants.

Step 3: substitute in the values f0 = a0, . . . , fk−1 = ak−1 to get k simultaneous
linear equations in k unkowns A1, . . . , Zr. Solve these to get the unique solution
for fn.
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Example 31 Find a formula for fn defined by fn = 3fn−2 + 2fn−3 (for n ≥ 3)Lecture 10,
17/10/11 and f0 = 2, f1 = 0, f2 = 7.

Answer: if fn = xn, then xn − 3xn−2 − 2xn−3 = 0. Ignoring the trivial solution
x = 0, we have

0 = x3 − 3x− 2 = (x+ 1)2(x− 2).

The solution x = 2 gives fn = A2n, while x = −1 gives two independent solutions,
fn = B(−1)n + Cn(−1)n, or the general solution

fn = A2n +B(−1)n + Cn(−1)n.

Substiting n = 0, 1, 2 gives the three equations

2 = A+B
0 = 2A−B − C
7 = 4A+B + 2C

which you solve in the usual way to get A = 1, B = 1, C = 1. Hence the solution
is

fn = 2n + (n+ 1)(−1)n.

2.3 Generating functions

Generating functions give another way of studying sequences of numbers, and
often getting a simple formula for the terms of the sequence, starting from a
recurrence relation, for example.

Definition 6 If f0, f1, . . . , is an infinite sequence of numbers, then the gener-
ating function φ(t) for fn is the power series

φ(t) =
∞∑

k=0

fkt
k.

Example 32 The Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . has generating function

φ(t) = 1 + t+ 2t2 + 3t3 + 5t4 + 8t5 + · · · .

Of course this only becomes interesting when we can get a nice formula for φ(t).
In this example we can use the recurrence relation Fn = Fn−1 + Fn−2 to get a
‘functional equation’ for φ(t), and solve this to get a nice formula for φ(t).

φ(t) =
∞∑

k=0

Fkt
k
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= 1 + t+
∞∑

k=2

Fkt
k

= 1 + t+
∞∑

k=2

(Fk−1 + Fk−2)t
k

= 1 + t+
∞∑

k=2

Fk−1t
k +

∞∑
k=2

Fk−2t
k

= 1 + t+ t

 ∞∑
l(=k−1)=1

Flt
l

+ t2

 ∞∑
m(=k−2)=0

Fmt
m


= 1 + t+ t(φ(t)− 1) + t2φ(t)
= 1 + tφ(t) + t2φ(t)

⇒ (1− t− t2)φ(t) = 1
⇒ φ(t) = (1− t− t2)−1

So far so good, but we can do more than this, by factorising the denominator
and hence splitting this expression into partial fractions. First note that

1− t− t2 = (1− αt)(1− βt),

where α = (1 +
√

5)/2 and β = (1−
√

5)/2. Writing

φ(t) =
1

1− t− t2
=

1

(1− αt)(1− βt)
=

A

1− αt
+

B

1− βt

and multiplying up by the denominator we get

1 = A(1− βt) +B(1− αt).

This must hold for all values of t, and substituting t = 1/α gives 1 = A(α−β)/α
so A = α/

√
5. Similarly B = −β/

√
5. Hence

φ(t) =
α√
5

(
1

1− αt

)
− β√

5

(
1

1− βt

)
.

Finally we use the Taylor expansion (1− x)−1 = 1 + x+ x2 + x3 + · · · to get

φ(t) =
α√
5

∞∑
k=0

αktk − β√
5

∞∑
k=0

βktk.

Comparing this with the definition of φ(t) then gives

Fn =
αn+1 − βn+1

√
5

.
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Power series Suppose that φ(t) =
∑

k≥0 akt
k and θ(t) =

∑
k≥0 bkt

k are two
power series. Then

1. we define the sum φ(t) + θ(t) =
∑

k≥0(ak + bk)t
k;

2. we define the product φ(t).θ(t) =
∑

n≥0 cnt
n where cn =

∑n
k=0 akbn−k. This

is just a formal way of saying that you multiply out the expressions as usual,
and collect together the terms in each power of t:

(a0+a1t+a2t
2+· · ·)(b0+b1t+b2t2+· · ·) = a0b0+(a0b1+a1b0)t+(a0b2+a1b1+a2b0)t

2+· · ·
Lecture 11,
18/10/113. we define the derivative φ′(t) =

∑∞
k=0 kakt

k−1 =
∑∞

k=1 kakt
k−1.

Example 33 The Taylor expansion of et about t = 0 is

et = 1 + t+
t2

2!
+
t3

3!
+ · · · =

∞∑
n=0

tn

n!
.

Example 34 The Taylor expansion of (1 + t)r, for fixed real r 6= 0, is

(1 + t)r =
∞∑

n=0

r(r − 1). · · · .(r − n+ 1)

n!
tn.

Notation: write (
r

n

)
=
r(r − 1). · · · .(r − n+ 1)

n!
,

even when r is not a positive integer.

Selected solutions to Exercises 2. Q.2. The wording of the question is
somewhat ambiguous, but what I intended to ask was, is n = 8 the only solution
to
(

n
3

)
= 2
(

n
2

)
? The answer is yes, because if

n(n− 1)(n− 2)

3!
= 2

n(n− 1)

2!

then since n ≥ 3 we can cancel the factor of n(n−1) and get n−2 = 6, so n = 8.
Q.4(c). How many permutations of {1, 2, 3, 4, 5, 6, 7, 8, 9} are there consisting

of three cycles of length at least 2? There are three cases, 2 + 2 + 5, 2 + 3 + 4,
and 3 + 3 + 3. In the case 2 + 3 + 4, we have elements of shape

(x1, x2)(x3, x4, x5)(x6, x7, x8, x9)

and there are 9! ways of choosing x1, . . . , x9. But (x1, x2) = (x2, x1), etc., so
each such permutation has 2 × 3 × 4 = 24 different names. So the number of
permutations of this shape is 9!/24 = 15120.
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Now in the case 2+2+5, this argument would give 9!/20, but we also have to
take into account the fact that (x1, x2)(x3, x4) = (x3, x4)(x1, x2), which doubles
the number of names of each permutation. So there are 9!/40 = 9072 such
permutations. Similarly, in the case 3+3+3, the three 3-cycles can be permuted
in any way we like, so that altogether each such permutation has 3.3.3.3! = 162
names. Thus the number of such permutations is 9!/162 = 2240. Adding up
these three numbers gives the total

15120 + 9072 + 2240 = 26432.

Q.6(a). Calculate
∑n

k=0 k
(

n
k

)
=
∑n

k=1 k
(

n
k

)
.

Answer 1 (using the formula):

k

(
n

k

)
=

k.n!

k!(n− k)!
=

n.(n− 1)!

(k − 1)!(n− k)!
= n

(
n− 1

k − 1

)
so

n∑
k=1

k

(
n

k

)
=

n∑
k=1

n

(
n− 1

k − 1

)
= n

n−1∑
m=0

(
n− 1

m

)
= n.2n−1.

Answer 2 (using the binomial theorem): Differentiate (1 + x)k =
∑n

k=0

(
n
k

)
xk to

get

n(1 + x)n−1 =
n∑

k=0

(
n

k

)
kxk−1

and substitute x = 1 to get

n.2n−1 =
n∑

k=0

(
n

k

)
k.

Answer 3:

n∑
k=0

k

(
n

k

)
= 0.

(
n

0

)
+ 1.

(
n

1

)
+ 2.

(
n

2

)
+ · · ·+ (n− 1)

(
n

n− 1

)
+ n

(
n

n

)
=

n

2

(
n

0

)
+
n

2

(
n

1

)
+ · · ·+ n

2

(
n

n

)
because

(
n
k

)
=
(

n
n−k

)
and if we take the two corresponding terms together we have

k

(
n

k

)
+ (n− k)

(
n

n− k

)
= n

(
n

k

)
=
n

2

(
n

k

)
+
n

2

(
n

n− k

)
.

Q.6(b). Either differentiate twice, or use the formula. In either case it is
useful to note that k2 = k(k − 1) + k.
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Lecture 12,
20/10/11 Philosophy of generating functions. In calculus, you take a nice function

f(t), and expand it as a power series (Taylor–Maclaurin series)

f(t) = f(0) + f ′(0)t+
f ′′(0)

2!
t2 + · · ·

In combinatorics, we reverse this process, and take a power series

f0 + f1t+ f2t
2 + · · ·

(where fn is the number of ‘things’ of ‘size’ n you want to count), and try to
write it as a nice function f(t).

Step 1: Use a recurrence relation to get an equation for f(t). For example, as we
saw above, the linear recurrence relation fn−fn−1−fn−2 = 0 for Fibonacci
numbers gives a linear functional equation

(1− t− t2)f(t) = something depending on the initial conditions.

Step 2: Find a solution, and manipulate it into a nice form.

Step 3: Go back to the calculus to find a power series expansion for f(t), which we
hope will give a nice formula for the coefficients fn.

2.4 The Catalan numbers: a case study in using

generating functions

The Catalan numbers are defined by c1 = 1 and the recurrence relation

cn =
n−1∑
i=1

cicn−i

for all n ≥ 2. Thus we have c2 = c1c1 = 1, c3 = c1c2 + c2c1 = 2, c4 = c1c3 + c2c2 +
c3c1 = 2+1+2 = 5, and so on. Note that this is not a linear recurrence relation.

Now let

φ(t) = c1t+ c2t
2 + c3t

3 + · · ·
= t+ t2 + 2t3 + 5t4 + · · ·
=

∑
c≥1

ckt
k

and consider

φ(t).φ(t) = (c1t+ c2t
2 + · · ·).(c1t+ c2t

2 + · · ·)
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= c1c1t
2 + (c1c2 + c2c1)t

3 + (c1c3 + c2c2 + c3c1)t
4 + · · ·

=
∑
n≥2

(
n−1∑
k=1

ckcn−k

)
tn

=
∑
n≥2

cnt
n (using the recurrence relation)

= φ(t)− t

So we end up with the functional equation

φ(t)2 − φ(t)− t = 0.

