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Abstract

The following problem was posed by V. D. Mazurov in the Kourovka notebook:

14.69 For every finite simple group, find the minimum number of gener-

ating involutions satisfying an additional condition, in each of the following

cases:

(a) The product of the generating involutions is 1.

(b) All generating involutions are conjugate.

(c) The conditions (a) and (b) are simultaneously satisfied.

(d) All generating involutions are conjugate and two of them commute.

This thesis is focused on part (c) of the above problem. For a non-abelian

finite simple group, the minimum number of generating involutions with this

property must be at least five. Hence, for G, a non-abelian simple group, this

thesis approaches the above problem by asking whether G has the following

property:

1. G can be generated by five conjugate involutions whose product is 1.

Often this is done by asking whether the group G has the following stronger

property:

2. G can be generated by three conjugate involutions, with the product of

two of them also an involution and conjugate to the other three.

After an introductory chapter, this thesis answers these questions for the fol-

lowing simple groups:

• The simple alternating groups (chapter 2). Standard results about the

structure of the alternating groups are used;
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• The simple sporadic groups (chapter 3). A method developed by V. D.

Mazurov is used along with information from character tables;

• The simple linear groups over fields of odd characteristic with some ex-

ceptions (chapter 4). A general method developed by L. Di Martino

and N. Vavilov is used which is based on information about irreducible

groups generated by transvections.

Chapter 5 concludes the thesis with a discussion of the results and some pos-

sible next steps.
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Chapter 1

Introduction

The following problem was posed by V. D. Mazurov in the Kourovka notebook

[MK02]:

14.69 For every finite simple group, find the minimum number of gener-

ating involutions satisfying an additional condition, in each of the following

cases:

(a) The product of the generating involutions, in some order, is 1.

(b) (Malle-Saxl-Weigel) All generating involutions are conjugate.

(c) (Malle-Saxl-Weigel) The conditions (a) and (b) are simultaneously sat-

isfied.

(d) All generating involutions are conjugate and two of them commute.

1.1 Notation

Before we continue discussing this, however, we shall consider the notation we

will be using.

Most of the notation will be quite standard, and it should be clear from

context what objects are. Let G be any group. We will denote by 1, the

identity element of the group G, and by x−1, the inverse of the element x ∈ G.

For two elements, x, y ∈ G, we denote by xy = y−1xy, the conjugate of x by

12



y. We write H 6 G when H is a subgroup of G. For a subset, X ⊆ G, and

for a list of elements x1, . . . , xn ∈ G, we denote by 〈X〉 6 G, the subgroup

of G generated by X, and 〈x1, . . . , xn〉 6 G, the subgroup of G generated by

x1, . . . , xn.

1.2 Preliminaries

Since the only finite abelian simple groups are the cyclic groups of prime order,

the only finite abelian simple group to contain involutions is C2, the cyclic

group of order 2. The answers to the above questions for this group (when

they make sense) are obvious. Hence, we will confine ourselves to considering

non-abelian simple groups. There are of course lower bounds for these numbers

given just from the fact that the groups considered are non-abelian finite

simple. If you have a non-abelian group generated by 4 involutions, a, b, c

and d whose product is 1, then, since (ab)a = ba, (ab)b = ba and (ab)c =

cabc = cd = ba, the group generated by ab is a normal subgroup of 〈a, b, c, d〉.

Similarly, the group generated by bc is a normal subgroup of 〈a, b, c, d〉. Hence,

if 〈a, b, c, d〉 is simple, then ab = bc = 1 and so a = b = c = d. Then,

〈a, b, c, d〉 = 〈a〉 is a cyclic group and so is abelian. This gives a lower bound

for part (a) and part (c) above, while for part (b) and part(d) we can obtain

a lower bound simply by realising that a non-abelian group generated by 2

involutions can only be a dihedral group, which is not simple. The bounds

obtained are then, respectively:

(a) 5.

(b) 3.

(c) 5.

(d) 3.
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This type of problem often comes down to determining if such bounds are

realised for the group in question.

For example, the following questions have, for the most part, been an-

swered:

1. Which finite simple groups can be generated by 3 conjugate involutions?

2. Which finite simple groups can be generated by 3 involutions two of

which commute?

A simple group can be generated by 3 conjugate involutions if it can be

generated by an involution and an element of order 3, as if G := 〈a, b〉, with G

simple, a2 = 1 and b3 = 1, then
〈
a, ab, ab

−1
〉

forms a normal subgroup of G,

and hence must be equal to G. Groups that can be generated in this way are

often called ‘(2, 3)-generated’ groups. As such, the answer to the first of these

questions has mostly been answered, as the following simple and near-simple

groups are known to be (2, 3)-generated:

• The alternating groups, An for n 6= 6, 7, 8 ([Mil01]);

• The projective special linear groups L2 (q), q 6= 9 ([Mac69]);

• The projective special linear groups L3 (q), q 6= 4 ([Gar78],[Coh81]);

• The special linear groups SLn (q), n > 25 ([Tam88]);

• The special linear groups SLn (q), n > 5, q 6= 2, 9 ([DV94],[DV96]);

• The Chevalley groups G2 (q) of type G2 and the twisted groups 2G2 (q)

([Mal88],[Mal90]);

• The projective symplectic groups PSp4 (q), q = pm, p 6= 2, 3 ([CD93]);

• The special linear groups SL4 (q), q = pm, p 6= 2 ([TV94]);
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• The groups PSp2n (q) and PSU2n (q2), n > 37, characteristic 6= 2 and

the groups PΩ+
2n (q), n > 37 [TWG95];

• All the sporadic simple groups other than M11, M22, M23 and McL

([Wol89]). In fact all the sporadic groups can be generated by 3 conjugate

involutions ([MSW94]);

The second question, has been answered for the following groups:

• Chevalley groups of rank 1 ([Nuz84]);

• Chevalley groups over a field of characteristic 2 ([Nuz90]);

• The alternating groups ([Nuz92]);

• The classical groups SLn (q) for n > 14, Sp2n (q) for n > 20 q odd,

Ω+
2n (q) for n > 20, Ω2n+1 (q) for n > 20 q odd, SU2n (q2) for n > 20 q

odd and SU2n+1 (q2) for n > 20 q odd ([TZ97]);

Thus, parts (b) and (d) in the above question have, for the most part, been

answered.

My work has been focused on part (c) of the above question. Thus I have

been answering the question:

Which of the non-abelian finite simple groups, G, have the following prop-

erty:

Property 1. G can be generated by 5 conjugate involutions whose product is

the identity.

i.e. when is the lower bound realised (taking into account that G is simple).

Since a large number of the finite simple groups are known to be generated

by 3 conjugate involutions, a, b and c say, if this lower bound is not realised,

then often it will be possible to generate G with 6 conjugate involutions whose

product is the identity, namely a,b,c,c,b and a (as abccba = 1).
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Of course, it is often easier to prove a stronger property, and as such I have

often answered the question:

Which of the non-abelian finite simple groups, G, have the following prop-

erty:

Property 2. G can be generated by 3 conjugate involutions a, b and c, 2 of

which, a and b, commute and such that ab is also conjugate to a, b and c.

(From now on I will refer to a group as either ‘having’ or ‘not having’

Property 1 and/or Property 2 respectively.) Property 2 is indeed a stronger

property than Property 1:

Lemma 1.2.1. If a group G has Property 2 then it has Property 1.

Proof. Let a group, G, have Property 2. So G = 〈a, b, c〉, with ab = ba, o (a) =

2, and b, c and ab ∈ aG. Then clearly G = 〈a, b, c, c, ab〉, and abcc (ab) = 1.

Hence G has Property 1.

Hence we will often show that a group has Property 2. It is worth noting at

this point that these two properties are not equivalent, the alternating group

on 6 symbols, A6 being an example of a group that has Property 1 but not

Property 2. To see that A6 has Property 1, see Lemma 2.2.7, and to see that

it does not have Property 2, see Lemma 2.2.2. In fact, the following Lemma

shows that Property 2 is equivalent to a (more intuitively) stronger condition.

Lemma 1.2.2. Property 2 is equivalent to the property “G can be generated

by 5 conjugate involutions whose product is the identity, and 2 of which are

equal.”

Proof. From the proof of Lemma 1.2.1, it is easy to see that Property 2 implies

this new property. To see that the opposite implication holds, consider a group,

G, generated by 5 conjugate involutions, a, b, c, d and e, s.t. abcde = 1, and

16



s.t. 2 of them are equal. Since abcde = 1, we can assume, without loss of

generality, that either a = b or a = c. If a = b, then

G = 〈a, a, c, d, e〉

= 〈a, a, c, d〉 since e = abcd

= 〈a, c, d〉

and cd = bae = aae = e. Hence G is generated by 3 conjugate involutions, a,

c and d, with c and d commuting and having product conjugate to a, c and d.

Hence G has Property 2. If a = c, then

G = 〈a, b, a, d, e〉

= 〈a, a, d, e〉 since b = cdea

= 〈a, d, e〉

and de = cba = aba = ba. Hence, similarly to above, d and e commute, and

their product is conjugate to a, d and e. Hence G has Property 2.

In answering questions asking whether a group can be generated in a par-

ticular way, there are two outcomes:

1. Proving a group CAN be generated in a particular way OR

2. Proving a group CANNOT be generated in a particular way.

To show that a group can be generated in a particular way, we must some-

how show that elements with the desired properties exist and generate the

group. Often, this consists of finding and exhibiting such elements, and then

showing that they generate the desired group.

To show that a group cannot be generated in a particular way, we must

somehow show that any elements in the group with the desired properties do

not generate the group. As such, the following “non-generation” results are

useful:
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Theorem 1.2.3 (L. Scott. [Sco77]). . Let G be a group acting linearly on a

finite-dimensional vector space V over a field k. For X a subgroup or element

of G, let v (X) = v (X, V ) denote the codimension of the fixed-point space of

X in V . Also let v (X∗) denote v (X, V ∗), where V ∗ is the dual of V . Suppose

then that G is generated by elements x1, . . . , xn with x1 · · ·xn = 1. Then

n∑
i=1

v (xi) > v (G) + v (G∗) .

Often, it is easier to use a less general form of this result, such as:

Theorem 1.2.4. Let x1, x2, . . . , xm be elements generating a group G with

x1x2 · · ·xm = 1, and let V be an irreducible module for G of dimension n. Let

CV (xi) denote the fixed point space of 〈xi〉 on V , and let di be the dimension

of V/CV (xi). Then

d1 + d2 + · · ·+ dm > 2n.

or occasionally, where it was more convenient to use a permutation represen-

tation, the following result was used (originally proved by Ree [Ree71], but

also a corollary of Theorem 1.2.3):

Theorem 1.2.5 (Ree). . Let x1, x2, . . . , xm be permutations generating a

transitive group on n letters, with x1x2 · · ·xm = 1, and let ci denote the number

of orbits of 〈xi〉, 1 6 i 6 m. Then

c1 + c2 + · · ·+ cm 6 (m− 2)n+ 2.

1.3 Statement of Results

The results in this thesis are summarised in table 1.1 below:
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(Note that the result marked ∗ is not proved in this thesis, but a proof can

be found in [Nuz97].)
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Table 1.1: Summary of Results

G Property 1 Property 2

An n = 6 X ×
n = 7 × ×
n = 8 × ×
n = 12 × ×
n > 5, n 6= 6, 7, 8, 12 X X

M11 × ×
M12 × ×
J1 X X
M22 × ×
J2 X X
M23 × ×
2F4 (2)′ X X
HS X X
J3 X X
M24 X X
McL × ×
He X X
Ru X X
Suz X X
O′N X X
Co3 X X
Co2 X X
Fi22 X X
HN X X
Ly X X
Th X X
Fi23 X X
Co1 X X
J4 X X
Fi′24 X X
B X X
M X X
Ln (q) n = 2 q = 7 × ×

q = 9 X ×
q > 5, q 6= 7, 9 X X

n = 3 q ≡ 1 mod 3 X ×∗
q ≡ 0 or 2 mod 3 × ×

n = 6 q ≡ 1 mod 4, q 6= 9 X X
n = 6 q ≡ 3 mod 4, ? ?
n > 4, n 6= 6 q 6= 9 X X
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Chapter 2

The Alternating Groups

The purpose of this chapter is to determine which of the (finite simple) alter-

nating groups has Property 1. In fact we will prove the following Theorem:

Theorem 2.0.1. The Alternating group on n symbols for n > 5, An, has

Property 1 if and only if n 6= 7, 8, 12.

