MTH5112 Linear Algebra I 2012–2013

Coursework 7

Please hand in your solutions of the **starred** feedback exercises by **noon on Friday 23 November** using the red Linear Algebra I Collection Box in the Basement. Don't forget to put your **name** (with your <u>surname</u> underlined) and **student number** on your solutions, and to **staple** them.

Exercise* 1. Let *H* be the subspace of \mathbb{R}^4 given by

$$H = \left\{ (r, s, t, u)^T \mid r, s, t, u \in \mathbb{R}, r - 2s + t + 3u = 0 \text{ and } s + t - 4u = 0 \right\}.$$

Find a basis for H and determine $\dim H$.

Exercise 2. Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{b}_1 = \begin{pmatrix} 1\\-2\\0 \end{pmatrix}, \ \mathbf{b}_2 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \ \mathbf{b}_3 = \begin{pmatrix} -3\\6\\1 \end{pmatrix} \quad \text{and} \quad \mathbf{d}_1 = \begin{pmatrix} 1\\3\\-1 \end{pmatrix}, \ \mathbf{d}_2 = \begin{pmatrix} 2\\0\\1 \end{pmatrix}, \ \mathbf{d}_3 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}.$$

Show that $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ and $\{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3\}$ are bases for \mathbb{R}^3 .

Exercise* 3. Let $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \in P_2$ be given by

$$\mathbf{p}_1(t) = 2 - 4t + t^2$$
, $\mathbf{p}_2(t) = 3 + t$, $\mathbf{p}_3(t) = 1$.

- (a) Show that $\mathcal{B} = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is a basis for P_2 .
- (b) Suppose that $\mathbf{p} \in P_2$ has \mathcal{B} -coordinate vector $[\mathbf{p}]_{\mathcal{B}} = (-1, 3, 2)^T$. Find \mathbf{p} .
- (c) Let $\mathbf{q} \in P_2$ be given by $\mathbf{q}(t) = 6 t^2$. Find the coordinates of \mathbf{q} relative to \mathcal{B} .

Exercise 4. Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3}$ and $\mathcal{D} = {\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3}$ be the bases given in Exercise 2.

- (a) What is the transition matrix S_1 from \mathcal{D} to the standard basis?
- (b) Determine the transition matrix S_2 from the standard basis to \mathcal{B} , and, hence, determine the transition matrix from \mathcal{D} to \mathcal{B} .
- (c) If the \mathcal{D} -coordinate vector of $\mathbf{x} \in \mathbb{R}^3$ is $(1, -3, 2)^T$, what is the \mathcal{B} -coordinate vector of \mathbf{x} ?

Exercise 5. Let $A \in \mathbb{R}^{m \times n}$. Show the following: the system $A\mathbf{x} = \mathbf{b}$ has at most one solution for every $\mathbf{b} \in \mathbb{R}^m$ if and only if the column vectors of A are linearly independent.

Exercise 6. Let

$$A = \begin{pmatrix} 1 & -1 & 3 & 1 & 2 \\ 2 & -2 & 6 & 3 & 0 \\ 3 & -3 & 9 & 4 & 2 \end{pmatrix} .$$

Find bases for row(A), col(A) and N(A). Determine the rank and nullity of A, and verify that the Rank-Nullity Theorem holds for the matrix A.

Exercise 7. Let $A \in \mathbb{R}^{n \times n}$. Use the Rank-Nullity Theorem to show the following: A is invertible if and only if rank A = n.

Exercise 8. Is it possible to construct matrices with the following properties?

- (a) A 4×3 matrix A with rank A = 1 and nul A = 2.
- (b) A 3×4 matrix B with rank B = 2 and nul B = 1.

If yes, give an example; if not, explain why such a matrix cannot exist.