This is just a quadratic equation in the unknown φ(t), so we can solve it to get

φ(t) =
1±

√
1− 4t

2

and since φ(0) = 0 we deduce we must have the minus sign. Thus

φ(t) =
1

2
(1− (1− 4t)1/2)

and we expand this using the Taylor series

(1− 4t)1/2 = 1 +
1
2

1!
(−4t) +

1
2
.−1

2

2!
(−4t)2 + · · ·

to get

φ(t) = c1t+ c2t
2 + c3t

3 + · · ·

=
−1

2
.

1
2

1!
(−4t) + · · ·+

−1
2
.1
2
.−1

2
. · · · .(3

2
− n)

n!
(−4t)n + · · ·

and now we can re-write the resulting formula for cn in various ways;

cn =
−1

2

(
1

2n

)
.
1.1.3.5.7. · · · .(2n− 3)

n!
(−1)n−1(−4)n

=
1

2
.2n.

1.2.3. · · · .(2n− 3)(2n− 2)

n!2.4.6. · · · (2n− 2)

=
1

2
.2n.

(2n− 2)!

n!(n− 1)!2n−1

=
(2n− 2)!

n!(n− 1)!

=
1

n

(
2n− 2

n− 1

)



2.5. EXPONENTIAL GENERATING FUNCTIONS 31

2.5 Exponential generating functions
Lecture 13,
24/11/11 Recall that the ordinary generating function

∑
n≥0 fnt

n is supposed to look like
a Taylor series ∑

n≥0

φ(n)(0)tn

n!
.

Sometimes it makes sense to look at the exponential generating function∑
n≥0

fnt
n

n!

instead, so that fn = φ(n)(0) rather than fn = φ(n)(0)/n!.

Example 35 If fn = 1 for all n, then the ordinary generating function is

φ(t) =
∑
n≥0

tn = 1 + t+ t2 + · · · = (1− t)−1,

but the exponential generating function is

ψ(t) =
∑
n≥0

tn

n!
= 1 + t+

t2

2!
+
t3

3!
+ · · · = et.

Multiplying together ordinary generating functions:(∑
k≥0

akt
k

)
.

(∑
j≥0

bjt
j

)
=
∑
n≥0

(
n∑

k=0

akbn−k

)
tn.

Hence, multiplying together exponential generating functions works like this:(∑
k≥0

akt
k

k!

)
.

(∑
j≥0

bjt
j

j!

)
=

∑
n≥0

(
n∑

k=0

ak

k!
.
bn−k

(n− k)!

)
tn

=
∑
n≥0

1

n!

(
n∑

k=0

n!

k!(n− k)!
akbn−k

)
tn

=
∑
n≥0

dn

n!
tn

where

dn =
n∑

k=0

(
n

k

)
akbn−k.
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Differentiating exponential generating functions. If

φ(t) =
∑
n≥0

ant
n

n!

then

φ′(t) =
∑
n≥1

annt
n−1

n!

=
∑
n≥1

an

(n− 1)!
tn−1

=
∑
m≥0

am+1t
m

m!

so we have just shifted the sequence (an) along one place.

Example: Bell numbers. Recall the definition of Bell numbers: Bn is the
number of partitions of a set of size n. We saw that B0 = 1, B1 = 1, and for
n ≥ 1 we have the recurrence relation

Bn =
n∑

i=1

(
n− 1

i− 1

)
Bn−i.

Now let

φ(t) =
∑
t≥0

Bnt
n

n!

be the exponential generating function for the Bell numbers.
Differentiating:

φ′(t) =
∑
n≥1

Bnt
n−1

(n− 1)!

=
∑
n≥1

1

(n− 1)!

(
n∑

i=1

(n− 1)!

(i− 1)!(n− i)!
Bn−i

)
tn−1

=
∑
m≥0

(
m∑

k=0

Bm−k

k!(m− k)!

)
tm

On the other hand, we calculate

et.φ(t) =

(∑
k≥0

1

k!
tk

)
.

(∑
j≥0

Bj

j!
tj

)

=
∑
n≥0

(
n∑

k=0

Bn−k

k!(n− k)!

)
tn
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so φ′(t) = etφ(t). Now this differential equation is separable, and we obtain∫
φ′(t)

φ(t)
dt =

∫
etdt

so ln(φ(t)) = et + C and therefore φ(t) = Aeet
. Substituting in t = 0 gives

φ(0) = B0 = 1 so A = e−1, and finally

φ(t) = eet−1,

which is a nice formula but probably not much use for actually calculating Bn.
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Chapter 3

Stirling numbers

3.1 Definitions and examples

We began this course by counting subsets of X = {1, 2, 3, . . . , n}. We saw that
there were 2n subsets altogether, and for each k there were

(
n
k

)
subsets of size k.

Therefore
n∑

k=0

(
n

k

)
= 2n.

We counted permutations of X, and found there were n! permutations alto-
gether. We can again divide this up according to the number of cycles in the
permutation. Define the unsigned Stirling number of the first kind u(n, k) to be
the number of permutations of {1, 2, . . . , n} which have exactly k cycles (including
1-cycles). Thus

n∑
k=1

u(n, k) = n!.

The signed Stirling number of the first kind is s(n, k) = (−1)n−ku(n, k).
We also counted partitions of X, and defined the Bell number Bn to be the

number of partitions of X. Again, we can divide this up according to the number
of parts of the partition. We define the Stirling number of the second kind S(n, k)
to be the number of partitions of {1, 2, . . . , n} into exactly k parts. So

n∑
k=1

S(n, k) = Bn.

Example 36 If n = 3, then {1, 2, 3} can be partitioned into 1, 2, or 3 parts.
We have S(3, 1) = 1, for the partition {{1, 2, 3}}; and S(3, 2) = 3, for the par-
titions {{1, 2}, {3}} and {{1, 3}, {2}} and {{2, 3}, {1}}; and S(3, 3) = 1, for the
partition {{1}, {2}, {3}}.

More generally, we see that S(n, 1) = 1 and S(n, n) = 1 for all n.

35
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Example 37 Let us calculate u(7, 3), the number of permutations of {1, 2, 3, 4, 5, 6, 7}
which are the product of three disjoint cycles. Now the lengths of these cycles add
up to 7, which can happen as 5 + 1 + 1 or 4 + 2 + 1 or 3 + 3 + 1 or 3 + 2 + 2.
In the first case there are 7!/5.2! = 504 such permutations; in the second there
are 7!/4.2 = 630; in the third there are 7!/3.3.2! = 280; and in the last there are
7!/3.2.2.2! = 210. This makes 504 + 630 + 280 + 210 = 1624 altogether. Thus
u(n, k) = 1684, and because n− k = 4 is even, s(n, k) = 1684.

Example 38 We already know that the number of permutations consisting of n
cycles (necessarily of length 1) is just 1, so s(n, n) = u(n, n) = 1. At the other
extreme, the number of permutations consisting of a single cycle is n!/n = (n−1)!.
So u(n, 1) = (n− 1)! and s(n, 1) = (−1)n−1(n− 1)!.

3.2 Recurrence relations for Stirling numbers

First let us look for a recurrence relation for the Stirling numbers of the second
kind, S(n, k), analogous to the relation(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
for the binomial coefficients. In other words, we want to reduce n, but we don’t
care what happens to k.

So, in going from partitions of {1, 2, . . . , n− 1} to partitions of {1, 2, . . . , n},
we distinguish two cases, according to what happens to the new element n: either

1. {n} is one of the parts of the partition; or

2. n is confined in a part with something else.

In the first case, we have to partition the remaining n − 1 elements into k − 1
parts, so there are S(n− 1, k − 1) partitions of this form.

In the second case, ignoring the element n for the moment, we have to partition
{1, 2, . . . , n − 1} into k parts, which can be done in S(n − 1, k) ways. Then we
have to put the element n into one of the k parts, which can be done in k ways.
Thus there are kS(n− 1, k) partitions of this type.

Hence, by adding these two cases together, we obtain the recurrence relation

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).

A similar argument gives a recurrence relation for the Stirling numbers of the
first kind. This time we want to count permutations of {1, 2, . . . , n} which consist
of k cycles. Again we divide into two cases, according to whether (n) is a cycle
on its own, or whether n is in a cycle with some other elements. In the first case,
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we just need to count the permutations of {1, 2, . . . , n− 1} which consist of k− 1
cycles. The number of these is u(n− 1, k − 1).

In the second case, we begin by counting the number of permutations of
{1, 2, . . . , n} which consist of k cycles, and then consider how to insert n into
the permutation. The first step can be accomplished in u(n − 1, k) ways, and
the second in n − 1 ways (compare the argument for Bell numbers). Hence the
number of possibilities in this case is (n− 1)u(n− 1, k). Therefore the unsigned
Stirling numbers of the first kind satisfy the recurrence relation

u(n, k) = u(n− 1, k − 1) + (n− 1)u(n− 1, k).

Putting in the signs gives the recurrence relation

s(n, k) = s(n− 1, k − 1)− (n− 1)s(n− 1, k)

for the signed Stirling numbers of the first kind.

3.3 Two-variable generating functions

The binomial theorem can be regarded as a theorem about a generating function
for the binomial coeffiecients. If we fix n and let k vary, then the generating
function for the binomial coefficients is∑

k≥0

(
n

k

)
yk =

n∑
k=0

(
n

k

)
yk = (1 + y)n.

On the other hand, if we fix k and let n vary, the generating function is

∑
n≥0

(
n

k

)
xn =

∑
n≥k

(
n

k

)
xn =

xk

(1− x)k+1
.

So why don’t we consider a generating function allowing both parameters to
vary? Thus: ∑

n≥0

∑
k≥0

(
n

k

)
xnyk =

∑
n≥0

xn(1 + y)n

= (1− x(1 + y)−1.