Note that the only non-simple alternating group that contains involutions

is A4, and the involutions in A4 generate at most D4 � A4. Hence for n < 5,

An does not have Property 1.

In fact, to prove Theorem 2.0.1 we will also prove the following:

Theorem 2.0.2. The Alternating group on n symbols for n > 5, An, has

Property 2 if and only if n 6= 6, 7, 8, 12.

We will divide this result into four separate cases, corresponding to the

four values of n modulo 4. The Theorem can be restated as:

Theorem 2.0.3. The Alternating group on n symbols for n > 5, An, has

Property 2 if and only if:

• n = 4k + 1 and k > 1.

• n = 4k + 2 and k > 2.

• n = 4k + 3 and k > 2.

• n = 4k and k > 4.
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2.1 Notation and Preliminaries

We use the standard notation for permutations, however as we are looking at

general cases, we will want to express the generators and other permutations in

a general way. To that end, we have chosen generators that have a discernible

pattern, which we will make clear to the reader. For example, for n = 4k,

n > 8, we denote by:

(1, 2) (3, 4) (5, 8) (6, 7) . . . (n− 7, n− 4) (n− 6, n− 5)︸ ︷︷ ︸
(4l−3,4l)(4l−2,4l−1) 26l6k−1

(n− 3, n− 2) (n− 1, n)

the permutation in An that is the product of the permutations (1, 2) (3, 4),

(n− 3, n− 2) (n− 1, n) and the sequence of permutations, starting with

(5, 8) (6, 7) and ending with (n− 7, n− 4) (n− 6, n− 5), that take the form

(4l − 3, 4l) (4l − 2, 4l − 1) for integers, l, in the desired range (in this case

2 6 l 6 k − 1). Note that this product is a product of disjoint cycles and

hence the whole permutation described is a valid one. Note also that, for the

smallest value of n allowed, we sometimes allow the sequence to have zero

length, i.e. we include the permutation (1, 2) (3, 4) (5, 6) (7, 8) ∈ A8 in this

example. It should be clear when this is the case.

The following Theorem will be useful:

Theorem 2.1.1. Let G be a primitive subgroup of Sn. If G contains a 3-cycle,

then G > An.

This result is well known, and a proof can be found in any sufficiently

advanced book on Permutation Groups, for example in [Cam99]. Clearly, from

this result, if we can establish primitivity of a group of even permutations that

contains a 3-cycle we will have shown that we have the alternating group.

The following two results will also be useful. Again, they are reasonably

well known results and their proofs can be found in a sufficiently advanced

book on Permutation Groups, for example in [Pas68].
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Lemma 2.1.2. Let G be a permutation group on {1, . . . , n}. If G is 2-

transitive on {1, . . . , n} then G is primitive on {1, . . . , n}.

Lemma 2.1.3. Let G be a permutation group on {1, . . . , n}. If G is transitive

on {1, . . . , n} and, for some i, 1 6 i 6 n, Gi := {g ∈ G : ig = i} is transitive

on {1, . . . , n} \ {i}, then G is 2-transitive on {1, . . . , n}.

2.2 The Proofs

We will prove the positive assertions by displaying suitable involutions and we

now consider these results separately:

Lemma 2.2.1. Let n = 4k + 1 with k > 1. Then An has Property 2.

Proof. Let

a := (1, 2) . . . (n− 2, n− 1)︸ ︷︷ ︸
(2l−1,2l) 16l62k

,

b := (1, 4) (2, 3) . . . (n− 4, n− 1) (n− 3, n− 2)︸ ︷︷ ︸
(4l−3,4l)(4l−2,4l−1) 16l6k

,

c := (2, 3) . . . (n− 1, n)︸ ︷︷ ︸
(2l,2l+1) 16l62k

and so we have

ab = (1, 3) (2, 4) . . . (n− 4, n− 2) (n− 3, n− 1)︸ ︷︷ ︸
(4l−3,4l−1)(4l−2,4l) 16l6k

, which is an involution with

the same cycle type as a, b and c and so is conjugate to them in An. Thus a, b

and c have the desired properties. It remains to show that they generate An.

Let G := 〈a, b, c〉.

Clearly G is a subgroup of Sn.

Now, abcac = (2, 7) (4, 5) . . . (n− 7, n− 2) (n− 5, n− 4)︸ ︷︷ ︸
(4l−2,4l+3)(4l,4l+1) 16l6k−1

(n− 3, n− 1, n) (or

just abcac = (n− 3, n− 1, n) = (2, 4, 5) when n = 5).

Hence (abcac)2 = (n− 3, n, n− 1).

Also, G is a primitive subgroup of Sn. It is clearly transitive on {1, . . . , n}.

We now take Gn := {g ∈ G : ng = n}, the subgroup of G that fixes the point
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n. Now a, b and (abcac)3 = (2, 7) (4, 5) . . . (n− 7, n− 2) (n− 5, n− 4)︸ ︷︷ ︸
(4l−2,4l+3)(4l,4l+1) 16l6k−1

fix n

and so are in Gn, and
〈
a, b, (abcac)3

〉
6 Gn is transitive on {1, . . . , n− 1}.

Hence, by Lemma 2.1.3, G is 2-transitive, and hence primitive on {1, . . . , n},

by Lemma 2.1.2.

Hence by Theorem 2.1.1, G > An. In fact, as a, b and c are all even

permutations, G ∼= An, and so we are done.

Lemma 2.2.2. Let n = 4k + 2 with k > 2. Then An has Property 2.

Proof. Let

a := (3, 4) . . . (n− 1, n)︸ ︷︷ ︸
(2l−1,2l) 26l62k+1

,

b := (1, 2) (3, 4) (5, 8) (6, 7) . . . (n− 5, n− 2) (n− 4, n− 3)︸ ︷︷ ︸
(4l−3,4l)(4l−2,4l−1) 26l6k

,

c := (2, 3) . . . (n− 2, n− 1)︸ ︷︷ ︸
(2l,2l+1) 16l62k

and so we have

ab = (1, 2) (5, 7) (6, 8) . . . (n− 5, n− 3) (n− 4, n− 2)︸ ︷︷ ︸
(4l−3,4l−1)(4l−2,4l) 26l6k

(n− 1, n) which is an in-

volution with the same cycle type as a, b and c and so is conjugate to them

in An. Thus a, b and c have the desired properties. It remains to show that

they generate An.

Let G := 〈a, b, c〉.

Clearly G is a subgroup of Sn.

Now, abcacbc = (1, 9, 4, 7) (2, 3, 5) (6, 11) . . . (n− 6, n− 1)︸ ︷︷ ︸
(2l,2l+5) 36l62k−2

(n− 4, n).

Hence (abcacbc)4 = (2, 3, 5).

Also, G is a primitive subgroup of Sn. It is clearly transitive on {1, . . . , n}.

We now take G1 := {g ∈ G : 1g = 1}, the subgroup of G that fixes the point 1.

Now a and c fix 1 and so are in G1, and 〈a, c, 〉 6 Gn is transitive on {2, . . . , n}.

Hence, by Lemma 2.1.3, G is 2-transitive, and hence primitive on {1, . . . , n},

by Lemma 2.1.2.
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Hence by Theorem 2.1.1, G > An. In fact, as a, b and c are all even

permutations, G ∼= An, and so we are done.

Lemma 2.2.3. Let n = 4k + 3 with k > 2. Then An has Property 2.

Proof. Let

a := (1, 2) . . . (n− 4, n− 3)︸ ︷︷ ︸
(2l−1,2l) 16l62k

,

b := (3, 4) (5, 8) (6, 7) . . . (n− 6, n− 3) (n− 5, n− 4)︸ ︷︷ ︸
(4l−3,4l)(4l−2,4l−1) 26l6k

(n− 2, n− 1),

c := (1, n) (2, n− 1) (4, 5) (7, 10) (8, 9) . . . (n− 8, n− 5) (n− 7, n− 6)︸ ︷︷ ︸
(4l−1,4l+2)(4l,4l+1) 26l6k−1

. . .

. . . (n− 3, n− 2),

and so we have

ab = (1, 2) (5, 7) (6, 8) . . . (n− 6, n− 4) (n− 5, n− 3)︸ ︷︷ ︸
(4l−3,4l−1)(4l−2,4l) 26l6k

(n− 2, n− 1) which is

an involution with the same cycle type as a, b and c and so is conjugate

to them in An. Thus a, b and c have the desired properties. It remains to

show that they generate An.

Let G := 〈a, b, c〉.

Clearly G is a subgroup of Sn.

Now,

ac = (1, n− 1, 2, n) (3, 5, 6, 4) (7, 9) (8, 10) . . . (n− 8, n− 6) (n− 7, n− 5)︸ ︷︷ ︸
(4l−1,4l+1)(4l,4l+2) 26l6k−1

. . .

. . . (n− 4, n− 2, n− 3).

Hence (ac)4 = (n− 4, n− 2, n− 3).

Also, G is a primitive subgroup of Sn. It is clearly transitive on {1, . . . , n}.

We now take Gn := {g ∈ G : ng = n}, the subgroup of G that fixes the point

n. Now a, b and bc fix n and so are in Gn, and 〈a, b, bc〉 6 Gn is transitive

on {1, . . . , n− 1}, as . Hence, by Lemma 2.1.3, G is 2-transitive, and hence

primitive on {1, . . . , n}, by Lemma 2.1.2.
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Hence by Theorem 2.1.1, G > An. In fact, as a, b and c are all even

permutations, G ∼= An, and so we are done.

Lemma 2.2.4. Let n = 4k with k > 4. Then An has Property 2.

Proof. Let

a := (1, 2) . . . (n− 5, n− 4)︸ ︷︷ ︸
(2l−1,2l) 16l62k−2

,

b := (5, 6) (7, 8) (9, 12) (10, 11) . . . (n− 7, n− 4) (n− 6, n− 5)︸ ︷︷ ︸
(4l−3,4l)(4l−2,4l−1) 36l6k−1

. . .

. . . (n− 3, n− 2) (n− 1, n),

c := (2, 3) . . . (n− 8, n− 7)︸ ︷︷ ︸
(2l,2l+1) 16l62k−4

(n− 4, n− 3) (n− 2, n− 1)

and so we have

ab = (1, 2) (3, 4) (9, 11) (10, 12) . . . (n− 7, n− 5) (n− 6, n− 4)︸ ︷︷ ︸
(4l−3,4l−1)(4l−2,4l) 36l6k−1

. . .

. . . (n− 3, n− 2) (n− 1, n)

which is an involution with the same cycle type as a, b and c and so is conjugate

to them in An. Thus a, b and c have the desired properties. It remains to

show that they generate An.

Let G := 〈a, b, c〉.

Clearly G is a subgroup of Sn.

Now,

c
(

(bc)
n
2
+3
)abc

= (1, 5, 4) (2, 3) (6, 7) . . . (n− 10, n− 9)︸ ︷︷ ︸
(2l,2l+3) 36l62k−5

. . .

. . . (n− 8, n− 7, n− 3, n− 4) (n− 2, n− 1).

Hence

(
c
(

(bc)
n
2
+3
)abc)4

= (1, 5, 4).

Also, G is a primitive subgroup of Sn. It is clearly transitive on {1, . . . , n}.

We now take Gn := {g ∈ G : ng = n}, the subgroup of G that fixes the point
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n. Now a, c and bcacb fix n and so are in Gn, and 〈a, c, bcacb〉 6 Gn is

transitive on {1, . . . , n− 1}, as (n− 6)bcacb = n− 2. Hence, by Lemma 2.1.3,

G is 2-transitive, and hence primitive on {1, . . . , n}, by Lemma 2.1.2.

Hence by Theorem 2.1.1, G > An. In fact, as a, b and c are all even

permutations, G ∼= An, and so we are done.

Thus, we have that An has Property 2 for n > 5 and n 6= 6, 7, 8, 12. Thus

by Lemma 1.2.1, we have that An has Property 1 for n > 5 and n 6= 6, 7, 8, 12.

Also we have:

Lemma 2.2.5. A6 has Property 1.

