MTH5112 Linear Algebra I TEST

Date: 10 November 2011 Time: 3.00-3.40pm

Arts 2 Lecture Theatre	Surnames A to M
Mason Lecture Theatre	Surnames N to Z

Complete the following information:

Name	
Student Number	
(9 digit code)	

The duration of the test is **40 minutes**. Answer **all** questions **in the spaces provided**. Write the final answer clearly. Calculators are **not** allowed.

Total Marks	

Nothing on this page will be marked!

(You can use this page for draft.)

Nothing on this page will be marked!

1. Let A be an $m\times n$ real matrix. Give a definition of the $\mathit{null space},\ N(A),$ of A.

Let

$$A = \begin{pmatrix} 1 & 2 & -3 & 1 \\ -1 & -1 & 4 & -1 \\ -2 & -4 & 7 & -1 \end{pmatrix}.$$

Determine the null space N(A).

2. Let

$$A = \begin{pmatrix} 1 & 4 & 3\\ -1 & -2 & 0\\ 2 & 2 & 3 \end{pmatrix} \,.$$

Give a reason to show that A is invertible.

Further, find the (1,3)-entry of the inverse $A^{-1}.$

3. Determine, with a reason, whether the following vectors are linearly independent in the vector space \mathbb{R}^4 :

$$\begin{pmatrix} 2\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\6\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\2\\-2 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\3 \end{pmatrix}.$$

Do they form a basis of \mathbb{R}^4 ?

4. Let V be a real vector space and let $x, y, z \in V$. Give a definition of the linear span Span(x, y, z)

of the vectors x, y and z.

Let x, y, z be linearly independent. Show that each vector v in Span (x, y, z) is a **unique** linear combination of x, y and z.

Let $\mathbb{R}^{4\times 4}$ be the real vector space of 4×4 real matrices. Determine, with a reason, if the subset

$$W = \{A \in \mathbb{R}^{4 \times 4} : \det A = 0\}$$

is a subspace of $\mathbb{R}^{4 \times 4}$.

6