Now let us explore the same ideas for Stirling numbers of the first kind. Can
we find a simple formula for

n∑
k=1

s(n, k)xk?
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Example 39 For n = 3, we calculate s(3, 1) = 2, s(3, 2) = −3, and s(3, 3) = 1,
so that

3∑
k=1

s(3, k)xk = 2x− 3x2 + x3 = x(x− 1)(x− 2).

This suggests the following:

Theorem 8

n∑
k=1

s(n, k)xk = x(x− 1)(x− 2) · · · (x− k + 1).

Notation: we write (x)k for the expression x(x− 1) · · · (x− k + 1), the so-called
falling factorial which is a product of k factors.

Proof of the theorem was not given in the lectures. The corresponding result
for S(n, k) looks a bit different:

Theorem 9
n∑

i=1

S(n, k)(x)k = xn.

Proof: by induction on n. The case n = 1 is just s(1, 1)x = x, which is true
because s(1, 1) = 1. So assume it is true for n− 1, that is

n−1∑
k=1

S(n− 1, k)(x)k = xn−1.

Now we can use the recurrence relation as follows:

xn = x.xn−1

= x
n−1∑
k=1

S(n− 1, k)(x)k

=
n−1∑
k=1

S(n− 1, k)(x)k(x− k + k)

=
n−1∑
k=1

S(n− 1, k)(x)k+1 +
n−1∑
k=1

kS(n− 1, k)(x)k

=
n∑

m=2

S(n− 1,m− 1)(x)m +
n∑

k=1

kS(n− 1, k)(x)k

=
n∑

k=2

S(n− 1, k − 1)(x)k +
n∑

k=1

kS(n− 1, k)(x)k

=
n∑

k=1

(S(n− 1, k − 1) + kS(n− 1, k))(x)k
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=
n∑

k=1

S(n, k)(x)k

[Take care to check that the terms we add in when we change the range of
summation are all 0, since S(n− 1, 0) = S(n− 1, n) = 0.]

The last two theorems can be interpreted by saying that the two matrices
of Stirling numbers are the transition matrices between two bases of the vector
space of polynomials divisibe by x, namely the ‘natural’ basis x, x2, x3 . . . , and
the basis x, x(x − 1), x(x − 1)(x − 2), . . . . Hence these matrices are inverses of
each other.
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Chapter 4

The principle of inclusion and
exclusion

4.1 P.I.E.

Example 40 Let A1, A2 be subsets of a set X. Then

|A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|

so

|X \ (A1 ∪ A2)| = |X| − |A1| − |A2|+ |A1 ∩ A2|.

The principle of inclusion/exclusion (P.I.E.) is a generalisation of these equations
to n subsets.

Theorem 10 Let A1, A2, . . . , An be subsets of X. Then∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ = |A1 ∪ A2 ∪ · · · ∪ An|

= |A1|+ |A2|+ · · ·+ |An|
−(|A1 ∩ A2|+ |A1 ∩ A3|+ · · ·+ |An−1 ∩ An|)
+(|A1 ∩ A2 ∩ A3|+ · · ·+ |An−2 ∩ An−1 ∩ An|)
− · · ·+ (−1)n−1|A1 ∩ A2 ∩ · · · ∩ An|

=
∑

∅6=I⊆{1,2,...,n}

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
Example 41 The case n = 3 is

|A1∪A2∪A3| = |A1|+|A2|+|A3|−|A1∩A2|−|A1∩A3|−|A2∩A3|+|A1∩A2∩A3|.

41
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Proof. The key to proving this is to realise that on the left-hand side we are
counting each element of |A1∪A2∪· · ·∪An| exactly once, while on the right-hand
side we are counting each element lots of times, with signs attached. We need
to show that on the right-hand side the minus signs almost balance out the plus
signs, but with one plus sign left over.

So pick any x ∈
⋃n

i=1Ai, and consider how many times it is counted. First
observe that x is in some of the Ai, but not necessarily all of them, so let J be
the corresponding set of subscripts, that is

J = {j | x ∈ Aj}.
Now if I ⊆ J , then x ∈

⋂
i∈J Ai ⊆

⋂
i∈I Ai. (Think about this: the first intersec-

tion is an intersection of more sets than the second, so is a smaller set.) More
formally, since B ∩ C ⊆ B for any sets B,C we have:

x ∈
⋂
i∈J

Ai = (
⋂
i∈I

Ai) ∩ (
⋂

i∈J\I

Ai) ⊆
⋂
i∈I

Ai.

On the other hand, if I 6⊆ J , then there is some i ∈ I \ J , and then x 6∈ Ai, so
x 6∈

⋂
i∈I Ai. Putting these two cases together, we see that x ∈

⋂
i∈I Ai if and

only if I ⊆ J .
So the terms on the right-hand side in which x is counted are precisely the

ones where I ⊆ J . For each such subset I, the element x is counted either +1 or
−1 times, according to the formula. So the total number of times x is counted is∑

∅6=I⊆J

(−1)|I|−1.

Where have we seen something like this before? We are counting +1 for the
subsets I of odd size, and we are counting −1 for the subsets I of even size
(apart from the empty set). So what is the answer? (Hint: binomial theorem.)

Well, we know that the total number of subsets (of J) of even size is equal
to the total number of subsets of odd size. So if we had the empty set in the
sum, it would cancel out and give 0. But we don’t, so we have to subtract off the
contribution which the empty set would make (which is −1), giving the answer
+1, as required.

Notation. It is sometimes helpful to use the notation AI =
⋂

i∈I Ai to avoid
complicated expressions. But only do this if you are absolutely clear what it
means! For example, if you can’t remember whether it is ∩ or ∪, then you should
not be using it. It is useful also to extend the notation to A∅ = X, the relevant
universal set.

Corollary 3 With the above notation, for subsets Ai of a set X, we have∣∣∣∣∣X \
n⋃

i=1

Ai

∣∣∣∣∣ =
∑

I⊆{1,2,...,n}

(−1)|I||AI |.
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Proof. ∣∣∣∣∣X −
n⋃

i=1

Ai

∣∣∣∣∣ = |X| −

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣
= |X| −

∑
∅6=I⊆{1,2,...,n}

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
= |A∅|+

∑
∅6=I⊆{1,2,...,n}

(−1)|I||AI |

=
∑

I⊆{1,2,...,n}

(−1)|I||AI |

Example 42 How many primes are there between 1 and 100?

Answer: suppose x ∈ X = {1, 2, . . . , 100} is not prime. Then x = yz where y is
prime and y < z. Hence y <

√
100 = 10, so y = 2, 3, 5 or 7.

Now let Ai = {x | 1 ≤ x ≤ 100 and i divides x}, for i = 2, 3, 5, 7. Then the
set of all primes in X isX \ {1} \

⋃
i∈{2,3,5,7}

Ai

 ∪ {2, 3, 5, 7}.

Now we compute the sizes of all the intersections of the Ai:

|A2| = b100

2
c = 50

|A3| = b100

3
c = 33

|A5| = b100

5
c = 20

|A7| = b100

7
c = 14

|A2 ∩ A3| = b100

6
c = 16

|A2 ∩ A5| = b100

10
c = 10

|A2 ∩ A7| = b100

14
c = 7

|A3 ∩ A5| = b100

15
c = 6

|A3 ∩ A7| = b100

21
c = 4

|A5 ∩ A7| = b100

35
c = 2

|A2 ∩ A3 ∩ A5| = b100

30
c = 3
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|A2 ∩ A3 ∩ A7| = b100

42
c = 2

|A2 ∩ A5 ∩ A7| = b100

70
c = 1

|A3 ∩ A5 ∩ A7| = b100

105
c = 0

|A2 ∩ A3 ∩ A5 ∩ A7| = b100

210
c = 0

So by P.I.E. we have

|A2 ∪ A3 ∪ A5 ∪ A7| = (50 + 33 + 20 + 14)− (16 + 10 + 7 + 6 + 4 + 2) + (3 + 2 + 1)
= 117− 45 + 6 = 78.

Hence the number of primes in X is 100− 78− 1 + 4 = 25.
The following corollary to PIE is often useful if all the sets Ai ‘look the same’.

Corollary 4 Suppose that A1, A2, . . . , An are subsets of X, and assume that for
every k with 1 ≤ k ≤ n and for every I ⊆ {1, 2, . . . , n} with |I| = k we have∣∣∣∣∣⋂

i∈I

Ai

∣∣∣∣∣ = ak.

Then the number of elements in none of the Ai is∣∣∣∣∣X \
⋃
i∈I

Ai

∣∣∣∣∣ =
n∑

k=0

(−1)k

(
n

k

)
ak.

Proof: If |I| = k, then the contribution from I to the sum in PIE is (−1)kak.
Adding this up over all the sets of size k gives

(
n
k

)
(−1)kak. Finally adding up

over all k gives the result.

4.2 Counting surjections

Suppose S and T are sets with |S| = n and |T | = k. Recall that the number of
functions from S to T is kn (by the multiplication principle). We also computed
the number of injections from S to T to be k(k − 1) · · · (k − n+ 1), which is 0 if
n > k, and the number of bijections, which is n! if n = k and 0 otherwise. But
we did not count the number of surjections.

We will now look at two ways to count surjections, one directly using PIE, and
one using partitions (and Stirling numbers of the second kind). First consider an
example.

Example 43 If |S| = n = 4 and T = {1, 2, 3}, so that |T | = k = 3, how many
surjections are there from S to T?
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First solution: the total number of functions is 34 = 81. Let A1 be the set of
functions which do not take the value 1: then |A1| = 24 = 16. Similarly for the
sets A2 and A3 of functions which do not take the value 2 (respectively 3). Now
A1 ∩ A2 is the set of functions which take neither the value 1 nor the value 2:
there is only one such function. Similarly, |Ai ∩ Aj| = 1 in all cases. Finally,
A1 ∩ A2 ∩ A3 = ∅, as every function must take some value. Therefore by the
corollary to PIE, the number of surjections is

81− 3× 16 + 3× 1 = 36.