Proof. Let

a := (1, 2) (4, 5),

b := (2, 3) (4, 5),

c := (3, 4) (5, 6).

Now

abc = (1, 4, 3, 2) (5, 6)

= (1, 2) (3, 4) · (2, 4) (5, 6)

a product of two involutions. We call these involutions e and d respectively.

These involutions a, b, c, d and e all have the same cycle type and so are

conjugate in A6, and by definition of d and e, we have abcde = 1. Thus a, b,

c, d and e have the desired properties. It remains to show that they generate

A6.

Let G := 〈a, b, c, d, e〉.

Clearly G is a subgroup of S6.

Now, ab = (1, 3, 2).

Also, G is a primitive subgroup of S6. It is clearly transitive on

{1, 2, 3, 4, 5, 6}. We now take G1 := {g ∈ G : 1g = 1}, the subgroup of G

that fixes the point 1. Now b and c fix 1 and so are in G1, and 〈b, c〉 6 G1
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is transitive on {2, 3, 4, 5, 6}. Hence, by Lemma 2.1.3, G is 2-transitive, and

hence primitive on {1, 2, 3, 4, 5, 6}, by Lemma 2.1.2.

Hence by Theorem 2.1.1, G > A6. In fact, as a, b, c d and e are all even

permutations, G ∼= A6, and so we are done.

We now prove the negative results, namely:

Lemma 2.2.6. The (simple) alternating groups A7, A8 and A12 do not have

Property 1.

Proof. The information below can be obtained from the Atlas of finite group

representations [CCN+85].

• A7: Consider the ordinary irreducible deleted 7-point permutation mod-

ule, V , of dimension 6 and use Theorem 1.2.4. In the terminology of

Theorem 1.2.4, n = 6, m = 5 and di = 2 for i = 1, 2, 3, 4, 5, as the xi are

all conjugate. Then we have

d1 + d2 + d3 + d4 + d5 = 10 < 12 = 2n.

So, by Theorem 1.2.4, A7 does not have Property 1.

• A8: For the 2A conjugacy class, of cycle type (24) in the natural represen-

tation (i.e. with class representative (1, 2) (3, 4) (5, 6) (7, 8)), we consider

the ordinary irreducible deleted 15-point permutation module, V , of di-

mension 14 and use Theorem 1.2.4. In the terminology of Theorem 1.2.4,

n = 14, m = 5 and di = 4 for i = 1, 2, 3, 4, 5, as the xi are all conjugate.

Then we have

d1 + d2 + d3 + d4 + d5 = 20 < 28 = 2n.

So, by Theorem 1.2.4, A8 is not generated by elements with the desired

properties from class 2A. For the 2B conjugacy class, of cycle type (1422)

in the natural representation (i.e. with class representative (1, 2) (3, 4)),
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we consider the ordinary irreducible deleted 8-point permutation module,

V , of dimension 7 and use Theorem 1.2.4. In the terminology of Theorem

1.2.4, n = 7, m = 5 and di = 2 for i = 1, 2, 3, 4, 5, as the xi are all

conjugate. Then we have

d1 + d2 + d3 + d4 + d5 = 10 < 14 = 2n.

So, by Theorem 1.2.4, A8 is not generated by elements with the desired

properties from class 2B. Hence A8 does not have Property 1.

• A12: For the 2A conjugacy class, of cycle type (1822) in the natural rep-

resentation (i.e. with class representative (1, 2) (3, 4)), we consider the

ordinary irreducible deleted 12-point permutation module, V , of dimen-

sion 11 and use Theorem 1.2.4. In the terminology of Theorem 1.2.4,

n = 11, m = 5 and di = 2 for i = 1, 2, 3, 4, 5, as the xi are all conjugate.

Then we have

d1 + d2 + d3 + d4 + d5 = 10 < 22 = 2n.

So, by Theorem 1.2.4, A12 is not generated by elements with the de-

sired properties from class 2A. For the 2B conjugacy class, of cycle

type (26) in the natural representation (i.e. with class representative

(1, 2) (3, 4) (5, 6) (7, 8) (9, 10) (11, 12)), we consider one of the irreducible

modules, V , of dimension 16 over the field F4 and use Theorem 1.2.4.

In the terminology of Theorem 1.2.4, n = 16, m = 5 and di = 6 (as in

this representation, each transposition contributes 1 to the dimension of

V/CV (xi)) for i = 1, 2, 3, 4, 5, as the xi are all conjugate. Then we have

d1 + d2 + d3 + d4 + d5 = 30 < 32 = 2n.

So, by Theorem 1.2.4, A12 is not generated by elements with the desired

properties from class 2B. For the 2C conjugacy class, we consider the

ordinary irreducible module, V , of dimension 11 and use Theorem 1.2.4.
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In the terminology of Theorem 1.2.4, n = 11, m = 5 and di = 4 for

i = 1, 2, 3, 4, 5, as the xi are all conjugate. Then we have

d1 + d2 + d3 + d4 + d5 = 20 < 22 = 2n.

So, by Theorem 1.2.4, A12 is not generated by elements with the desired

properties from class 2C. Hence A12 does not have Property 1.

Thus we have that the simple alternating groups An do not have Property

1 for n = 7, 8, 12. Hence Theorem 2.0.1 has been proved. Now by Lemma

1.2.1, we have that An does not have Property 2 for n = 7, 8, 12. Also we

have:

Lemma 2.2.7. The alternating groups A6 does not have Property 2.

Proof. The group A6 is small enough so that it is possible to perform an

exhaustive search in GAP [Gro08] of all triples of involutions satisfying the

given restrictions, to see that they do not generate A6. However we will give

an outline of how to prove this result by hand.

Since A6 has only one conjugacy class of involutions, we only need to show

that it is not generated by three involutions such that two of them commute,

i.e. that A6 is not generated by involutions a, b and c such that ab = ba.

Without loss of generality, we can take a = (1, 2) (3, 4) ∈ A6. We must

have b ∈ aA6 ∩ CA6 (a) = . . .

. . . = {(1, 2) (3, 4) , (1, 2) (5, 6) , (1, 3) (2, 4) , (1, 4) (2, 3) , (3, 4) (5, 6)}.

Now without loss of generality, we can assume that

b ∈ {(1, 2) (5, 6) , (1, 4) (2, 3)} as

〈(1, 2) (3, 4) , (3, 4) (5, 6)〉 = 〈(1, 2) (3, 4) , (1, 2) (5, 6)〉,

〈(1, 2) (3, 4) , (1, 3) (2, 4)〉 = 〈(1, 2) (3, 4) , (1, 4) (2, 3)〉 and
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b 6= (1, 2) (3, 4), as then 〈a, b, c〉 = 〈a, c〉, a dihedral group, which cannot be

equal to A6.

If b = (1, 4) (2, 3), then for 〈a, b, c〉 to be transitive on {1, 2, 3, 4, 5, 6}, cmust

have the form (x, 5) (y, 6), where x, y ∈ {1, 2, 3, 4}, x 6= y. There are thus 12

choices for c. However, for each of these choices the group 〈a, b, c〉 fixes the

imprimitivity system {{x, y} , {u, v} , {5, 6}}, where {x, y, u, v} = {1, 2, 3, 4}.

Thus, in this case, 〈a, b, c〉 cannot be isomorphic to A6.

If b = (1, 2) (5, 6), then the group 〈a, b〉 has 3 orbits on {1, 2, 3, 4, 5, 6},

namely {1, 2}, {3, 4} and {5, 6}. Thus, for 〈a, b, c〉 to be transitive on

{1, 2, 3, 4, 5, 6}, c must not fix any of these orbits. There are 24 choices for

c which all have the form (u, v) (x, y) with u in one of the above orbits, y in

another and v and x in the last one. Now, for any of these choices for c, by

simply relabeling the points we can see that the group 〈a, b, c〉 is isomorphic to

the group 〈(u, s) (v, x) , (u, s) (y, t) , (2, 3) (4, 5)〉, where s is in the same orbit

from above as u and t is in the same orbit from above as y. Now this group

is isomorphic to the group 〈(1, 2) (3, 4) , (1, 2) (5, 6) , (2, 3) (4, 5)〉, since by con-

struction the pair (u, s) (v, x) and (u, s) (y, t) are a pair from {a, b, ab}. Hence,

for any choice of c, we have 〈a, b, c〉 ∼= 〈(1, 2) (3, 4) , (1, 2) (5, 6) , (2, 3) (4, 5)〉.

Now this group is isomorphic to A5 and so 〈a, b, c〉 does not generate A6.

Hence, there does not exist a triple of involutions with the requires prop-

erties that generates A6.

Hence Theorem 2.0.2 has been proved.

For the Alternating groups, we have now seen when the lower bound of

5 generating conjugate involutions whose product is 1 is obtained. For those

groups that do not attain the bound, we can ask how many conjugate involu-

tions whose product is 1 are needed to generate the group.
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2.3 Additional Results

Since the original question in the Kourovka notebook [MK02] asks for the

minimum number of involutions, with certain conditions, needed to generate

the simple groups, we include the following result:

Lemma 2.3.1. The alternating groups A7 and A12 can be generated by 6

conjugate involutions whose product is 1, while the alternating group A8 needs

7.

Proof. We deal with each group separately.

• A7: It is enough to show that A7 can be generated by 3 conjugate invo-

lutions, a, b and c. Let

a := (2, 3) (4, 5)

b := (3, 4) (5, 6)

c := (1, 6) (2, 7)

and let G := 〈a, b, c〉.

Clearly G is a subgroup of S7.

Now, (bc)2 = (1, 5, 6).

Also, G is a primitive subgroup of S7. It is clearly transitive on

{1, 2, 3, 4, 5, 6, 7}. We now take G1 := {g ∈ G : 1g = 1}, the subgroup

of G that fixes the point 1. Now a, b and cac = (3, 7) (4, 5) fix 1 and so

are in G1, and 〈a, b, cac〉 6 G1 is transitive on {2, 3, 4, 5, 6, 7}. Hence, by

Lemma 2.1.3, G is 2-transitive, and hence primitive on {1, 2, 3, 4, 5, 6, 7},

by Lemma 2.1.2.

Hence by Theorem 2.1.1, G > A7. In fact, as a, b and c are all even

permutations, G ∼= A7. Now a, b and c all have the same cycle type and

so are conjugate in G ∼= A7 and so we are done.
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• A8: For the 2A conjugacy class, of cycle type (24) in the natural repre-

sentation (i.e. with class representative (1, 2) (3, 4) (5, 6) (7, 8)), we con-

sider the ordinary irreducible deleted 15-point permutation module, V ,

of dimension 14 and use Theorem 1.2.4. In the terminology of Theorem

1.2.4, n = 14, m = 5 and di = 4 for i = 1, 2, 3, 4, 5, 6, as the xi are all

conjugate. Then we have

d1 + d2 + d3 + d4 + d5 + d6 = 24 < 28 = 2n.

So, by Theorem 1.2.4, A8 is not generated by elements with the desired

properties from class 2A. For the 2B conjugacy class, of cycle type (1422)

in the natural representation (i.e. with class representative (1, 2) (3, 4)),

we consider the ordinary irreducible deleted 8-point permutation module,

V , of dimension 7 and use Theorem 1.2.4. In the terminology of Theorem

1.2.4, n = 7, m = 5 and di = 2 for i = 1, 2, 3, 4, 5, 6, as the xi are all

conjugate. Then we have

d1 + d2 + d3 + d4 + d5 + d6 = 12 < 14 = 2n.

So, by Theorem 1.2.4, A8 is not generated by elements with the desired

properties from class 2B. So we need at least 7 conjugate involutions

whose product is 1 to generate A8. In fact, let

a := (1, 2) (3, 4),

b := (2, 3) (4, 5),

c := (3, 4) (5, 6),

d := (2, 8) (6, 7)

and let G := 〈a, b, c, d〉.

Clearly G is a subgroup of S8.

Now, (ad)2 = (1, 2, 8).
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Also, G is a primitive subgroup of S8. It is clearly transitive on

{1, 2, 3, 4, 5, 6, 7, 8}. We now take G8 := {g ∈ G : 8g = 8}, the subgroup

of G that fixes the point 8. Now a, b, c and dcd = (3, 4) (5, 7) fix 8 and so

are inG1, and 〈a, b, c, dcd〉 6 G1 is transitive on {1, 2, 3, 4, 5, 6, 7}. Hence,

by Lemma 2.1.3, G is 2-transitive, and hence primitive on

{1, 2, 3, 4, 5, 6, 7, 8}, by Lemma 2.1.2.

