MTH5112 Linear Algebra I 2012–2013

Coursework 5

Please hand in your solutions of the **starred** feedback exercises by **noon on Friday 2 November** using the red Linear Algebra I Collection Box in the Basement. Don't forget to put your **name** (with your <u>surname</u> underlined) and **student number** on your solutions, and to **staple** them.

Exercise* 1. Explain what is wrong with the following solution to Exercise 7(a) on Coursework 2:

If (I + A) is invertible then

$$(I+A)(I+A)^{-1} = (I+A)(I-A+A^2) = I - A + A^2 + A - A^2 + A^3 = I + A^3 = I$$

 $\Rightarrow I = I.$

Exercise 2. Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in a vector space. Prove that if $\mathbf{u} + \mathbf{w} = \mathbf{v} + \mathbf{w}$ then $\mathbf{u} = \mathbf{v}$. As in the lectures, clearly indicate which vector space axiom you are using at each step.

Exercise 3. In each case, determine whether H is a subspace of \mathbb{R}^3 and give reasons for your answer:

- (a) $H_1 = \{ (r, s, t)^T \mid r, s, t \in \mathbb{R} \text{ and } 3r + s 2t = 0 \},$ (b) $H_2 = \{ (r+1, 0, r)^T \mid r \in \mathbb{R} \},$
- (c) $H_3 = \{ (r, s, t)^T \mid r, s, t \in \mathbb{R} \text{ and } r^2 + s^2 + t^2 \le 1 \}.$

Exercise 4. Let $C^{1}[a, b]$ denote the subset of those functions in C[a, b] that have a continuous derivative on [a, b]. Explain why $C^{1}[a, b]$ is a subspace of C[a, b].

Exercise 5. Determine the nullspace of the following matrix

$$A = \begin{pmatrix} 1 & 3 & -2 & 1 \\ -3 & -9 & 6 & -2 \\ 2 & 6 & -4 & 1 \end{pmatrix} \,.$$

Exercise 6. Let U and V be subspaces of a vector space W. Define their intersection $U \cap V$ and their sum U + V by

$$U \cap V = \{ \mathbf{w} \in W \mid \mathbf{w} \text{ belongs to both } \mathsf{U} \text{ and } \mathsf{V} \} ,$$
$$U + V = \{ \mathbf{w} \in W \mid \mathbf{w} = \mathbf{u} + \mathbf{v} \text{ where } \mathbf{u} \in U \text{ and } \mathbf{v} \in V \}$$

Show that $U \cap V$ and U + V are subspaces of W.

Exercise* 7. Which of the following statements (if any) are true? Justify your answers.

- (a) $H_1 = \{ (r, s, t, u)^T \mid r, s, t, u \in \mathbb{R} \text{ and } r + s 3t + 5u = 0 \}$ is a subspace of \mathbb{R}^4 .
- (b) $H_2 = \{ A \in \mathbb{R}^{n \times n} | A \text{ is symmetric} \}$ is a subspace of $\mathbb{R}^{n \times n}$.
- (c) $H_3 = \{ \mathbf{f} \in C[0,1] \mid \mathbf{f}(1) = 1 \}$ is a subspace of C[0,1].
- (d) $S_1 = \{(1,0,2)^T, (3,0,4)^T, (5,0,6)^T\}$ spans \mathbb{R}^3 .
- (e) $S_2 = \{M_1, M_2\}$ is a spanning set for $V = \{A \in \mathbb{R}^{2 \times 2} \mid A \text{ is diagonal }\}$, where

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$