Second solution: We first partition S into three parts, in S(4, 3) = 6 ways.
Then, for each part of the partition, we decide which of the three elements of T
to map the elements of this part to. Since each part of S has to map to a different
element of T , we have 3! ways of doing this, making 6× 3! = 36 ways altogether.

Now let’s do the general case. First we use P.I.E., in effect counting the
number of functions which are not surjections. To set up the notation, let T =
{t1, t2, . . . , tk}, and let X be the set of all functions from S to T , so that |X| = kn.
For each i in the range 1 ≤ i ≤ k, let Ai be the set of functions which do not
take the value ti, that is

Ai = {f ∈ X | for all s ∈ S, f(s) 6= ti}.

This means that the set of surjective maps is just X \
⋃k

i=1Ai.
In order to use P.I.E., we need to compute the sizes of the intersections of

any number of the Ai. First of all, what is |Ai|? Well, it is simply the number of
functions which map to T \ {ti}, so it is (k− 1)n. Now what is |Ai∩Aj|, if i 6= j?
Again, it is the number of functions which map to T \ {ti, tj}, so it is (k − 2)n.

More generally, the intersection ofm of the sets Ai is the set of functions which
do not map onto any of the corresponding m elements of T , and the number of
such functions is (k − m)n. Now if we add this up over all ways of choosing
exactly m of the sets to intersect, then we get(

k

m

)
(k −m)n.

Hence, substituting into P.I.E. we get that the total number of surjections is

kn −
(
k

1

)
(k − 1)n +

(
k

2

)
(k − 2)n − · · · =

k∑
m=0

(−1)m

(
k

m

)
(k −m)n.

Stirling numbers of the second kind. There is a close connection between
surjections and partitions. Suppose that |S| = n and |T | = k as above, and say
S = {s1, s2, . . . , sn} and T = {t1, t2, . . . , tk}. Given a surjection f : S → T , we
can construct a partition {S1, S2, . . . , Sk} of S by defining

Si = {s ∈ S | f(s) = ti}.
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Is it obvious that this is a partition? It should be, but if not, let’s check it:

• the fact that f is a surjection implies that Si 6= ∅;

• if i 6= j then ti 6= tj and there is no s with f(s) = ti and f(s) = tj, so
Si ∩ Sj = ∅;

• every element s ∈ S is mapped to some ti, so the union of all the Si is the
whole of S.

But it is not just a partition, it is an ordered partition, because the parts
S1, . . . , Sk come in a particular order, corresponding to our chosen order of the
elements of T .

Conversely, given an ordered partition {S1, S2, . . . , Sk} of S, we can define the
corresponding surjection f : S → T by f(s) = ti if and only if s ∈ Si.

In other words we have shown that there is a one-to-one correspondence be-
tween the set of surjections f : S → T on the one hand, and the set of ordered
partitions of S into k parts on the other.

Now the number of unordered partitions of S into k parts is defined to be the
Stirling number S(n, k), so the number of ordered partitions of S into k parts is
k!S(n, k).

So we have two different formulae for the number of ordered partitions, so
they must be equal:

k!S(n, k) =
k∑

m=0

(−1)m

(
k

m

)
(k −m)n

and therefore

S(n, k) =
1

k!

k∑
m=0

(−1)m

(
k

m

)
(k −m)n.

4.3 Derangements

A derangement is a permutation which has no fixed point (that is, no cycles of
length 1). More formally, a derangement of a set S is a bijection f : S → S with
the property that for all s ∈ S, f(s) 6= s.

Example 44 If S = {1, 2, 3, 4, 5} and f =

(
1 2 3 4 5
2 1 4 3 5

)
= (1, 2)(3, 4)(5)

then f is not a derangement, because f(5) = 5.

But g =

(
1 2 3 4 5
2 3 1 5 4

)
= (1, 2, 3)(4, 5) is a derangement.
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Example 45 Suppose you have a set of n letters, and n corresponding envelopes,
addressed to different people. If you put the letters into envelopes at random, what
is the probability that nobody gets the correct letter?

Answer: it is the proportion of permutations of n elements which are derange-
ments. We now investigate what this proportion is.

We can count derangements in a similar way to the way we counted surjec-
tions, using P.I.E.; that is, we count instead the permutations which do have
fixed points. So let’s begin by setting up the notation. Let T = {t1, t2, . . . , tn},
and let X be the set of all permutations of T . Formally:

X = {f : T → T | f is a bijection}.

For each i in the range 1 ≤ i ≤ n, let Ai be the set of all permutations which fix
i. Formally:

Ai = {f ∈ X | f(i) = i}.

Now we see that the set of all permutations which fix at least one point is exactly
the union of all the Ai. So if we are going to use PIE then we need to count the
elements in the various intersections of some of the Ai.

First, what is |Ai|? Well, Ai consists of all the permutations f which fix i.
That means f(i) = i, but there is no restriction on f(x) for any of the other n−1
values of x. So |Ai| = (n− 1)!. Similarly, if i 6= j, then |Ai ∩Aj| is the number of
permutations which fix i and j, and permute the other n − 2 points in any way
at all: therefore |Ai ∩ Aj| = (n− 2)!.

More generally, the intersection of any m of the sets Ai has size (n − m)!,
because it consists of those permutations which fix a specified set of m elements,
and permute the rest. Since there are

(
n
m

)
ways of choosing the m elements to

fix, we get a total contribution of (−1)m−1
(

n
m

)
(n−m)! to the formula for |

⋃
Ai|.

We have

|
n⋃

i=1

Ai| =
n∑

m=1

(−1)m−1

(
n

m

)
(n−m)!

and therefore

|X \
n⋃

i=1

Ai| =
n∑

m=0

(−1)m

(
n

m

)
(n−m)!

=
n∑

m=0

(−1)m n!

m!

= n!
n∑

m=0

(−1)m

m!

Now does this series remind you of anything? What would we get if we took
the sum to infinity? It is the power series expansion of e−1. So the number of
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derangements of a set of size n is approximately n!/e. (So the proportion of all
permutations which are derangements is approximately 1/e.)

How good is this approximation? What is the error? It is

∞∑
m=n+1

(−1)m n!

m!
=

∞∑
m=n+1

(−1)m

m(m− 1) · · · (n+ 1)
.

Now the terms on the right-hand side are smaller than 1/nm−n in absolute value,
and decreasing in absolute value, and alternate in sign, so the absolute value of
their sum is less than the first term, which is 1/n. In other words the error is
remarkably small, and the number of derangements of a set of size n is the nearest
integer to n!/e, as long as n ≥ 2. (Indeed, you can easily check that it also works
for n = 1, where there are no derangements.)

A recurrence relation. A second approach to counting derangements is to
use a recurrence relation. Let dn denote the number of derangements of a set
of size n. Suppose that π is a derangement of {1, 2, . . . , n}. Then π maps some
element i (i 6= n) to n, that is π(i) = n. Note that there are n− 1 choices for i.
Now we divide into two cases depending on whether π(n) = i or not.

Case 1: π(n) = i. In this case, π consists of the 2-cycle (i, n), together with
a derangement π∗ of the remaining n − 2 points. Hence there are dn−2 ways to
choose π∗. So altogether there are (n− 1)dn−2 derangements π in this case.

Case 2: π(n) = j 6= i. So in cycle notation π = (. . . , i, n, j)(. . .) . . .. Now
if we just remove n from this we get a derangement π′ = (. . . , i, j)(. . .) . . . of
{1, 2, . . . , n− 1}. There are dn−1 choices for π′. Now to get back from π′ to π we
need to put back n. There are n− 1 places we can put it (we can put it after any
of the elements 1, 2, 3, . . . , n − 1). Hence there are (n − 1)dn−1 derangements π
in this case.

So altogether, dn = (n − 1)(dn−1 + dn−2). In fact, this 2-term recurrence
relation can be simplified to the 1-term recurrence relation

dn = ndn−1 + (−1)n.

Proof: by induction on n. To check the case n = 2 we verify that d2 = 1, and
d1 = 0, so ndn−1 + (−1)n = 2× 0 + (−1)2 = 1.

Now suppose dn−1 = (n− 1)dn−2 + (−1)n−1, so that

dn = (n− 1)dn−1 + (n− 1)dn−2

= (n− 1)dn−1 + dn−1 − (−1)n−1

= ndn−1 + (−1)n

as required.
Dividing this through by n! gives us

dn

n!
=

ndn−1

n!
+

(−1)n

n!
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=
dn−1

(n− 1)!
+

(−1)n

n!

=
n∑

r=0

(−1)r

r!

by induction on n again. So we again obtain the formula

dn = n!
n∑

r=0

(−1)r

r!
.

The exponential generating function. A third approach to counting de-
rangements is to use a generating function. So let dn be the number of derange-
ments of a set of n elements, and let the exponential generating function be

D(x) =
∑
n≥0

dnx
n

n!
.

Now if k is a permutation with exactly k fixed points, then it is a derangement
of the remaining n − k points. Hence the total number of permutations with
exactly k fixed points is

(
n
k

)
dn−k. Summing over all possible values of k, we have

n! =
∑n

k=0

(
n
k

)
dn−k, so

1 =
n∑

k=0

1

k!

dn−k

(n− k)!
.

Putting the two sides of this equation as the coefficients in an ordinary gen-
erating function we have

(1− x)−1 =
∑
n≥0

xn

=
∑
n≥0

(
n∑

k=0

1

k!

dn−k

(n− k)!

)
xn

=

(∑
k≥0

xk

k!

)
.

(∑
r≥0

drx
r

r!

)
= exD(x)

Hence D(x) = e−x(1− x)−1. Multiplying out the power series expansions of e−x

and (1− x)−1 gives us the same formula for dn as we obtained by the other two
methods.
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Chapter 5

Systems of distinct
representatives

Definition 7 If A1, A2, . . . , An are sets, then a system of distinct representatives
(SDR) for the Ai is a set of ordered pairs

f = {(a1, A1), (a2, A2), . . . , (an, An)}

with ai ∈ Ai for each i, and ai 6= aj whenever i 6= j.