Hence by Theorem 2.1.1, G > A8. In fact, as a, b, c and d are all even

permutations, G ∼= A8.

Now

abcd = (1, 4, 8, 2) (3, 7, 6, 5)

= (1, 2) (4, 8) · (3, 5) (6, 7) · (2, 4) (5, 7)

a product of three involutions. We call these involutions g, f and

e respectively. These involutions are also even permutations, and so

〈a, b, c, d, e, f, g〉 ∼= A8. Now a, b, c, d, e, f and g all have the same cycle

type and so are conjugate in G ∼= A8, and by definition of e, f and g,

we have abcdefg = 1 and so we are done.

• A12: It is enough to show that A12 can be generated by 3 conjugate

involutions, a, b and c. Let

a := (1, 2) (7, 8) (9, 10) (11, 12)

b := (2, 3) (4, 5) (6, 7) (8, 9)

c := (3, 4) (5, 6) (7, 8) (10, 11)

and let G := 〈a, b, c〉.

Clearly G is a subgroup of S12.

Now, (ab)10 = (1, 3, 2).

Also, G is a primitive subgroup of S12. It is clearly transitive on

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. We now take G1 := {g ∈ G : 1g = 1},
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the subgroup of G that fixes the point 1. Now the elements a, b,

aca = (3, 4) (5, 6) (7, 8) (9, 12) and bcb = (2, 5) (4, 7) (6, 9) (10, 11) fix 1

and so are in G1, and 〈a, b, aca, bcb〉 6 G1 is transitive on

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Hence, by Lemma 2.1.3, G is 2-transitive,

and hence primitive on {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, by Lemma 2.1.2.

Hence by Theorem 2.1.1, G > A12. In fact, as a, b and c are all even

permutations, G ∼= A12. Now a, b and c all have the same cycle type

and so are conjugate in G ∼= A12 and so we are done.
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Chapter 3

The Sporadic Groups

The aim of this chapter is to determine, for each of the Sporadic groups G,

whether G has Property 1 or not. It may be noted at this point that it is

known that each of the Sporadic Groups can be generated by 3 conjugate

involutions ([MSW94]), and so even if the group does not have Property 1, it

can be generated by 6 conjugate involutions whose product is 1.

The aim of this chapter is to prove the following Theorem:

Theorem 3.0.2. Let G be one of the 26 sporadic simple groups. The group

G does not have Property 1, if and only if G is isomorphic to M11, M12, M22,

M23 or McL.

In fact we also prove:

Theorem 3.0.3. Let G be one of the 26 sporadic simple groups. The group

G does not have Property 2, if and only if G is isomorphic to M11, M12, M22,

M23 or McL.

Since having Property 2 implies having Property 1, proving the positive re-

sults from Theorem 3.0.3 will give us that the Sporadic groups other than M11,

M12, M22, M23 and McL have Property 1. Then, using the “non-generation”

results given in the introduction, we will see that M11, M12, M22, M23 and

McL do not have Property 1. This will complete the proof for Theorem 3.0.2,
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and will also complete the proof of Theorem 3.0.3 as not having Property 1

implies not having Property 2.

3.1 Notation and Preliminaries

Now for some notation. We use the standard notation from the ATLAS

[CCN+85].

The set of all irreducible ordinary characters of a group G is denoted by

Irr (G). If A, B and C are classes of conjugate elements of G and if g ∈ C

then mG (A,B,C) denotes the number of pairs (x, y) such that x ∈ A, y ∈ B,

and xy = g. Given an involution, t of G, we denote by iG (t) the number of

involutions different from t in CG (t).

The following results will also be used:

Lemma 3.1.1. Let A, B and C be conjugacy classes of a group G and let

a ∈ A, b ∈ B and c ∈ C. Then

mG (A,B,C) =
|A| |B|
|G|

∑
χ∈Irr(G)

χ (a)χ (b)χ (c)

χ (1)

This Lemma is a standard result from Representation Theory, and a proof

can be found in [CR81]. Now for a group G, with conjugacy classes A, B

and C, the value mG (A,B,C) can be calculated in GAP [Gro08] using the

command

ClassMultiplicationCoefficient(X,i,j,k),

where i, j and k are the column numbers of A, B and C in the character table

X of G as it is stored in GAP.

Lemma 3.1.2. Let C1, . . . ,Cs be all conjugacy classes of involutions of a

group G and let t ∈ C1. Then

iG (t) =
s∑

i,j=1

mG (Ci, Cj, C1)
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Proof. If a is an involution, not equal to t, and a ∈ CG (t), then at is an

involution and a · at = t. Hence

iG (t) 6
s∑

i,j=1

mG (Ci, Cj, C1)

On the other hand, if x and y are involutions and xy = t, then x must be an

involution in CG (t) that is not equal to t, and so

iG (t) >
s∑

i,j=1

mG (Ci, Cj, C1)

Hence the result is proved.

The following Lemma will be very important in proving the Theorems.

The method that uses this was originated by V. D. Mazurov in [Maz03].

Lemma 3.1.3. Let a and b be conjugate involutions of a finite group G which

generate a subgroup D 6= G, and let M1, . . ., Ms be all maximal subgroups of

G containing D. If
s∑
j=1

iMj
(a) < mG (A,A,A) ,

where A is the conjugacy class with a, b ∈ A, then G has Property 2.

Proof. Since
s∑
j=1

iMj
(a) < mG (A,A,A) ,

we can choose t such that t ∈ A, at ∈ A and t /∈
⋃s
j=1CMj

(a). Then a, b and

t are conjugate involutions in G, a and t commute and at is conjugate to a, b

and t. Suppose that H := 〈a, b, t〉 6= G, then H must lie in one of the maximal

subgroups, Mj, of G, and so t ∈ CMj
(a), which contradicts our choice of t.

In fact we can ocasionally improve on this result:

Lemma 3.1.4. Using the notation from Lemma 3.1.3, if for a maximal sub-

group Mi, some of its involutions are not from the conjugacy class A, then for
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the result of Lemma 3.1.3 to hold, it is enough to show that

s∑
j=1, j 6=i

iMj
(a) +

r∑
k,l=1

mMi
(Ck, Cl, C1) < mG (A,A,A) ,

where the conjugacy classes C1, . . . , Cr are those that are contained in the

conjugacy class A ⊂ G.

Proof. This holds as we are only trying to show the existence of an involution

t such that t ∈ A and at ∈ A. To show such an involution exists, we only

need to count those involutions in Mi that have this property, and these are

precisely those counted by
∑r

k,l=1mMi
(Ck, Cl, C1).

In the method described below, we will need to determine which maximal

subgroups contain a given dihedral subgroup. As such the following result will

be used:

Lemma 3.1.5. Let G be a group containing a Sylow p-subgroup, Sp. Let H

be a maximal subgroup of G also containing Sp.

1. If the normalizer in G of Sp, NG (Sp), is contained in H, then Sp is

contained in only one conjugate of H.

2. More generally, if |NG (Sp) : NH (Sp)| = m, then Sp is contained in at

most m conjugates of H.

Proof. 1. Suppose Sp is contained in more than one conjugate of H, i.e.

Sp 6 H and Sp 6 Hg, for some g ∈ G. Then, Sp and Sg
−1

p are two Sylow

p-subgroups of G contained in H, and so must be conjugate in H, i.e.

Sg
−1h
p = Sp for some h ∈ H. Thus, g−1h ∈ NG (Sp) 6 H, and so g ∈ H.

Hence Hg = H, and so Sp must be contained in only one conjugate of

H.

2. Let |NG (Sp) : NH (Sp)| = m, and take ki for i = 1, . . . ,m as left-coset

representatives of NH (Sp) in NG (Sp). Then as above, if Sp is contained
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in some conjugate, Hg, of H we have, for some h ∈ H, g−1h ∈ NG (Sp).

Then, we can write g−1h = kin, with n ∈ NH (Sp) and i ∈ {1, . . . ,m}.

Hence Hg = Hhn−1k−1
i = Hn−1k−1

i = Hk−1
i . So Sp can only be contained

in the m conjugates, Hk−1
i , of H.

3.2 Proof of the Theorems

Now we are in a position to prove the Theorems. First, we prove:

Lemma 3.2.1. If G ∈ {M11,M12,M22,M23,McL}, G does not have Property

1 (and hence does not have Property 2).

Proof. Here we deal with each group separately:

• M11: Consider the permutation representation on 12 points. We use

Theorem 1.2.5. In the terminology of Theorem 1.2.5, n = 12, m = 5 and

ci = 8 for i = 1, 2, 3, 4, 5, as the xi are all conjugate. Then we have

c1 + c2 + c3 + c4 + c5 = 40 > 38 = (m− 2)n+ 2.

So, by Theorem 1.2.5, M11 does not have Property 1.

• M12: For conjugacy class 2A, we consider the ordinary irreducible mod-

ule, V , of dimension 16 and use Theorem 1.2.4. In the terminology of

Theorem 1.2.4, n = 16, m = 5 and di = 6 for i = 1, 2, 3, 4, 5, as the xi

are all conjugate. Then we have

d1 + d2 + d3 + d4 + d5 = 30 < 32 = 2n.

So, by Theorem 1.2.4, M12 is not generated by elements with the de-

sired properties from class 2A. For conjugacy class 2B, we consider

the permutation representation on 12 points, and use Theorem 1.2.5.
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In the terminology of Theorem 1.2.5, n = 12, m = 5 and ci = 8 for

i = 1, 2, 3, 4, 5, as the xi are all conjugate. Then we have

c1 + c2 + c3 + c4 + c5 = 40 > 38 = (m− 2)n+ 2.

So, by Theorem 1.2.5, M12 is not generated by elements with the desired

properties from class 2B. Hence M12 does not have Property 1.

• M22: Consider the standard representation on 22 points. We use The-

orem 1.2.5. In the terminology of Theorem 1.2.5, n = 22, m = 5 and

ci = 14 for i = 1, 2, 3, 4, 5, as the xi are all conjugate. Then we have

c1 + c2 + c3 + c4 + c5 = 70 > 68 = (m− 2)n+ 2.

So, by Theorem 1.2.5, M22 does not have Property 1.

• M23: Consider the standard representation on 23 points. We use The-

orem 1.2.5. In the terminology of Theorem 1.2.5, n = 23, m = 5 and

ci = 15 for i = 1, 2, 3, 4, 5, as the xi are all conjugate. Then we have

c1 + c2 + c3 + c4 + c5 = 75 > 71 = (m− 2)n+ 2.

So, by Theorem 1.2.5, M23 does not have Property 1.

• McL: Consider the ordinary irreducible module, V , of dimension 22 and

use Theorem 1.2.4. In the terminology of Theorem 1.2.4, n = 22, m = 5

and di = 8 for i = 1, 2, 3, 4, 5, as the xi are all conjugate. Then we have

d1 + d2 + d3 + d4 + d5 = 40 < 44 = 2n.

So, by Theorem 1.2.4, McL does not have Property 1.

Lemma 3.2.2. In each sporadic simple group G other than M11, M12, M22,

M23 or McL, there are involutions a and b such that the conditions of Lemma

3.1.3 are satisfied.
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Proof. We use the method implied by Lemma 3.1.3. The process for each

individual group, G, proceeds as follows:

1. Pick a conjugacy class in G of involutions, X, and another conjugacy

class, Y , such that mG (X,X, Y ) 6= 0, and such that Y has a “large”

order. Hence we will have a dihedral subgroup, D, of G generated by

two involutions, a and b from X, with their product having a “large”

order. The idea is to get a dihedral subgroup that is contained in a small

number of maximal subgroups of G.

2. Find all the maximal subgroups of G that (may) contain D.

3. Count the values mG (X,X,X), and iMi
(a) for each maximal subgroup,

Mi containing D.

4. Compare mG (X,X,X) and
∑s

j=1 iMj
(a).

If
∑s

j=1 iMj
(a) < mG (X,X,X), then the conditions of Lemma 3.1.3 are

satisfied, and so the group, G has Property 2 (and hence has Property

1).

The process is summarised in Table 3.1, which can be found on pages 65–67.

