MTH5112 Linear Algebra I 20012–2013

Coursework 10

Please hand in your solutions of the **starred** feedback exercises by **12 noon on Friday 14 December** using the red Linear Algebra I Collection Box in the Basement. Don't forget to put your **name** (with your <u>surname</u> underlined) and **student number** on your solutions, and to **staple** them.

Exercise 1. Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbb{R}^n . Show the following:

- (a) $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y};$
- (b) $||U\mathbf{x}|| = ||\mathbf{x}||;$
- (c) $U\mathbf{x}$ and $U\mathbf{y}$ are orthogonal if and only if \mathbf{x} and \mathbf{y} are orthogonal.

Exercise* 2. Let $Q \in \mathbb{R}^{n \times n}$ be an orthogonal matrix. Show the following:

- (a) Q is invertible and $Q^{-1} = Q^T$.
- (b) If $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is an orthonormal basis for \mathbb{R}^n , then $\{Q\mathbf{v}_1, \ldots, Q\mathbf{v}_n\}$ is an orthonormal basis for \mathbb{R}^n . [Hint: use Exercise 1]

Exercise 3. Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ be the vectors in \mathbb{R}^3 given by

$$\mathbf{u}_1 = (1, 0, -3)^T$$
, $\mathbf{u}_2 = (3, 1, 1)^T$, $\mathbf{u}_3 = (-3, 10, -1)^T$.

- (a) Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for \mathbb{R}^3 .
- (b) Express $\mathbf{y} = (6, -8, 12)^T$ as a linear combination of \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 .

Exercise 4. Let H be a subspace of \mathbb{R}^n . Show the following:

- (a) $(H^{\perp})^{\perp} = H;$
- (b) dim $H + \dim H^{\perp} = n$.

Exercise 5. Let $\mathbf{y} = (-1,7)^T$ and $\mathbf{u} = (1,3)^T$. Let $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto $\operatorname{Span}(\mathbf{u})$. Find $\hat{\mathbf{y}}$. Calculate $\mathbf{y} - \hat{\mathbf{y}}$ and verify that \mathbf{u} and $\mathbf{y} - \hat{\mathbf{y}}$ are orthogonal. Give a geometric description of the quantity $\|\mathbf{y} - \hat{\mathbf{y}}\|$.

Exercise 6. Let $\mathbf{y} = (6, -1, 8)^T \in \mathbb{R}^3$ and let H be the subspace of \mathbb{R}^3 spanned by the two vectors $\mathbf{u}_1 = (1, 2, 1)^T$ and $\mathbf{u}_2 = (-3, 1, 1)^T$. Show that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set and write \mathbf{y} as a sum of a vector in H and a vector orthogonal to H.

Exercise* 7. Let H be the span of the three linearly independent vectors

$$\mathbf{x}_1 = (1, 0, 1, 0)^T$$
, $\mathbf{x}_2 = (3, 0, 1, 1)^T$, $\mathbf{x}_3 = (-2, 1, 4, -3)^T$.

- (a) Use the Gram Schmidt process to determine an orthogonal basis for H.
- (b) Use your results from (a) to write $\mathbf{y} = (2, 1, 4, -4)^T$ as a sum of a vector in H and a vector orthogonal to H and determine the closest point to \mathbf{y} in H.

Exercise 8. Consider the least squares problem $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 4 \\ 1 \end{pmatrix}$$

Write down the corresponding normal equations and determine the set of least squares solutions.