Thus ai is a representative of the set Ai, and different sets have different repre-
sentatives.

Note: we do not insist that the Ai are distinct. This is why we do not talk
about the set {A1, A2, . . . , An}.

Example 46 Suppose the Students’ Union has a number of Clubs, and wants to
choose a Committee consisting of one member of each Club, but insists that no
individual can represent more than one Club.

Example 47 A1 = {1, 2, 4}, A2 = {1, 3, 4}, A3 = {1, 2}, A4 = {1, 2}, A5 =
{1, 5}. Then

{(4, A1), (3, A2), (2, A3), (1, A4), (5, A5)}
is a SDR for these sets.

Example 48 B1 = {1, 2}, B2 = {3, 4, 5}, B3 = {2, 3}, B4 = {1, 3}, B5 =
{1, 2, 3}. Do these sets have a SDR?

Answer: we see that B1 ∪ B3 ∪ B4 ∪ B5 = {1, 2, 3}. Now we need four different
representatives for these four sets, but we only have three elements to choose
from. So there is no SDR.

We conclude from this argument that if A1, . . . , An has a SDR, then for any
choice of k of the Ai, the union of these k sets must have at least k elements.
What is rather remarkable is that this condition is not only necessary, it is also
sufficient.
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Lemma 2 If A1, A2, . . . , An has a SDR, then for every I ⊆ {1, 2, . . . , n} we have∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ ≥ |I|.

Proof: This is more or less obvious from the preceding discussion. Suppose we
have a SDR

{(a1, A1), . . . , (an, An)},
and suppose that I ⊆ {1, 2, . . . , n}. Then for each i ∈ I we have ai ∈ Ai ⊆⋃

i∈I Ai, so {ai | i ∈ I} ⊆
⋃

i∈I Ai. Now we know that ai 6= aj whenever i 6= j, so
|{ai | i ∈ I}| = |I|. Hence ∣∣∣∣∣⋃

i∈I

Ai

∣∣∣∣∣ ≥ |{ai | i ∈ I}| = |I|.

Definition 8 If the sets A1, . . . , An have the property that |
⋃

i∈I Ai| ≥ |I| for all
I ⊆ {1, 2, . . . , n}, we say that they satisfy Hall’s condition.

So we have seen that Hall’s condition is a necessary condition for the existence
of an SDR. We now show it is also a sufficient condition.

Theorem 11 (Hall’s Marriage Theorem) Let A1, A2, . . . , An be sets. Then they
have an SDR if and only if they satisfy Hall’s condition.

Proof: The ‘only if’ direction was proved in the Lemma.
Now suppose that Hall’s condition is satisfied. We construct a SDR by in-

duction on n. The case n = 1 is easy: Hall’s condition says |A1| ≥ 1, so we can
choose any a1 ∈ A1 as a representative. Then {(a1, A1)} is a SDR.

So we may assume n ≥ 2, and that the result is true for any collection of at
most n− 1 sets. Now the proof splits into two cases depending on whether there
is always room to spare, or whether there is some collection of sets with only just
enough elements to go round. That is, in case 1, we always have |

⋃
i∈I Ai| > |I|

for all I except ∅ and {1, 2, . . . , n}. And in case 2, we have some critical set J
with |

⋃
j∈J Aj| = |J |.

Case 1: no subset is critical. In this case, we choose any an ∈ An, and remove
an from all the other sets. That is, define A′

i = Ai \{an}. Then we easily see that
A′

1, A
′
2, . . . , A

′
n−1 still satisfies Hall’s condition (because we have removed at most

one element from each of the unions under consideration). So, by induction, we
can choose a SDR for the A′

i, say

{(a1, A
′
1), . . . , (an−1, A

′
n−1)}

and then
{(a1, A1), . . . , (an−1, An−1), (an, An)}
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is a SDR for the Ai.

Case 2: there is a critical subset J . Then we first choose a SDR for the sets
Aj with j ∈ J . (By induction, we can do this, as |J | < n.) Suppose this SDR is
{(aj, Aj) | j ∈ J}. Then because J is a critical set we have⋃

j∈J

Aj = {aj | j ∈ J}

and this set has size |J |.
We now remove these |J | elements from all the remaining sets, and use in-

duction again. That is, we let K = {1, 2, . . . , n} \ J , and for each k ∈ K let

A∗
k = Ak \ (

⋃
j∈J

Aj).

Choose any I ⊆ K. Then∣∣∣∣∣⋃
i∈I

A∗
i

∣∣∣∣∣ =

∣∣∣∣∣⋃
i∈I

(A∗
i ∪ (

⋃
j∈J

Aj))

∣∣∣∣∣−
∣∣∣∣∣⋃
j∈J

Aj

∣∣∣∣∣
=

∣∣∣∣∣ ⋃
i∈I∪J

Ai

∣∣∣∣∣−
∣∣∣∣∣⋃
j∈J

Aj

∣∣∣∣∣
≥ |I ∪ J | − |J |
= |I|+ |J | − |J | = |I|

so the A∗
k satisfy Hall’s condition, so have an SDR, say

{(bk, A∗
k) | k ∈ K}.

Then

{(aj, Aj), (bk, Ak) | j ∈ J, k ∈ K}

is a SDR for the Ai.

Here are a couple of examples to illustrate the two cases in the proof. Lecture 20,
22/11/11

Example 49 Let A1 = {1, 2, 3}, A2 = {1, 3, 4}, A3 = {2, 3, 4}, A4 = {1, 2}.
Now it is easy to see that

(a) each Ai has |Ai| > 1;

(b) each union Ai ∪ Aj has |Ai ∪ Aj| ≥ 3 > 2;

(c) |Ai ∪ Aj ∪ Ak| ≥ 4 > 3;
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Hence we are in case 1, and we can choose any a4 ∈ A4, say a4 = 1. Then we
remove the element 1 from all the other sets to get A′

1 = {2, 3}, A′
2 = {3, 4},

A′
3 = {2, 3, 4}. Now because we have only removed one element from the sets,

the sizes of the various unions go down by at most 1, and Hall’s condition is still
satisfied. So we can find a SDR of the A′

i, say

{(2, A′
1), (3, A

′
2), (4, A

′
3)}.

Then
{(2, A1), (3, A2), (4, A3), (1, A4)}

is a SDR for the Ai.

Example 50 Let B1 = {1, 2, 3}, B2 = {2, 3, 4}, B3 = {2, 4}, B4 = {1, 4, 5},
B5 = {3, 4}. Now we notice that B2 ∪ B3 ∪ B5 = {2, 3, 4}, so that {2, 3, 4} is a
critical set. By induction we find a SDR for the sets B2, B3, B5, say

{(2, B2), (4, B3), (3, B5)}.

Then we remove the elements 2, 3, 4 from the remaning sets to get B∗
1 = {1},

B∗
4 = {1, 5}, and pick a SDR for these sets, which can only be

{(1, B∗
1), (5, B

∗
4)}.

Then putting these SDRs together we get an SDR for the Bi, that is

{(2, B2), (4, B3), (4, B5), (1, B1), (5, B4)}.

Remark: The idea of a ‘critical set’, used in this proof, may be familiar to
you from sudoku. Specifically, you can often find a set of k boxes in a row, or
column, or block, with the property that there are only k numbers available for
all these boxes together. Then you know that the remaining numbers must be
distributed amongst the remaining boxes.

Remark: In practice, checking Hall’s condition can be very time-consuming,
because you need to check all 2n − 2 non-trivial subsets of {1, 2, . . . , n}. So it is
really only useful when you can prove that Hall’s condition is satisfied, for some
theoretical reason.

Now there are a number of useful corollaries of Hall’s marriage theorem (some
of which we may use in later chapters). For example:

Corollary 5 Suppose that A1, A2, . . . , An are subsets of a set X, and suppose
that, for some fixed r, we have

(a) |Ai| ≥ r for all 1 ≤ i ≤ n, and

(b) each x ∈ X belongs to at most r subsets Ai.
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Then there is a SDR for the Ai.

Proof: We need to show that Hall’s condition is satisfied. So pick any subset
I ⊆ {1, 2, . . . , n} and try to show that∣∣∣∣∣⋃

i∈I

Ai

∣∣∣∣∣ ≥ |I|.

Let
P = {(x,Ai) | x ∈ Ai, i ∈ I},

and estimate the size of P in two different ways.
First estimate:

Stage 1: Choose x ∈
⋃

i∈I Ai. Number of choices is just |
⋃

i∈I Ai|.

Stage 2: For this particular x, choose i ∈ I such that x ∈ Ai. By condition (b) there
are at most r choices.

Hence |P | ≤ r|
⋃

i∈I Ai|.
Second estimate:

Stage 1: Choose Ai with i ∈ I. Number of choices is |I|.

Stage 2: Choose x ∈ Ai. Number of choices is |Ai| ≥ r by condition (a).

Hence |P | ≥ r|I|.
Putting these two inequalities together we get

r

∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ ≥ |P | ≥ r|I|,

and dividing through by r we get, as required,∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ ≥ |I|.

So the Ai satisfy Hall’s condition, so by Hall’s theorem there is an SDR.
We might also be interested in how many SDRs there are, in the case when Lecture 21,

24/11/11Hall’s condition is satisfied. Of course, this depends on how many elements each
set Ai has: if |Ai| = 1, then obviously there is only one possible representative.

Theorem 12 Suppose that the sets A1, A2, . . . , An satisfy Hall’s condition (so∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ ≥ |I|

for all I ⊆ {1, 2, . . . , n}), and |Ai| ≥ r for all i.
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(a) If n ≥ r, then the number of SDRs is at least r!.

(b) If n < r, then the number of SDRs is at least (r)n = r(r−1). · · · (r−n+1).