In it, the column labeled (X,X, Y ) indicates the conjugacy classes of G which

have been picked such that X is a class of involutions and mG (X,X, Y ) 6= 0.

We take a and b as the fixed involutions in X, such that ab is in Y . The column

labeled s indicates the number of maximal subgroups that contain D := 〈a, b〉

and we label these subgroups M1, . . .Ms. The data for this table can be easily

extracted by means of the formulas given above from the character tables and

the lists of maximal subgroups of sporadic groups. GAP [Gro08] was used for

all the calculations, using information from the Web-ATLAS [WNB+05].

We deal with each group separately:

• Let G ∼= J1.
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1. G has one conjugacy class of involutions, namely class 2A. Since

mG (2A, 2A, 11A) 6= 0 then ∃ a, b ∈ 2A s.t. ab = c ∈ 11A.

Note that 〈c〉 is a Sylow 11-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 11 must be isomor-

phic to L2 (11) or 11 : 10. From the character table of L2 (11),

we can see that the conjugacy classes of elements of order 11 in

this group are not real, and so L2 (11) can not contain a dihedral

group of order 22. Therefore, each maximal subgroup containing

D := 〈a, b〉 is conjugate with H ∼= 11 : 10. Since this subgroup

is isomorphic to the normalizer in G of a Sylow 11-subgroup, by

Lemma 3.1.5, there can only be one maximal subgroup of G conju-

gate to H containing the Sylow 11-subgroup 〈c〉. Hence there can

only be one maximal subgroup of G conjugate to H containing D.

3. mG (2A, 2A, 2A) = 30.

H has one class of involutions, namely 2A, and so iH (x) = . . .

. . . = mH (2A, 2A, 2A) = 0 for x ∈ 2A.

4. Now 0 < 30, hence, in this case, the Lemma holds true.

• Let G ∼= J2.

1. G has two conjugacy classes of involutions, namely classes 2A and

2B. Since mG (2B, 2B, 7A) 6= 0 then ∃ a, b ∈ 2B s.t. ab = c ∈

7A.

Note that 〈c〉 is a Sylow 7-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 7 must be isomorphic

to U3 (3) or L3 (2) : 2. From the character table of U3 (3), we can see

that the conjugacy classes of elements of order 7 in this group are
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not real, and so U3 (3) can not contain a dihedral group of order

14. Therefore, each maximal subgroup containing D := 〈a, b〉 is

conjugate with H ∼= L3 (2) : 2. Since this subgroup contains

the normalizer in G of a Sylow 7-subgroup, by Lemma 3.1.5, there

can only be one maximal subgroup of G conjugate to H containing

the Sylow 7-subgroup 〈c〉. Hence there can only be one maximal

subgroup of G conjugate to H containing D.

3. mG (2B, 2B, 2B) = 32.

H has two classes of involutions, namely 2A and 2B, and if X and Y

are involution classes, mH (X, Y, 7A) 6= 0 only if X = Y = 2B,

and iH (x) = 6 for x ∈ 2B.

4. Now 6 < 32, hence, in this case, the Lemma holds true.

• Let G ∼= 2F4 (2)′.

1. G has two conjugacy classes of involutions, namely classes 2A and

2B. Since mG (2B, 2B, 13A) 6= 0 then ∃ a, b ∈ 2B s.t. ab =

c ∈ 13A.

Note that 〈c〉 is a Sylow 13-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 13 must be isomor-

phic to L3 (3) : 2 or L2 (25). Therefore, each maximal subgroup

containing D := 〈a, b〉 must be conjugate with H1
∼= L3 (3) : 2,

H2
∼= L3 (3) : 2 or H3

∼= L2 (25). Since H1 contains the nor-

malizer in G of a Sylow 13-subgroup, H2 contains the normalizer

in G of a Sylow 13-subgroup, and the order of the normalizer in

H3 of a Sylow 13-subgroup is 13 · 2, by Lemma 3.1.5, there can

only be one maximal subgroups conjugate with H1, one maximal

subgroup conjugate to H2 and three maximal subgroups conjugate

to H3 which contain the Sylow 13-subgroup 〈c〉. Hence there can
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be only one maximal subgroup conjugate to H1, one maximal sub-

group conjugate to H2 and three maximal subgroups conjugate to

H3, containing D.

3. mG (2B, 2B, 2B) = 132.

H1 has two classes of involutions, namely 2A and 2B, and if X and

Y are involution classes and Z is a class of order 13, mH1 (X, Y, Z) 6=

0 only if X = Y = 2B, and iH1 (x) = 18 for x ∈ 2B.

H2 has two classes of involutions, namely 2A and 2B, and if X and

Y are involution classes and Z is a class of order 13, mH2 (X, Y, Z) 6=

0 only if X = Y = 2B, and iH2 (x) = 18 for x ∈ 2B.

H3 has one class of involutions, namely 2A, and so iH3 (x) =

mH3 (2A, 2A, 2A) = 12 for x ∈ 2A.

4. Now 18 + 18 + 3× 12 = 72 < 132, hence, in this case, the Lemma

holds true.

• Let G ∼= HS.

1. G has two conjugacy classes of involutions, namely 2A and 2B.

Since mG (2B, 2B, 7A) 6= 0 then ∃ a, b ∈ 2B s.t. ab = c ∈ 7A.

Note that 〈c〉 is a Sylow 7-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 7 must be isomor-

phic to M22, U3 (5) .2, L3 (4) .21, A8.2 or 43L3 (2). Using Structure

constants, it can be seen that the groups M22 and 43L3 (2) do not

contain a dihedral group of order 14. Therefore, each maximal

subgroup containing D := 〈a, b〉 must be conjugate with either

H1
∼= U3 (5) .2, H2

∼= U3 (5) .2 H3
∼= L3 (4) .21 or H4

∼= A8.2.

Since H1 contains the normalizer in G of a Sylow 7-subgroup, H2

contains the normalizer in G of a Sylow 7-subgroup, H3 contains

the normalizer in G of a Sylow 7-subgroup and H4 contains the
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normalizer in G of a Sylow 7-subgroup, by Lemma 3.1.5, there

can only be one maximal subgroups conjugate with H1, one maxi-

mal subgroup conjugate to H2, one maximal subgroup conjugate to

H3 and one maximal subgroup conjugate to H4 which contain the

Sylow 7-subgroup 〈c〉. Hence there can only be one maximal sub-

groups conjugate with H1, one maximal subgroup conjugate to H2,

one maximal subgroup conjugate to H3 and one maximal subgroup

conjugate to H4 containing D.

3. mG (2B, 2B, 2B) = 72.

H1 has two classes of involutions, namely 2A and 2B, and if X and

Y are involution classes and Z is a class of order 7, mH1 (X, Y, Z) 6=

0 only if X = Y = 2B, and iH1 (x) = 50 for x ∈ 2B.

H2 has two classes of involutions, namely 2A and 2B, and if X and

Y are involution classes and Z is a class of order 7, mH2 (X, Y, Z) 6=

0 only if X = Y = 2B, and iH1 (x) = 50 for x ∈ 2B.

H3 has two classes of involutions, namely 2A and 2B, and if X and

Y are involution classes and Z is a class of order 7, mH3 (X, Y, Z) 6=

0 only if X = Y = 2B, and iH1 (x) = 8 for x ∈ 2B.

H4 has four classes of involutions, namely 2A, 2B, 2C and 2D,

and if X and Y are involution classes and Z is a class of order 7,

mH4 (X, Y, Z) 6= 0 only if X = Y = 2D, and iH1 (x) = 42 for

x ∈ 2B.

4. Now 50 + 50 + 8 + 42 = 150 > 72. However, for H1 and H2 we

can apply Lemma 3.1.4, and only need to count mHi
(2B, 2B, 2B)

in each case, giving 0 + 0 + 8 + 42 < 72, hence, in this case, the

Lemma holds true.

• Let G ∼= J3.
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1. G has one conjugacy class of involutions, namely class 2A. Since

mG (2A, 2A, 17A) 6= 0 then ∃ a, b ∈ 2A s.t. ab = c ∈ 17A.

Note that 〈c〉 is a Sylow 17-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 17 must be isomor-

phic to L2 (16) .2 or L2 (17). Therefore, each maximal subgroup

containing D := 〈a, b〉 must be conjugate with H1
∼= L2 (16) .2

or H2
∼= L2 (17). Since the order of the normalizer in H1 of a

Sylow 17-subgroup is 17 · 4 and H2 contains the normalizer in G

of a Sylow 17-subgroup, by Lemma 3.1.5, there can only be two

maximal subgroups conjugate with H1 and one maximal subgroup

conjugate to H2 which contain the Sylow 17-subgroup 〈c〉. Hence

there can only be two maximal subgroups conjugate with H1 and

one maximal subgroup conjugate to H2 containing D.

3. mG (2A, 2A, 2A) = 130.

H1 has two classes of involutions, namely 2A and 2B, and if X and

Y are involution classes and Z is a class of order 17, mH1 (X, Y, Z) 6=

0 only if X = Y = 2A, and iH1 (x) = 18 for x ∈ 2A.

H2 has one class of involutions, namely 2A, and so iH2 (x) =

mH2 (2A, 2A, 2A) = 8 for x ∈ 2A.

4. Now 2 × 18 + 8 = 44 < 130, hence, in this case, the Lemma holds

true.

• Let G ∼= M24.

1. G has two conjugacy class of involutions, namely classes 2A and

2B. Since mG (2B, 2B, 11A) 6= 0 then ∃ a, b ∈ 2B s.t. ab =

c ∈ 11A.

Note that 〈c〉 is a Sylow 11-subgroup of G, and that CG (c) = 〈c〉.

47



2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 11 must be isomor-

phic to M23, M22.2, M12.2 or L2 (23). From the character table of

M23, we can see that the conjugacy classes of elements of order 11

in this group are not real, and so M23 can not contain a dihedral

group of order 22. Therefore, each maximal subgroup containing

D := 〈a, b〉 must be conjugate with H1
∼= M22.2, H2

∼= M12.2

or H3
∼= L2 (23). Since H1 contains the normalizer in G of a

Sylow 11-subgroup, H2 contains the normalizer in G of a Sylow

11-subgroup and the order of the normalizer in H3 of a Sylow 11-

subgroup is 11 · 2, by Lemma 3.1.5, there can be only one maximal

subgroup conjugate to H1, one maximal subgroup conjugate to H2

and five maximal subgroups conjugate to H3, which contain the

Sylow 11-subgroup 〈c〉. Hence there can be only one maximal sub-

group conjugate to H1, one maximal subgroup conjugate to H2 and

five maximal subgroups conjugate to H3, containing D.

3. mG (2B, 2B, 2B) = 202.

H1 has three classes of involutions, namely 2A, 2B and 2C, and

if X and Y are involution classes and Z is a class of order 11,

mH1 (X, Y, Z) 6= 0 only if X = Y = 2C, and iH1 (x) = 70 for

x ∈ 2C.

H2 has three classes of involutions, namely 2A, 2B and 2C, and

if X and Y are involution classes and Z is a class of order 11,

mH2 (X, Y, Z) 6= 0 only if X = Y = 2C, and iH2 (x) = 62 for

x ∈ 2C.

H3 has one class of involutions, namely 2A, and so iH3 (x) =

mH3 (2A, 2A, 2A) = 12 for x ∈ 2A.

4. Now 70 + 62 + 5× 12 = 192 < 202, hence, in this case, the Lemma
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holds true.

• Let G ∼= He.

1. G has two conjugacy classes of involutions, namely classes 2A and

2B. Since mG (2B, 2B, 17A) 6= 0 then ∃ a, b ∈ 2A s.t. ab =

c ∈ 17A.

Note that 〈c〉 is a Sylow 17-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 17 must be isomor-

phic to S2 (4) .2. Therefore, each maximal subgroup containing

D := 〈a, b〉 is conjugate with H ∼= S2 (4) .2. Since H contains

the normalizer in G of a Sylow 17-subgroup, by Lemma 3.1.5, there

can only be one maximal subgroup of G, conjugate to H which

contains the Sylow 17-subgroup 〈c〉. Hence there can only be one

maximal subgroup of G conjugate to H containing D.

3. mG (2B, 2B, 2B) = 364.

