MTH5112 Linear Algebra I 2012–2013

Coursework 6

Please hand in your solution of the **starred** feedback exercise by **noon on Friday 16 November** using the red Linear Algebra I Collection Box in the Basement. Don't forget to put your **name** (with your <u>surname</u> underlined) and **student number** on your solutions, and to **staple** them.

Exercise 1. Determine which of the following collections of vectors in \mathbb{R}^3 are linearly independent:

(a) $(1,1,1)^T$, $(3,4,3)^T$, $(2,1,3)^T$, $(1,1,3)^T$;

(b)
$$(2,-1,5)^T$$
, $(1,3,2)^T$, $(3,2,7)^T$;

- (c) $(3,3,-6)^T$, $(-2,-1,4)^T$, $(1,4,-1)^T$;
- (d) $(1,2,3)^T$, $(4,5,0)^T$.

Exercise 2. Show the following:

- (a) If $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a spanning set for a vector space V and v is any vector in V, then $\mathbf{v}, \mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent.
- (b) If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent vectors in a vector space V, then $\mathbf{v}_2, \ldots, \mathbf{v}_n$ cannot span V.

Exercise 3. Let $\mathbf{x}_1, \ldots, \mathbf{x}_k$ be linearly independent vectors in \mathbb{R}^n , and let $A \in \mathbb{R}^{n \times n}$ be invertible. Define $\mathbf{y}_i = A\mathbf{x}_i$ for $i = 1, \ldots, k$. Show that $\mathbf{y}_1, \ldots, \mathbf{y}_k$ are linearly independent.

Exercise 4. For each of the collection of vectors in Exercise 1, decide whether they form a basis for \mathbb{R}^3 . Justify your answer.

Exercise 5. Let H be the subspace of P_3 consisting of all polynomials $\mathbf{p} \in P_3$ with p(1) = 0. Find a basis for H and determine its dimension.

Exercise* 6. Which of the following statements (if any) are true? Justify your answers.

- (a) $(6,5,4)^T, (3,2,1)^T, (0,-1,-2)^T, (-3,-4,-5)^T$ are linearly independent vectors in \mathbb{R}^3 .
- (b) $(1,1,2)^T, (-2,1,-4)^T, (2,3,8)^T$ are linearly independent vectors in \mathbb{R}^3 .
- (c) \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 are linearly independent vectors in P_2 , where

$$\mathbf{p}_1(t) = 1$$
, $\mathbf{p}_2(t) = 1 + t$, $\mathbf{p}_3(t) = 1 + t + t^2$.

- (d) $\begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$, $\begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 6 \\ 6 & -2 \end{pmatrix}$ are linearly independent vectors in $\mathbb{R}^{2 \times 2}$.
- (e) If $\mathbf{a}_1, \ldots, \mathbf{a}_n$ are the columns of an invertible $n \times n$ matrix A, then $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$ is a basis for \mathbb{R}^n .