Proof: we modify the proof of Hall’s theorem above. In the base case of the
induction, n = 1, and the number of SDRs is at least r. This is equal to r! in the
case r ≤ n = 1, and to (r)n in the other case.

Now consider the inductive step. If we are in the situation where there is no
critical set, then we can choose an arbitrary element an ∈ An as the representative
(in at least r ways), and complete to an SDR, by taking any SDR of the sets
A′

1, . . . , A
′
n−1, where A′

i = Ai \ {an}. Now |A′
i| ≥ r − 1, and there are n− 1 sets

A′
i, so the number of such SDRs is (a) at least (r− 1)! in the case n− 1 ≥ r− 1,

or (b) at least (r − 1)n in the case n− 1 < r − 1. Hence the number of SDRs of
A1, . . . , An is at least r times this, as required.

If on the other hand there is a critical set J , of size m, say, then the proof
divides into two cases according to whether m ≥ r or m < r. If m ≥ r, then
by induction the sets Aj, j ∈ J already have at least r! SDRs, each of which
extends to at least one SDR of the whole collection of Ai. The case m < r was
unfortunately omitted from the lecture as given: in this case we only know that
the number of SDRs of the Aj, j ∈ J , is at least r(r − 1). · · · (r −m + 1), so we
need to estimate the number of ways of extending each of them to a SDR of the
whole collection.

In this case, we constructed sets A∗
i = Ai \

⋃
j∈J Aj, by removing at most m

elements from each Ai, so that |A∗
i | ≥ r−m. Now the number of sets A∗

i is n−m,
so in case (a), we have n −m ≥ r −m and there are at least (r −m)! ways of
choosing the SDR of the A∗

i . Hence there are at least (r)m(r −m)! = r! SDRs
for the whole collection of the Ai. Similarly, in case (b), we have n−m < r−m
and there are at least (r−m)n−m choices for the SDR of the A∗

i , making at least
(r)m(r −m)n−m = (r)n altogether.



Chapter 6

Latin squares

6.1 Counting Latin squares

Definition 9 A Latin square of order n is an n× n matrix whose entries come
from a set of n symbols (usually {1, 2, . . . , n}, or {0, 1, 2, . . . , n − 1}), such that
each symbol appears exactly once in each row, and exactly once in each column.

Example 51

A =

(
1 2
2 1

)
, B =

 0 1 2
1 2 0
2 0 1

 , C =


1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

 .

Is it obvious from this that we can construct a Latin square of order n for any n?
If not, let the first row be (1, 2, 3, . . . , n), the second row (2, 3, 4, . . . , n, 1) and

so on: keep rotating the coordinates backwards one step at a time.

Example 52 A completed sudoku is an example of a 9 × 9 Latin square (with
extra properties).

We will try to address the question of how many Latin squares of order n there
are. You probably appreciate that there are a large number of sudoku squares,
and so there are likely to be a large number of Latin squares also. But how large?

First we use Hall’s Marriage Theorem to show that we can construct a Latin
square one row at a time: it is not possible to get stuck, provided we construct a
whole row at a time.

Definition 10 A k × n Latin rectangle is a k × n matrix, where k ≤ n, with
entries from a set of n elements (usually {1, 2, 3, . . . , n}), such that no symbol
appears twice in any row or column.
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Thus an n× n Latin rectangle is the same thing as a Latin square of order n.

Example 53

M =

 1 2 3 4 5
3 5 1 2 4
4 1 5 3 2


is a 3× 5 Latin rectangle.

Lemma 3 If k < n, then any k×n Latin rectangle can be extended to a (k+1)×n
Latin rectangle.

First consider our example, and, for 1 ≤ i ≤ 5, let Ai be the set of options for the
ith entry in the next row. Then we have A1 = {2, 5}, A2 = {3, 4}, A3 = {2, 4},
A4 = {1, 5}, A5 = {1, 3}. We need a system of distinct representatives for these
sets.

Now we see that |Ai| = 2 ≥ 1, and |Ai ∪Aj| ≥ 2, and |Ai ∪Aj ∪Ak| ≥ 3, and
so on. Hence Hall’s condidion is satisfied, and there is a SDR, say

{(2, A1), (3, A2), (4, A3), (5, A4), (1, A5)}.

So the corresponding 4× 5 Latin rectangle is
1 2 3 4 5
3 5 1 2 4
4 1 5 3 2
2 3 4 5 1

 .

Proof of Lemma: (just a generalisation of the argument in this special case).
For 1 ≤ i ≤ n, let Ai be the set of symbols that have not been used so far in the
ith column. Then an SDR for these sets gives us a possible (k + 1)st row for the
Latin rectangle.

First, we have |Ai| = n− k. Now choose any one of the n symbols, and call it
j. Now j occurs exactly once in each row of the k×n rectangle, so occurs exactly
k times, and therefore occurs in exactly k columns. Hence j lies in exactly the
other n− k sets Ai.

But we proved a corollary to Hall’s theorem dealing with this case: |Ai| ≥ n−k
and no element occurs in more than n−k of the |Ai|. This corollary implies that
there exists a SDR. This proves the lemma.

The first half of Lecture 22 was proving the Theorem at the end of ChapterLecture 22,
28/11/11 5, because both the statement and the proof given in Lecture 21 were incorrect.

Apologies for the confusion caused.

Theorem 13 Any k × n Latin rectangle can be completed to a Latin square of
order n.
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Proof: The lemma guarantees that we can keep adding rows one at a time until
the rectangle becomes square.

We could also ask, at each stage, how many ways are there of adding the next
row? In other words, how many SDRs are there for the corresponding sets Ai?

Suppose we have a k × n Latin rectangle, and as before let Ai be the set of
symbols which have not already been used in the ith column. Then |Ai| = n− k,
and we already showed that the Ai satisfy Hall’s condition. Hence the theorem
from the end of the last chapter implies that there are at least (n − k)! SDRs.
That is, there are at least (n− k)! choices for the next row of the Latin square.

So, there are n! choices for the first row of the Latin square, and at least
(n−1)! choices for the second row, and at least (n−2)! choices for the third row,
and so on. Hence the total number of Latin squares of order n is at least

n!(n− 1)!(n− 2)! · · · 3!2!1! =
n∏

k=1

k!

Examples: if n = 3, this gives 3!2! = 12, which is in fact the total number of
Latin squares of order 3. If n = 4, it gives 4!3!2! = 288. However, there are in
fact 576 Latin squares of order 4 (exercise) over any given set of four symbols.
The numbers of Latin squares of order up to 11 are known exactly.

So far we have seen a lower bound for the number of Latin squares. What
about an upper bound?

Theorem 14 The number of Latin squares of order n is at most (n!)n/en−1

(provided n ≥ 3).

Proof: There are n! choices for the first row, and every other row is a derangement
of the first. Now the number of derangements is approximately n!/e, and if we
use this figure for all the remaining rows, we get a total number of possibilities

n!

(
n!

e

)n−1

=
n!n

en−1
.

This is not quite correct, however, as the number of choices for the second row Lecture 23,
29/11/11is more than n!/e, if n is even.

To correct this, observe that the second and third rows are different, so the
number of choices for the two rows is at most k(k−1), where (in the case n even)
k is the integer satisfying

k − 1

2
≤ n!

e
≤ k.

Hence k(k− 1) < (k− 1
2
)2 ≤ (n!/e)2. Now for each of the subsequent rows, there

are at most k − 2 < n!/e choices. So the result follows.
Notice that in fact the bound does not hold for n = 2: there are two Latin

squares in this case, but 2!2/e < 2.
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In fact, this bound is not very good, as the third row has to be a derangement
of both the first two rows, etc, so the number of choices at each stage is a good
deal less than this estimate. But the number of choices at each stage is not
independent of previous choices, so there is no easy way of counting Latin squares
exactly.

6.2 Mutually orthogonal Latin squares

Definition 11 Suppose that A = (aij) and B = (bij) are two Latin squares of
order n. Then A and B are called (mutually) orthogonal if the n2 pairs (aij, bij)
are all different.

In other words, all possible pairs occur exactly once. (Note: ‘mutually orthogonal’
means ‘orthogonal to each other’. We abbreviate the phrase ‘mutually orthogonal
Latin squares’ to MOLS, for convenience.)

Example 54 The Latin squares

A =

 1 2 3
2 3 1
3 1 2

 , B =

 1 2 3
3 1 2
2 3 1


are (mutually) orthogonal, because all 9 pairs occur: (1, 1) (2, 2) (3, 3)

(2, 3) (3, 1) (1, 2)
(3, 2) (1, 3) (2, 1)

 .

Example 55 There are only two Latin squares of order 2, and they are not
orthogonal: (

(1, 2) (2, 1)
(2, 1) (1, 2)

)
has the pais (1, 2) and (2, 1) twice each, and does not have (1, 1) or (2, 2).

Problem: for given n, how many mutually orthogonal Latin squares can there
be? (Answer not known in general.)

Example 56 For n = 2 we cannot have two MOLS, so the maximum number is
1.

Example 57 For n = 3 we have two MOLS. We cannot have any more, because
relabelling the symbols in two Latin squares does not change whether they are
orthogonal or not, so we may assume all our MOLS have first row (1, 2, 3). But
then there only are two possible Latin squares.
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So we might conjecture that the maximum number of Latin squares of order n
is n − 1. In fact, it is at most n − 1, but it is a long-standing open problem to
determine for which n it is actually possible to find n− 1 MOLS.

Theorem 15 It is not possible to find more than n− 1 MOLS of order n. Lecture 24,
1/12/11

Proof: Suppose A1, . . . , An are n MOLS of order n. We aim for a contradiction.
First, we may assume that every one of A1, . . . , An has (1, 2, . . . , n) as its first
row. Thus, when we compare Ai and Aj we see all the pairs (x, x) accounted for
by the first row. In particular, the pair (1, 1) is already accounted for.