H has four classes of involutions, namely 2A, 2B, 2C and 2D, and

if X and Y are involution classes and Z is a class of order 17,

mH (X, Y, Z) 6= 0 only if X = Y = 2C, and iH (x) = 126 for

x ∈ 2C.

4. Now 126 < 364, hence, in this case, the Lemma holds true.

• Let G ∼= Ru.

1. G has two conjugacy classes of involutions, namely classes 2A and

2B. Since mG (2B, 2B, 29A) 6= 0 then ∃ a, b ∈ 2A s.t. ab =

c ∈ 29A.

Note that 〈c〉 is a Sylow 29-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that
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any maximal subgroup whose order is divisible by 29 must be iso-

morphic to L2 (29). Therefore, each maximal subgroup containing

D := 〈a, b〉 is conjugate with H ∼= L2 (29). Since H contains the

normalizer in G of a Sylow 29-subgroup, by Lemma 3.1.5, there

can only one maximal subgroup of G, conjugate to H containing

the Sylow 29-subgroup 〈c〉. Hence there can only be one maximal

subgroup of G conjugate to H containing D.

3. mG (2B, 2B, 2B) = 912.

H has one class of involutions, namely 2A, and so iH (x) =

mH (2A, 2A, 2A) = 14 for x ∈ 2A.

4. Now 14 < 912, hence, in this case, the Lemma holds true.

• Let G ∼= Suz.

1. G has two conjugacy classes of involutions, namely classes 2A and

2B. Since mG (2B, 2B, 13A) 6= 0 then ∃ a, b ∈ 2A s.t. ab =

c ∈ 13A.

Note that 〈c〉 is a Sylow 13-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 13 must be isomor-

phic to G2 (4), L3 (3) .2 or L2 (25). Therefore, each maximal sub-

group containing D := 〈a, b〉 is conjugate with H1
∼= G2 (4),

H2
∼= L3 (3) .2, H3

∼= L3 (3) .2 or H4
∼= L2 (25) (note that

there are two conjugacy classes of maximal subgroups of G that are

isomorphic to L3 (3) .2). Since H1 contains the normalizer in G of a

Sylow 13-subgroup, H2 contains the normalizer in G of a Sylow 13-

subgroup, H3 contains the normalizer in G of a Sylow 13-subgroup

and the order of the normalizer inH4 of a Sylow 13-subgroup is 13·2,

by Lemma 3.1.5, there can only be one maximal subgroup conju-

gate to H1, one maximal subgroup conjugate to H2, one maximal
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subgroup conjugate to H3 and three maximal subgroups conjugate

to H4 which contain the Sylow 13-subgroup 〈c〉. Hence, there can

only be one maximal subgroup conjugate to H1, one maximal sub-

group conjugate to H2, one maximal subgroup conjugate to H3 and

three maximal subgroups conjugate to H4 which contain D.

3. mG (2B, 2B, 2B) = 1192.

H1 has two classes of involutions, namely 2A and 2B, and if X and

Y are involution classes and Z is a class of order 13, mH1 (X, Y, Z) 6=

0 only if X = Y = 2B, and iH1 (x) = 302 for x ∈ 2B.

H2 has two classes of involutions, namely 2A and 2B, and if X and

Y are involution classes and Z is a class of order 13, mH2 (X, Y, Z) 6=

0 only if X = Y = 2B, and iH2 (x) = 18 for x ∈ 2B.

H3 has two classes of involutions, namely 2A and 2B, and if X and

Y are involution classes and Z is a class of order 13, mH3 (X, Y, Z) 6=

0 only if X = Y = 2B, and iH3 (x) = 18 for x ∈ 2B.

H4 has one class of involutions, namely 2A, and so iH4 (x) =

mH4 (2A, 2A, 2A) = 12 for x ∈ 2A.

4. Now 302 + 18 + 18 + 3× 12 = 374 < 1192, hence, in this case, the

Lemma holds true.

• Let G ∼= ON .

1. G has one conjugacy class of involutions, namely class 2A. Since

mG (2A, 2A, 19A) 6= 0 then ∃ a, b ∈ 2A s.t. ab = c ∈ 19A.

Note that 〈c〉 is a Sylow 19-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 19 must be isomor-

phic to L3 (7) .2 or J1. Therefore, each maximal subgroup contain-

ing D := 〈a, b〉 is conjugate with H1
∼= L3 (7) .2, H2

∼= L3 (7) .2
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or H3
∼= J1 (note that there are two conjugacy classes of max-

imal subgroups of G that are isomorphic to L3 (7) .2). Since H1

contains the normalizer in G of a Sylow 19-subgroup, H2 contains

the normalizer in G of a Sylow 19-subgroup and H3 contains the

normalizer in G of a Sylow 19-subgroup, by Lemma 3.1.5, there

can only be one maximal subgroup conjugate to H1, one maximal

subgroup conjugate to H2 and one maximal subgroup conjugate to

H3 which contain the Sylow 19-subgroup 〈c〉. Hence there can only

be one maximal subgroup conjugate to H1, one maximal subgroup

conjugate to H2 and one maximal subgroup conjugate to H3 which

contain D.

3. mG (2A, 2A, 2A) = 1750.

H1 has two classes of involutions, namely 2A and 2B, and if X and

Y are involution classes and Z is a class of order 19, mH1 (X, Y, Z) 6=

0 only if X = Y = 2B, and iH1 (x) = 98 for x ∈ 2B.

H2 has two classes of involutions, namely 2A and 2B, and if X and

Y are involution classes and Z is a class of order 19, mH2 (X, Y, Z) 6=

0 only if X = Y = 2B, and iH2 (x) = 98 for x ∈ 2B.

H3 has one class of involutions, namely 2A, and so iH3 (x) =

mH3 (2A, 2A, 2A) = 30 for x ∈ 2A.

4. Now 98 + 98 + 30 = 226 < 1750, hence, in this case, the Lemma

holds true.

• Let G ∼= Co3.

1. G has two conjugacy classes of involutions, namely classes 2A and

2B. Since mG (2B, 2B, 21A) 6= 0 then ∃ a, b ∈ 2B s.t. ab =

c ∈ 21A.

Note that 〈c3〉 is a Sylow 7-subgroup of G, and that CG (c) = 〈c〉.
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2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 21 must be isomor-

phic to McL.2, HS, U4 (3) . (22)133, M23, 2.S6 (2), U3 (5) : S3, 24.A8,

L3 (4) .D12 or S3 × L2 (8) .3. From their character tables, it can be

seen that the groups McL.2, HS, U4 (3) . (22)133, M23, 2.S6 (2) and

24.A8 do not contain an element of order 21 and so can not con-

tain a dihedral group of order 42. Therefore, each maximal sub-

group containing D := 〈a, b〉 is conjugate with H1
∼= U3 (5) : S3,

H2
∼= L3 (4) .D12 or H3

∼= S3 × L2 (8) .3. Since the order of

the normalizer in H1 of a Sylow 7-subgroup is 126, H2 contains

the normalizer in G of a Sylow 7-subgroup and H3 contains the

normalizer in G of a Sylow 7-subgroup, by Lemma 3.1.5, there can

only be two maximal subgroup conjugate to H1, one maximal sub-

group conjugate to H2 and one maximal subgroup conjugate to H3

which contain the Sylow 7-subgroup 〈c3〉. Hence, there can only

be two maximal subgroup conjugate to H1, one maximal subgroup

conjugate to H2 and one maximal subgroup conjugate to H3 which

contain D.

3. mG (2B, 2B, 2B) = 792.

H1 has two classes of involutions, namely 2A and 2B, and if X and

Y are involution classes and Z is a class of order 21, mH1 (X, Y, Z) 6=

0 only if X = Y = 2B, and iH1 (x) = 50 for x ∈ 2B.

H2 has four classes of involutions, namely 2A, 2B, 2C and 2D,

and if X and Y are involution classes and Z is a class of order 19,

mH2 (X, Y, Z) 6= 0 only if X = Y = 2D, and iH2 (x) = 50 for

x ∈ 2D.

H3 has three class of involutions, namely 2A, 2B and 2C, and

if X and Y are involution classes and Z is a class of order 19,

mH2 (X, Y, Z) 6= 0 only if X = Y = 2C, and iH3 (x) = 14 for
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x ∈ 2C.

4. Now 2× 50 + 50 + 14 = 164 < 792, hence, in this case, the Lemma

holds true.

• Let G ∼= Co2.

1. G has three conjugacy class of involutions, namely classes 2A, 2B

and 2C. Since mG (2C, 2C, 28A) 6= 0 then ∃ a, b ∈ 2C s.t.

ab = c ∈ 28A.

Note that 〈c4〉 is a Sylow 7-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 28 must be isomor-

phic to U6 (2) .2, 210 : M22 : 2, McL, 21+8 : S62, HS.2, 21+4+6.A8,

U4 (3) .D8 or M23. From their character tables, it can be seen that

the groups U6 (2) .2, 210 : M22 : 2, McL, HS.2, 21+4+6.A8, and

M23 do not contain an element of order 28 and so do not contain

a dihedral group of order 56. Therefore, each maximal subgroup

containing D := 〈a, b〉 is conjugate with H1
∼= 21+8 : S62 or

H2
∼= U4 (3) .D8. Since H1 contains the normalizer in G of a

Sylow 7-subgroup and the order of the normalizer in H2 of a Sy-

low 7-subgroup is 7 · 22 · 6, by Lemma 3.1.5, there can only be one

maximal subgroup conjugate to H1 and two maximal subgroups

conjugate to H2 which contain the Sylow 7-subgroup 〈c4〉. Hence

there can only be one maximal subgroup conjugate to H1 and two

maximal subgroups conjugate to H2 which contain D.

3. mG (2C, 2C, 2C) = 5832.

H1 has ten classes of involutions, namely 2A, 2B, 2C, 2D, 2E, 2F ,

2G, 2H, 2I and 2J , and if X and Y are involution classes and Z is

a class of order 28, mH1 (X, Y, Z) 6= 0 only if X = Y = 2J , and

iH1 (x) = 1022 for x ∈ 2J .
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H2 has six classes of involutions, namely 2A, 2B, 2C, 2D, 2E and

2F , and if X and Y are involution classes and Z is a class of order

28, mH2 (X, Y, Z) 6= 0 only if X is 2E or 2F and Y is 2E or 2F ,

and iH2 (x) = 246 for x ∈ 2E and iH2 (x) = 222 for x ∈ 2F .

4. Now 1022+2×222 = 1466 < 1022+2×246 = 1514 < 5832, hence,

in this case, the Lemma holds true.

• Let G ∼= Fi22.

1. G has three conjugacy class of involutions, namely classes 2A, 2B

and 2C. Since mG (2C, 2C, 13A) 6= 0 then ∃ a, b ∈ 2C s.t.

ab = c ∈ 13A.

Note that 〈c〉 is a Sylow 13-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 13 must be isomor-

phic to O7 (3) or 2F4 (2). Therefore, each maximal subgroup con-

taining D := 〈a, b〉 is conjugate with H1
∼= O7 (3), H2

∼= O7 (3)

or H3
∼= 2F4 (2) (note that there are two conjugacy classes of

maximal subgroups of G that are isomorphic to O7 (3)). Since H1

contains the normalizer in G of a Sylow 13-subgroup, H2 contains

the normalizer in G of a Sylow 13-subgroup and H3 contains the

normalizer in G of a Sylow 13-subgroup, by Lemma 3.1.5, there

can only be one maximal subgroup conjugate to H1, one maximal

subgroup conjugate to H2 and one maximal subgroup conjugate to

H3 which contain the Sylow 13-subgroup 〈c〉. Hence, there can only

be one maximal subgroup conjugate to H1, one maximal subgroup

conjugate to H2 and one maximal subgroup conjugate to H3 which

contain D.

3. mG (2C, 2C, 2C) = 5184.

H1 has three classes of involutions, namely 2A, 2B and 2C, and
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if X and Y are involution classes and Z is a class of order 13,

mH1 (X, Y, Z) 6= 0 only if X = Y = 2C, and iH1 (x) = 750 for

x ∈ 2C.

H2 has three classes of involutions, namely 2A, 2B and 2C, and

if X and Y are involution classes and Z is a class of order 13,

mH2 (X, Y, Z) 6= 0 only if X = Y = 2C, and iH2 (x) = 750 for

x ∈ 2C.

