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Test 3

1. Let A be an m× n real matrix. Give a definition of the null space, N(A), of A.

Let

A =

 1 2 −3 1
−1 −1 4 −1
−2 −4 7 −1

 .

Determine the null space N(A).
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2. Let

A =

 1 4 3
−1 −2 0
2 2 3

 .

Give a reason to show that A is invertible.

Further, find the (1, 3)-entry of the inverse A−1.



Test 5

3. Determine, with a reason, whether the following vectors are linearly independent in the
vector space R4: 

2
0
1
1

 ,


0
1
6
1

 ,


0
0
2
−2

 ,


1
0
0
3

 .

Do they form a basis of R4?
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4. Let V be a real vector space and let x, y, z ∈ V . Give a definition of the linear span

Span (x, y, z)

of the vectors x, y and z.

Let x, y, z be linearly independent. Show that each vector v in Span (x, y, z) is a unique
linear combination of x, y and z.

Let R4×4 be the real vector space of 4× 4 real matrices. Determine, with a reason, if the
subset

W = {A ∈ R4×4 : detA = 0}
is a subspace of R4×4.

END