Now where can we put the symbol 1 in the second row of the Ai? Well, it
can’t go in the first column, so it has to go in one of the remaining n−1 columns.
Could we put the symbol 1 in the same place in Ai as in Aj? No, because then
we’d have the pair (1, 1) twice when combining Ai with Aj, contradicting the
assumption that Ai and Aj are mutually orthogonal.

Hence the symbol 1 has to go in n different places in A1,. . . , An. But there
are only n− 1 places to choose from. Contradiction.

Finite field construction for MOLS. You know already that if p is prime,
then the integers modulo p form a field. In particular, there is a finite field of
order p. (The order of a field is just the number of elements in it.)

In fact, there is exactly one finite field of each order pd, where p is prime and
d is a positive integer, and no finite fields of any other order. However, if you
prefer just to think of the fields of prime order, that is, the integers modulo p,
then you will not lose much.

Example 58 Our two MOLS of order 3 can be re-written with the symbols 0, 1, 2,
understood as integers modulo 3, as follows:

A =

 0 1 2
1 2 0
2 0 1

 , B =

 0 1 2
2 0 1
1 2 0

 .

What does A remind you of, for mod 3 arithmetic? It is the addition table! Thus
the entry (aij) in the ith row and jth column is i+ j, that is aij = i+ j.

What about B? Is there a nice formula for bij? Well, yes, it is bij = 2i+ j.

The general construction: let F be a finite field, and let f ∈ F \ {0}. Then

for each f , define the matrix Af = (a
(f)
ij ), with rows and columns indexed by

i, j ∈ F , by

a
(f)
ij = if + j.

Now I claim that the Af are mutually orthogonal Latin squares.
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Theorem 16 With the above notation, and for any ordering of the elements of
the field F ,

(a) for any f 6= 0, the matrix Af is a Latin square;

(b) if f 6= g, then the Latin squares Af and Ag are mutually orthogonal.

Proof of (a): two entries in the ith row are if + j1 and if + j2, and if theseLecture 25,
5/12/11 are equal, if + j1 = if + j2, so j1 = j2, in other words they are the same entry.

Similarly, two entries in the jth column are i1f + j and i2f + j. If these are
equal, then i1f = i2f , and because f 6= 0 we can divide by f to get i1 = i2,
which again means the two entries are in the same row and column, so in the
same place.

Proof of (b): taking the (i, j) entries from the two Latin squares, we have the
ordered pair (if + j, ig + j). We want to show that as i and j vary, we get all n2

pairs, where n is the order of the field. In other words, we want to show that we
cannot get any pair more than once.

So suppose that we get the same pair in the entry in the position (i, j) and
in the entry in the position (x, y). Then (if + j, ig + j) = (xf + y, xg + y). This
means

if + j = xf + y
ig + j = xg + y

Subtracting these equations gives i(f − g) = x(f − g), and if f 6= g we can divide
by f − g to get i = x. Substituting back into the first equation then gives j = y.
In other words the pair (i, j) = (x, y) as required.

Example 59 Three MOLS of order 4. There is a field of order 4 whose ele-
ments I shall write as 0, 1, a, b, where b = a + 1, and a2 = b. The addition and
multiplication tables are as follows:

+ 0 1 a b
0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

× 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a b 1
b 0 b 1 a

The three Latin squares described by the above construction are

A1 =


0 1 a b
1 0 b a
a b 0 1
b a 1 0

 , Aa =


0 1 a b
a b 0 1
b a 1 0
1 0 b a

 , Ab =


0 1 a b
b a 1 0
1 0 b a
a b 0 1

 .

You can easily check that any two are mutually orthogonal.
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This theorem implies that if n is a power of a prime, then there exist n − 1
MOLS of order n.

On the other hand, it is known that there do not exist two MOLS of order 6.
This was an old problem due to Euler (18th century), not solved until the 20th
century.

It is an open problem whether or not there exists any other value of n for
which there exist n− 1 MOLS.

Product construction for MOLS. Suppose A is a Latin square of order n
and B is a Latin square of order m, then we can construct the product Latin
square A ◦B as follows.

Suppose the symbols in A are 1, 2, 3, . . . , n. We take n copies of B, each with
a different set of symbols. Call these Latin squares B1, . . . , Bn. Then replace
each symbol i in A by the square Bi. In this way we obtain an nm× nm square.

Example 60 Take

A =

(
1 2
2 1

)
, B =

 1 2 3
2 3 1
3 1 2

 ,

and then we can take two copies of B as

B1 =

 1 2 3
2 3 1
3 1 2

 , B2 =

 a b c
b c a
c a b

 .

Then

A ◦B =

(
B1 B2

B2 B1

)
=


1 2 3 a b c
2 3 1 b c a
3 1 2 c a b
a b c 1 2 3
b c a 2 3 1
c a b 3 1 2

 .

It is easy to see that A ◦ B is a Latin square: the same symbol cannot occur in
different blocks in the same row or column of block; and each block is a Latin
square, so within one block the same symbol cannot occur twice in the same row
or column.

Lemma 4 If A and B are MOLS of order n, and C and D are MOLS of order
m, then A ◦ C and B ◦D are MOLS of order mn.

Remark: A ◦ C is not orthogonal to A ◦D or to B ◦ C. Why not?
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Example 61 Take Lecture 26,
6/12/11

A =

 1 2 3
2 3 1
3 1 2

 , B =

 1 2 3
3 1 2
2 3 1


and

C =


1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

 , D =


1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

 .

Then

A ◦ C =

C1 C2 C3

C2 C3 C1

C3 C1 C2

 , B ◦D =

D1 D2 D3

D3 D1 D2

D2 D3 D1

 .

Now suppose that some pair of symbols (c, d) occurs twice in the pair (A ◦C,B ◦
D). Then the symbol c has to occur in a particular one of the Ci, say C1.
Similarly, the symbol d occurs in just one of the Di, say D1. So (c, d) can only
occur in one of the blocks, in this case the (C1, D1) block, i.e. the top left hand
corner. This is because A and B are MOLS.

Finally, in a particular block (Ci, Dj) the pair (c, d) occurs exactly once, since
C and D are MOLS.

Corollary 6 Suppose we have x MOLS of order n and y MOLS of order m.
Then we can construct min{x, y} MOLS of order mn.

Corollary 7 If n is a positive integer and n = pm1
1 .pm2

2 . · · · .pmr
r , where the pi are

distinct primes and
pm1

1 < pm2
2 < · · · < pmr

r ,

then there are pm1
1 MOLS of order n.

This is because there are (at least) pm1
1 − 1 MOLS of each of the orders pm1

1 , pm2
2 ,

. . . (because there are fields of these orders). Then the product construction gives
(by induction on r) pm1

1 MOLS of order n.

Solutions to Exercises 8. Q.1 should have been easy: in (a) you find four
sets with only the three elements 1, 3, 5 between them, so Hall’s condition is not
satisfied. In (b) trial and error is sufficient to find a SDR; but you can also use
the proof of Hall’s theorem, because there is a critical set {1, 3, 5}, and therefore
you might as well choose a SDR for this sub-collection first. Then remove 1, 3, 5
from all the remaining sets, and choose an SDR for them.

Q.2 (a) You are asked to choose three sets A1, A2, A3 ⊆ {1, 2, 3} (not neces-
sarily distinct!) which have various numbers of SDRs. For example, if you choose
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A1 = {1}, A2 = {2}, A3 = {3}, then there is only one SDR. At the other extreme,
if you choose A1 = A2 = A3 = {1, 2, 3}, then you can pick any representatives
you like, so in 3! = 6 ways.

(b) Now if 5 of these 6 ways of picking an SDR are possible, then you still
need all of 1, 2, 3 ∈ A1, and similarly for A2 and A3. But then the sixth SDR is
also possible.

Q.3 Proof by induction on n. If there is no critical set (as in the proof of
Hall’s theorem), then the proof shows that we can pick any an ∈ An and extend
to an SDR. On the other hand, if there is a critical set J , say, we can pick an
SDR of the Aj for j ∈ J first: and, by induction, there is some Aj for which any
aj ∈ Aj will do.

Q.4 Follow the hint, and let A′
i = Ai ∪ {z1, . . . , zm}. Then the A′

i satisfy
Hall’s condition, so have an SDR. At most m of the A′

i have one of the zj as their
representative, so if we remove these, we have at least n−m sets A′

i which have
elements from the original Ai as representatives.
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Chapter 7

Extremal set theory

Lecture 27,
8/12/11The typical problem in extremal set theory is, what is the maximum number

of sets (of a certain type) that can be chosen with certain properties? The
properties we consider are not properties of individual sets, as these problems are
just the ordinary counting problems we considered at the beginning of this course.
Instead, we now consider properties of relations between sets. For example, we
might want

• all intersections to be empty;

• all intersections to be non-empty;

• all intersections to have size 1;

• no set to be a subset of any other;

or any of a myriad other possible conditions.
The second type of problem in extremal set theory is, once we know the

maximum number of sets as above, what are all the configurations of sets which
reach this maximum? For example, are they all essentially the same?

In this chapter we will always be considering subsets of a set X, and some
unknown family F of (distinct) subsets of X. Thus F ⊆ P(X), the power set of
X, where P(X) = {Y | Y ⊆ X}.

7.1 Intersecting families

Definition 12 If X is a set and F is a family of (distinct) subsets of X, then
F is an intersecting family if, for every choice of A,B ∈ F , we have A∩B 6= ∅.

First of all, how large do we think an intersecting family F can be, if |X| = n?
After a bit of thought, you will probably realise that to get non-empty intersec-
tions, we can choose a particular element a ∈ X, and take all the sets containing
a. Then every intersection contains a, so is non-empty.

67
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More formally, choose a ∈ X, and let F = {Y ⊆ X | a ∈ Y }. Then if
A,B ∈ F , we have a ∈ A and a ∈ B, so a ∈ A ∩B, and therefore A ∩B 6= ∅.

How big is this family F? Well, exactly half of the subsets of X contain the
element a, so |F| = 2n−1.

Can we do better than this, or is this family extremal?