H3 has two classes of involutions, namely 2A and 2B, and if X and

Y are involution classes and Z is a class of order 13, mH3 (X, Y, Z) 6=

0 only if X = Y = 2B, and iH3 (x) = 174 for x ∈ 2B.

4. Now 750+750+174 = 1674 < 5184, hence, in this case, the Lemma

holds true.

• Let G ∼= HN .

1. G has two conjugacy classes of involutions, namely classes 2A and

2B. Since mG (2B, 2B, 21A) 6= 0 then ∃ a, b ∈ 2B s.t. ab =

c ∈ 21A.

Note that 〈c3〉 is a Sylow 7-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that

any maximal subgroup whose order is divisible by 21 must be

isomorphic to A12, 2.HS.2, U3 (8) .31, (D10 × U3 (5)) .2 or

23.22.26. (3× L3 (2)). From their character tables, it can be seen

that the groups 2.HS.2 and (D10 × U3 (5)) .2 do not contain an el-

ement of order 21 and the conjugacy classes of elements of order

21 in the groups U3 (8) .31 and 23.22.26. (3× L3 (2)) are not real,

and so these groups do not contain a dihedral group of order 42.

Therefore, each maximal subgroup containing D := 〈a, b〉 is conju-

gate with H ∼= A12. Since this subgroup contains the normalizer

in G of a Sylow 7-subgroup, by Lemma 3.1.5, there can only be
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one maximal subgroup of G, conjugate to H containing the Sylow

7-subgroup 〈c3〉. Hence, there can only be one maximal subgroup

of G, conjugate to H containing D.

3. mG (2B, 2B, 2B) = 7350.

H has three classes of involutions, namely 2A, 2B and 2C, and

if X and Y are involution classes and Z is a class of order 21,

mH (X, Y, Z) 6= 0 only if X = Y = 2C, and iH (x) = 366 for

x ∈ 2C.

4. Now 366 < 7350, hence, in this case, the Lemma holds true.

• Let G ∼= Ly.

1. G has one conjugacy class of involutions, namely class 2A. Since

mG (2A, 2A, 67A) 6= 0 then ∃ a, b ∈ 2A s.t. ab = c ∈ 67A.

Note that 〈c〉 is a Sylow 67-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 67 must be isomor-

phic to 67 : 22. Therefore, each maximal subgroup containing

D := 〈a, b〉 is conjugate with H ∼= 67 : 22. Since this subgroup

is isomorphic to the normalizer in G of a Sylow 67-subgroup, by

Lemma 3.1.5, there can only be one maximal subgroup of G, conju-

gate to H containing the Sylow 67-subgroup 〈c〉. Hence, there can

only be one maximal subgroup of G, conjugate to H containing D.

3. mG (2A, 2A, 2A) = 34650.

H has one class of involutions, namely 2A, and so iH (x) =

mH (2A, 2A, 2A) = 0 for x ∈ 2A.

4. Now 0 < 34650, hence, in this case, the Lemma holds true.

• Let G ∼= Th.
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1. G has one conjugacy class of involutions, namely class 2A. Since

mG (2A, 2A, 19A) 6= 0 then ∃ a, b ∈ 2A s.t. ab = c ∈ 19A.

Note that 〈c〉 is a Sylow 19-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 19 must be isomor-

phic to U3 (8) .6 or L2 (19) .2. Therefore, each maximal subgroup

containing D := 〈a, b〉 is conjugate with H1
∼= U3 (8) .6, or

H2
∼= L2 (19) .2. Since H1 contains the normalizer in G of a

Sylow 19-subgroup and H2 contains the normalizer in G of a Sylow

19-subgroup, by Lemma 3.1.5, there can only be one maximal sub-

group conjugate to H1 and one maximal subgroup conjugate to H2

which contain the Sylow 19-subgroup 〈c〉. Hence, there can only be

one maximal subgroup conjugate to H1 and one maximal subgroup

conjugate to H2 which contain D.

3. mG (2A, 2A, 2A) = 30510.

H1 has two classes of involutions, namely 2A, and 2B, and if X and

Y are involution classes and Z is a class of order 19, mH1 (X, Y, Z) 6=

0 only if X = Y = 2B, and iH1 (x) = 126 for x ∈ 2B.

H2 has two classes of involutions, namely 2A, and 2B, and if X and

Y are involution classes and Z is a class of order 19, mH2 (X, Y, Z) 6=

0 only if X = Y = 2B, and iH2 (x) = 18 for x ∈ 2B.

4. Now 126 + 18 = 144 < 30510, hence, in this case, the Lemma holds

true.

• Let G ∼= Fi23.

1. G has three conjugacy classes of involutions, namely classes 2A,

2B and 2C. Since mG (2C, 2C, 17A) 6= 0 then ∃ a, b ∈ 2C s.t.

ab = c ∈ 17A.

Note that 〈c〉 is a Sylow 17-subgroup of G, and that CG (c) = 〈c〉.
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2. From the list of maximal subgroups of G, it can be seen that

any maximal subgroup whose order is divisible by 17 must be

isomorphic to S8 (2) or S4 (4) .4. Therefore, each maximal sub-

group containing D := 〈a, b〉 is conjugate with H1
∼= S8 (2), or

H2
∼= S4 (4) .4. Since the order of the normalizer in H1 of a Sylow

17-subgroup is 17 ·8 and H2 contains the normalizer in G of a Sylow

17-subgroup, by Lemma 3.1.5, there can only be two maximal sub-

group conjugate to H1 and one maximal subgroup conjugate to H2

which contain the Sylow 17-subgroup 〈c〉. Hence, there can only be

two maximal subgroup conjugate to H1 and one maximal subgroup

conjugate to H2 which contain D.

3. mG (2C, 2C, 2C) = 143370.

H1 has two classes of involutions, namely 2A, 2B, 2C, 2D, 2E and

2F , and if X and Y are involution classes and Z is a class of order

17, mH1 (X, Y, Z) 6= 0 only if X = Y = 2F , and iH1 (x) = 2686

for x ∈ 2F .

H2 has three classes of involutions, namely 2A, 2B and 2C, and

if X and Y are involution classes and Z is a class of order 17,

mH2 (X, Y, Z) 6= 0 only if X = Y = 2B, and iH2 (x) = 126 for

x ∈ 2B.

4. Now 2 × 2686 + 126 = 5498 < 143370, hence, in this case, the

Lemma holds true.

• Let G ∼= Co1.

1. G has three conjugacy classes of involutions, namely classes 2A,

2B and 2C. Since mG (2C, 2C, 33A) 6= 0 then ∃ a, b ∈ 2C s.t.

ab = c ∈ 33A.

Note that 〈c3〉 is a Sylow 11-subgroup of G, and that CG (c) = 〈c〉.
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2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 33 must be isomor-

phic to Co2, 3.Suz.2, 211.M24, Co3, U6 (2) .3.2 or 36 : 2M12. From

their character tables, it can be seen that the groups Co2, 211.M24

and Co3 do not contain elements of order 33 and the conjugacy

classes of elements of order 33 in 36 : 2M12 are not real, and so

these groups do not contain a dihedral group of order 66. There-

fore, each maximal subgroup containing D := 〈a, b〉 is conjugate

with H1
∼= 3.Suz.2, or H2

∼= U6 (2) .3.2. Since H1 contains the

normalizer in G of a Sylow 11-subgroup and the order of the normal-

izer in H2 of a Sylow 11-subgroup is 330, by Lemma 3.1.5, there can

only be one maximal subgroup conjugate to H1 and two maximal

subgroups conjugate to H2 which contain the Sylow 11-subgroup

〈c3〉. Hence, there can only be one maximal subgroup conjugate to

H1 and two maximal subgroups conjugate to H2 which contain D.

3. mG (2C, 2C, 2C) = 60984.

H1 has four classes of involutions, namely 2A, 2B, 2C, and 2D,

and if X and Y are involution classes and Z is a class of order 33,

mH1 (X, Y, Z) 6= 0 only if X = Y = 2D, and iH1 (x) = 3366

for x ∈ 2D.

H2 has five classes of involutions, namely 2A, 2B, 2C, 2D and 2E,

and if X and Y are involution classes and Z is a class of order 33,

mH2 (X, Y, Z) 6= 0 only if X = Y = 2E, and iH2 (x) = 1502

for x ∈ 2B.

4. Now 3366 + 2 × 1502 = 6370 < 60984, hence, in this case, the

Lemma holds true.

• Let G ∼= J4.

1. G has two conjugacy classes of involutions, namely classes 2A and
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2B. Since mG (2B, 2B, 43A) 6= 0 then ∃ a, b ∈ 2B s.t. ab =

c ∈ 43A.

Note that 〈c〉 is a Sylow 43-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 43 must be isomor-

phic to 43 : 14. Therefore, each maximal subgroup containing

D := 〈a, b〉 is conjugate with H ∼= 43 : 14. Since this subgroup

is isomorphic to the normalizer in G of a Sylow 43-subgroup, by

Lemma 3.1.5, there can only be one maximal subgroup of G, conju-

gate to H containing the Sylow 43-subgroup 〈c〉. Hence, there can

only be one maximal subgroup of G, conjugate to H containing D.

3. mG (2A, 2A, 2A) = 147884.

H has one class of involutions, namely 2A, and so iH (x) =

mH (2A, 2A, 2A) = 0 for x ∈ 2A.

4. Now 0 < 147884, hence, in this case, the Lemma holds true.

• Let G ∼= Fi′24.

1. G has two conjugacy classes of involutions, namely classes 2A and

2B. Since mG (2B, 2B, 29A) 6= 0 then ∃ a, b ∈ 2B s.t. ab =

c ∈ 29A.

Note that 〈c〉 is a Sylow 29-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 29 must be isomor-

phic to 29 : 14. Therefore, each maximal subgroup containing

D := 〈a, b〉 is conjugate with H ∼= 29 : 14. Since this subgroup

is isomorphic to the normalizer in G of a Sylow 29-subgroup, by

Lemma 3.1.5, there can only be one maximal subgroup of G, conju-

gate to H containing the Sylow 29-subgroup 〈c〉. Hence, there can
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only be one maximal subgroup of G, conjugate to H containing D.

3. mG (2A, 2A, 2A) = 2997162.

H has one class of involutions, namely 2A, and so iH (x) =

mH (2A, 2A, 2A) = 0 for x ∈ 2A.

4. Now 0 < 2997162, hence, in this case, the Lemma holds true.

• Let G ∼= B.

1. G has four conjugacy classes of involutions, namely classes 2A, 2B,

2C and 2D. Since mG (2C, 2C, 19A) 6= 0 then ∃ a, b ∈ 2C s.t.

ab = c ∈ 19A.

Note that 〈c〉 is a Sylow 19-subgroup of G, and that |CG (c) | =

19× 2.

2. From the list of maximal subgroups of G, it can be seen that any

maximal subgroup whose order is divisible by 19 must be isomor-

phic to 2.2E6 (2) : 2, Th or HN : 2. Therefore, each maximal sub-

group containing D := 〈a, b〉 is conjugate with H1
∼= 2.2E6 (2) : 2,

H2
∼= Th or H3

∼= HN : 2. Since H1 contains the normalizer in

G of a Sylow 19-subgroup, the order of the normalizer in H2 of a

Sylow 19-subgroup is 19 · 18 and the order of the normalizer in H3

of a Sylow 19-subgroup is 19 · 18, by Lemma 3.1.5, there can only

be one maximal subgroup conjugate to H1, two maximal subgroups

conjugate to H2 and two maximal subgroups conjugate to H3 which

contain the Sylow 19-subgroup 〈c〉. Hence, there can only be one

maximal subgroup conjugate to H1, two maximal subgroups con-

jugate to H2 and two maximal subgroups conjuagte to H3 which

contain D.

3. mG (2C, 2C, 2C) = 184246272.

H1 has ten classes of involutions, namely 2A, 2B, 2C, 2D, 2E, 2F ,
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2G, 2H, 2I and 2J , and if X and Y are involution classes and Z is

a class of order 19, mH1 (X, Y, Z) 6= 0 only if X is 2I or 2J and Y

is 2I or 2J , and iH1 (x) = 7746558 for any x ∈ 2I ∪ 2J .

H2 has one class of involutions, namely 2A, and so iH2 (x) =

mH2 (2A, 2A, 2A) = 30510 for x ∈ 2A.