Theorem 17 If |X| = n and F is an intersecting family of subsets of X, then
|F| ≤ 2n−1.

Proof: We know that there are exactly 2n subsets of X. That is |P(X)| = 2n.
We partition P(X) into sets of size 2, by pairing each subset of X with its
complement. Formally, the partition is

Q = {{A,Ac} | A ⊆ X}

where the complement of A is Ac = X \ A = {x ∈ X | x 6∈ A}.
Now if A ∈ F , then Ac 6∈ F , because A ∩ Ac = ∅. So when we choose sets

to put in F , we can take at most one of each pair {A,Ac}. Since there are 2n−1

such pairs, we have |F| ≤ 2n−1.

Example 62 If n = 3, say X = {1, 2, 3}, so that

P(X) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Then the partition Q of P(X) is into four parts: Q = {P1, P2, P3, P4} where

P1 = {∅, {1, 2, 3}}, P2 = {{1}, {2, 3}}, P3 = {{2}, {1, 3}}, P4 = {{3}, {1, 2}}.

That is

Q = {{∅, {1, 2, 3}}, {{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}}}.

So |Q| = 4 = 2n−1, and any intersecting familiy can contain at most one of the
two sets in Pi, for each i.

Let us look at this example in more detail, and see what kind of extremal
families we can find. First, what element of P1 can we take? It cannot be ∅, so
it must be {1, 2, 3}. Now look at P2. If we choose {1} to be in our family, then
every other set in our family has to intersect this, so contains 1. Hence our family
must be

F1 = {{1, 2, 3}, {1}, {1, 3}, {1, 2}}.

Could we choose the other possibility, {2, 3}? Yes (for example by symmetry).
But could we choose none of the sets of size 1? If so, we would have

F2 = {{1, 2, 3}, {2, 3}, {1, 3}, {1, 2}}.
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Does this work? Yes!
So, at least in this example, we have two different types of extremal families.

The first type, like F1, consists of all sets containing a particular element, say 1.
How would we describe the second type, F2? It consists of all the ‘big’ sets, that
is, subsets A of X with |A| > 1

2
|X|.

Does this generalise to all X? Well, it works OK if n is odd. Then if A and
B both have more than n/2 elements, they cannot be disjoint (for then X would
have more than n elements). From each pair {A,Ac} we always choose the bigger
one. So we get an intersecting family of 2n−1 sets in this way.

But what about the case when n is even? Then we have some cases where
|A| = |Ac| = n/2. In fact we can make arbitrary choices in these cases, and still
get an intersecting familiy. (Why?)

So there are two different kinds of extremal families. Are there any more?
(This is a difficult problem! In general there may be many different types.)

7.2 Sperner families
Lecture 28,
12/12/11Definition 13 A Sperner family of subsets of a set X is a family F ⊆ P(X)

with the property that if A,B ∈ F than A 6⊆ B.

Example 63 If X = {1, 2, 3, 4} then the family

F = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

of all subsets of size 2 is a Sperner family.

Indeed, it is the (unique) largest possible Sperner family in this instance. We
shall show that the largest possible Sperner family of a set of n elements has size(

n

bn
2
c

)
.

Moreover, we shall completely classify the Sperner families of this maximal size.
First we show that such families exist.

Example 64 If |X| = n, then the set of all subsets of X with size bn
2
c is a

Sperner family.

Proof: if A and B are two distinct subsets of the same size, then obviously A 6⊆ B.
The size of this family is clearly (

n

bn
2
c

)
.

Proving that there is no bigger Sperner family is a little technical.
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Lemma 5 Let n ≥ 1 be a fixed integer. Then
(

n
k

)
takes its maximum value when

k = n/2 (if n is even), or k = (n± 1)/2 (if n is odd).

Proof: if k < n/2 then (
n

k + 1

)
/

(
n

k

)
=
n− k

k + 1
> 1.

Then use
(

n
n−k

)
=
(

n
k

)
to prove a similar result for k > n/2.

The main idea of the proof of Sperner’s theorem is to count the (maximal)
chains of subsets, that is, chains

∅ ⊂ Y1 ⊂ Y2 ⊂ · · ·Yn−1 ⊂ Yn = X

where |Yi| = i for all i. Since we have to choose one of the n elements to be in
Y1, then one of the remaining n − 1 to be in Y2, and so on, the total number of
chains for X is n!.

On the other hand, if we specify that Yk is a fixed set A, say, where |A| = k,
then the first k elements have to be chosen (in order) from the elements of A, that
is in k! ways. Then the remaining n− k elements are chosen in order in (n− k)!
ways. Thus the number of chains that go through A is k!(n−k)! = |A|!(n−|A|)!.

Now if A and B lie in the same chain, then one of them is a subset of the
other. Thus if A and B come from a Sperner family, they cannot both lie in the
same chain. This gives us another way of counting chains, by dividing them up
according to which element (if any) of the Sperner family they go through.

More precisely, if F = {A1, A2, . . . , At} is a Sperner family, then the total
number of chains is no more than the sum over all Ai, of the number of chains
through Ai, that is

n! ≥
t∑

i=1

|Ai|!(n− |Ai|)!

Dividing through by n! gives

1 ≥
t∑

i=1

1(
n
|Ai|

)
≥

t∑
i=1

1(
n
bn

2
c

)
=

t(
n
bn

2
c

)
which gives

(
n
bn

2
c

)
≥ t as required.

Moreover, if t is actually equal to this number, then we must have equality all
the way through the proof as well. In particular

(
n
|Ai|

)
=
(

n
bn

2
c

)
for all i. Therefore,
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in the case when n is even, all the sets Ai have |Ai| = n/2. In the case when n
is odd, we have |Ai| = (n± 1)/2. In fact, it is not too hard to show that in this
latter case, all the Ai have the same size, that is you cannot have sets of both
sizes (n± 1)/2 in the same extremal Sperner family.

7.3 The Erdős–de Bruijn Theorem

We shall only state this theorem, not prove it. (A proof can be found in Prof. Lecture 29,
13/12/11Cameron’s notes.)

Theorem 18 If A1, A2, . . . , Ab are distinct subsets of X = {1, 2, . . . , n} such that
|Ai∩Aj| = 1 for all i 6= j, then b ≤ n. Moreover, if b = n, then (after re-labelling
if necessary) one of the following holds:

(a) A1 = {1, n}, A2 = {2, n}, . . . , An−1 = {n− 1, n}, An = {n};

(b) A1 = {1, n}, A2 = {2, n}, . . . , An−1 = {n− 1, n}, An = {1, 2, . . . , n− 1};

(c) every pair of elements of X lies in exactly one of the sets Ai.

In case (c), we might as well assume that there is a set of four elements of X with
the property that no three lie in the same Ai: for otherwise we are in case (b).
With this extra assumption, case (c) is known as a projective plane. Usually, in
this case, the elements of X are called points, and the sets Ai are called lines.

Definition 14 A projective plane is a collection of points and lines with the
properties:

• every pair of lines intersects in exactly one point;

• every pair of points lie on exactly one line;

• there exist four points such that no three of them lie on a line.

Example 65 If X = {1, 2, 3, 4, 5, 6, 7} then the family

F = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}

is a projective plane.

We see in this example that every line has the same number of points, namely
3, and moreover every point lies on 3 lines. The analogous properties hold in
general: there is an integer n, called the order of the projective plane, such that
every line has n+ 1 points, every line lies on n+ 1 lines, and the total number of
points is n2 + n+ 1 (and therefore the total number of lines is also n2 + n+ 1).
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To prove this, suppose that the points 1, 2, 3, 4 have the property that no
three lie on a line. In particular, 1 does not lie on the line through 3, 4. Hence
the number of lines through 1 is equal to the number points on the line 3− 4 (for
every line through one meets the line 3− 4 somewhere, so just join 1 to each of
the points on this line in turn: these must be distinct lines). By symmetry, this
is also equal to the number of lines through 2, and to the number of points on
2− 3, and 2− 4, and so on.

Now pick any point P other than 1, 2, 3, 4: it cannot lie on two of the lines
2−3, 2−4 and 3−4, because their intersections are already accounted for, so by
joining it to the points of one of these lines it is not on, we get that the number
of lines through P is the same as the number of lines through 1.

Similarly, any line L must miss at least two of the points 1, 2, 3, 4, so by joining
its points to one of these we see that it also has the same number of points on it
as does 3− 4.

7.4 Projective planes and MOLS
Lecture 30,
15/12/11 We shall show that existence of a projective plane of order n is equivalent to

existence of n − 1 MOLS of order n. But the projective plane typically shows
more symmetry. Indeed, to go from a projective plane to a set of n − 1 MOLS
one first has to choose two points in the projective plane: it is possible that a
different choice of points will give a completely different set of MOLS.

So, pick two points x, y in our projective plane of order n. There are n − 2
further points on the line xy, and n2 other points. Each of these n2 points is
on one of the n lines through x but not through y; and is on one of the n lines
through y but not through x. Moreover each of the n lines through x meets each
of the n lines through y in exactly one of the n2 points.

This groups our n2 points into n rows (i.e. the lines through x) and n columns
(i.e. the lines through y). Next we construct some Latin squares on these rows
and columns.

Pick any other point z on the line xy, and consider the n lines through z but
not through x or y. Each such line intersects every row and every column in
exactly one point. Label these n points by a symbol identifying this line. Do the
same with n− 1 more symbols for the other n− 1 lines through z. This gives us
a Latin square on the rows and columns.

Now do the same thing for another point t on the line xyz. We get another
Latin square. So each point is labelled by a pair consisting of a line through z
and a line through t. We cannot have the same label at two different points, for
then that pair of lines would intersect in two points. Hence the two Latin squares
are orthogonal to each other.

Thus, if we do this for all n−1 of the points on xy (other than x, y themselves)
we get n− 1 mutually orthogonal Latin squares.
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Conversely, given n− 1 MOLS of order n, we can reverse this process to get
a projective plane of order n.