H3 has three classes of involutions, namely 2A, 2B and 2C, and

if X and Y are involution classes and Z is a class of order 19,

mH3 (X, Y, Z) 6= 0 only if X = Y = 2C, and iH3 (x) = 18990

for x ∈ 2C.

4. Now 7746558 + 2 × 30510 + 2 × 18990 = 7845558 < 184246272,

hence, in this case, the Lemma holds true.

• Let G ∼= M .

1. G has two conjugacy classes of involutions, namely classes 2A and

2B. Since mG (2B, 2B, 41A) 6= 0 then ∃ a, b ∈ 2B s.t. ab =

c ∈ 41A.

Note that 〈c〉 is a Sylow 41-subgroup of G, and that CG (c) = 〈c〉.

2. From the list of maximal subgroups of G [NW02], it can be seen

that any maximal subgroup whose order is divisible by 41 must be

isomorphic to 38.O−8 (3) .23 or 41 : 40. Therefore, each maximal sub-

group containing D := 〈a, b〉 is conjugate with H1
∼= 38.O−8 (3) .23,

or H2
∼= 41 : 40. Since the order of the normalizer in H1 of a

Sylow 41-subgroup is 41 · 8, and H2 is isomorphic to the normalizer

in G of a Sylow 41-subgroup, by Lemma 3.1.5, there can only be

five maximal subgroups conjugate to H1 and one maximal subgroup

conjugate to H2, which contain D.

3. mG (2B, 2B, 2B) = 90717803016750.

For H1 the information needed to calculate iH1 (x) is not as readily

available. However, we know that iH1 (x) 6 |CH1 (a)|. Also, since
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the subgroup 41 of H1 acts on the subgroup 38 without fixed points,

we have |C38 (a)| = 34, and so we have |CH1 (a)| 6 342
∣∣∣CO−8 (3) (x)

∣∣∣,
for some involution x in O−8 (3). This upper bound can then be

calculated from the character table of O−8 (3), which is readily avail-

able, but it is enough for our purposes to note that this upper bound

gives iH1 (x) < iG (a) /100 = 90741673459710/100.

H2 has one class of involutions, namely 2A, and so iH2 (x) =

mH2 (2A, 2A, 2A) = 0 for x ∈ 2A.

4. Now 5 × 90741673459710/100 + 0 = 9074167345971/2 < . . .

. . . < 90717803016750, hence, in this case, the Lemma holds true.
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Chapter 4

The Linear Groups,
characteristic 6= 2

We now move on to the linear groups. The purpose of this chapter is to

determine which of the simple finite linear groups, Ln (q), have Property 1

for q odd (and generally for q 6= 9). As such, we will first give some relevant

definitions and results.

4.1 Preliminaries

First we consider the additional notation used in this chapter. Most of the

notation used is fairly standard. For a prime power number, q = pk, (where p

is a prime number, and k is a natural number), Fq will denote the finite field

of q elements. A generator of the cyclic group F∗q = Fq\ {0} will be called a

“primitive element” of Fq, while a generator of Fq as an algebra over Fp will

be called a “defining element” of Fq. If the field is Fp, a defining element will

always be assumed to be non-zero.

Let V be a vector space of dimension n over the finite field, Fq, of order

q. The “general linear group”, GL (V ) is the set of invertible linear maps

V −→ V . We may take V as the vector space Fnq of n-tuples of elements of

Fq, and so the “general linear group”, GLn (V ), the set of invertible linear

68



maps V −→ V , may be identified with the group GLn (q) of invertible n × n

matrices over Fq. The subgroup of GLn (q) that consists of all n× n matrices

with determinant 1, is called the “special linear group”, and we denote this

group by SLn (q). We denote by In the n×n identity matrix and the centre of

the special linear group, Z (SLn (q)), consists of all the scalar matrices, λIn,

of determinant 1. This is a normal subgroup of SLn (q) and the quotient,

SLn (q) /Z (SLn (q)) is called the “projective special linear group”, denoted

by PSLn (q) or Ln (q). We denote the natural surjective homomorphism from

SLn (q) to Ln (q) by φ. We will also need to talk about the dual space of row

vectors of length n with entries in Fq, and we will denote by nFq this space.

Also we will denote by ei the column vector with 1 in the ith position and 0’s

elsewhere, i.e. {e1, . . . , en} is the standard basis of Fnq and so the set of row

vectors
{
eT1 , . . . , e

T
n

}
forms the standard basis of nFq.

We will generally be working in SLn (q), and we will want a way to express

general n×n matrices. The generators chosen in this chapter will be relatively

close to being permutation matrices, and so will have entries mostly equal to

zero, and we follow the standard convention of using blank spaces to represent

large numbers of zero entries. Here is an example of a general n × n matrix

for n = 4m+ 1 with m > 2:
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

1
1

1
. . .

1
1

1

. .
.

1
1

0 0 · · · · · · · · · 0 α −α 0 · · · 0 1
1


︸ ︷︷ ︸

2m−2
︸ ︷︷ ︸

2m−1

The dots in the matrix indicate that the ‘pattern’ of matrix entries con-

tinues for the number of columns indicated. As the matrix is ‘close’ to being

a permutation matrix, we also indicate the permutation that it is ‘close’ to

(in this case (1, 2m,n− 2, 3, . . . 2, 2m+ 1, n− 1, n)). The information given

should make it possible to reproduce these matrices for any allowed value of

n.

We will require that the involutions we choose as generators for Ln (q)

are conjugate. Now, since any involution in GLn (q) can be diagonalised in

SLn (q) to a diagonal matrix with non-zero entries equal to ±1 and such

matrices are conjugate if they have the same eigenvalues, we can check if two

involutions are conjugate in SLn (q) by comparing their eigenvalues. Also, as

φ : SLn (q) −→ Ln (q) is a homomorphism, if x and y are conjugate in SLn (q),

then φ (x) and φ (y) are conjugate in Ln (q).

To prove positive results, we will often show that Ln (q) has Property 2,

and we will generally be working in SLn (q). As such we use the fact that φ is

a surjective homomorphism, and if a set X ⊆ SLn (q) generates SLn (q), then

φ (X) ⊆ Ln (q) generates Ln (q).
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The following result is due to J. McLaughlin [McL67]:

Lemma 4.1.1. Let Fq be any field distinct from F2, and G be an irreducible

linear group generated by root subgroups. Then one of the following holds:

1. G ∼= SLn (q);

2. n is even and G ∼ Spn (q).

which suggests the method outlined below, originated by Di Martino and

Vavilov in [DV94] and [DV96].

1. We exhibit elements in SLn (q), such that they map to elements in Ln (q)

with the desired properties (i.e. 5 conjugate involutions whose product is

the identity, or 3 conjugate involutions, two of which commute and whose

product is also conjugate to the generating involutions) and defined in

terms of a variable α ∈ Fq. We call the group generated by these elements

G.

2. We show that there is a non-trivial transvection, g in G. We then show

that there is a transvection opposite to g in G. We show, using Dickson’s

Lemma (Lemma 4.1.2 below) that these two transvections generate a

group isomorphic to SL2 (q) (subject to some polynomial in α being a

defining element of Fq). Thus we can conclude that G contains the whole

root subgroup R, consisting of all transvections with the same centre and

the same axis as g.

3. We now consider a subgroup G1 6 G, containing R, and the normal

closure H1 := 〈g〉G1 = 〈R〉G1 E G1 of the root subgroup R in G1.

Then an analysis of G-invariant subspaces shows that the group G is

irreducible (possibly apart from a few values of α). We then show that

H1 is irreducible, and conclude that H := 〈g〉G = 〈R〉G is irreducible.
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Thus from the classification of irreducible linear groups generated by

root subgroups, H either coincides with SL (n, q), or n is even and H is

conjugate to Spn (q).

4. We exclude the symplectic case by showing that G does not preserve a

non-degenerate symplectic form up to similarity. This implies that, when

α satisfies the imposed restrictions, we have that G D H = SLn (q).

Hence, G = SLn (q), so by our choice of generators of G, we have that

Ln (q) is generated by elements with the desired properties, and so has

Property 1 or Property 2, as required.

5. It then remains to check that any restrictions on α can be satisfied.

The following result will be very useful:

Lemma 4.1.2 (Dickson’s Lemma). See [Gor68]. Let Fq be a finite field with

q odd. Also, let λ be a defining element of Fq and set

L :=

〈(
1 0
λ 1

)
,

(
1 1
0 1

)〉
.

Then we have either

1. L = SL2 (q), or

2. q = 9, |Z (L)| = 2, L/Z (L) is isomorphic to A5 and L contains a

subgroup isomorphic to SL2 (3).

Note that, because of the exception in the case of q = 9, we do not, in

general, deal with this case, as we do not obtain the required root subgroup

as described under point 2 in the method above.

4.1.1 Transvections and Root Subgroups

We now give some definitions and results with regard to transvections and

root subgroups. This will help us to exhibit the needed properties from point
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2 of the method above. These definitions and results are generally fairly well

known.

Definition 4.1.3. For a matrix x ∈ GLn (q), the rank of the matrix x− In is

called the “residue” of x. This is denoted by res (x).

The general form of a one-dimensional transformation (i.e. a transforma-

tion with residue equal to 1) is xca (ξ) := In+cξa, where c = (c1, . . . , cn)T ∈ Fnq
is a column vector, a = (a1, . . . , an) ∈ nFq is a row vector and ξ ∈ Fq is a scalar.

Definition 4.1.4. In geometric terminology, c is a generator of the “centre”

of xca (ξ), i.e. the centre is the Image, Im (xca (ξ)− In). The “axis” of xca (ξ)

is the hyperplane in Fnq orthogonal to a with respect to the standard scalar

product, i.e. the axis is the hyperplane Ker (xca (ξ)− In).

Definition 4.1.5. For i 6= j, matrices of the form tij (ξ) := In + ξeij, where

eij is the matrix with 1 in the (i, j)th position and zeros everywhere else, are

called “elementary transvections”. A matrix is called a “transvection” if it is

conjugate in GLn (q) to an elementary transvection.

Note that when the characteristic of a field is p, a prime, as in this case,

then the order of a transvection is equal to p.

Now we have a simple test to see whether a one-dimensional transformation

is a transvection:

Lemma 4.1.6. The one-dimensional transformation xca (ξ) is a transvection

if and only if ac = 0 (i.e. the centre lies on the axis).

Proof. Assume x is a transvection. Then for some elementary transvection,

tij (ξ), and some g ∈ GLn (q), we have

x = g−1tij (ξ) g

= g−1 (In + ξeij) g
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= In + cξa

where c = ((g−1)1i , . . . , (g
−1)ni)

T
, the ith column of g−1 and a = (gj1, . . . , gjn),

the jth row of g. Now since i 6= j, we must have ac = 0. Conversely, if we have

a one-dimensional transformation xca (ξ) = In + cξa, with ac = 0, then there

exists a matrix g ∈ GLn (q) with c as the 1st column of g−1 and with a as

the 2nd row of g. Hence, xca (ξ) is conjugated to the elementary transvection

t12 (ξ) by g, and so xca (ξ) is a transvection.

For a transvection x, the values a and c are defined up to scalar multiples.

We normalize x by setting ξ = 1, and if x 6= e, we let the first non-zero

coordinate of a be equal to 1. From now on we denote the normalized a and

c of x by a (x) and c (x) respectively.

Definition 4.1.7. The group R := {xca (ξ) : ξ ∈ Fq} is called a “Root Sub-

group” of SLn (q). In particular, the subgroups Xij := {tij (γ) : γ ∈ Fq} are

called “elementary root subgroups”.

Note that R is isomorphic to the additive group F+q . Also, note that

every non-trivial transvection x is contained in a unique root subgroup, X :={
xc(x),a(x) (γ) : γ ∈ Fq

}
.

Consider two transvections x := xc(x)a(x) (1) and x := yc(y)a(y) (1). The

following fact was first noted in [AS76] by M. Aschbacher and G. Seitz and

was used in [Coo79] by B. Cooperstein. A proof may be found in [Vav88].

Lemma 4.1.8. Any pair (x, y) of transvections can be simultaneously conju-

gated to a pair of elementary transvections, i.e. ∃g ∈ GLn (q) s.t. xg = tij (γ)

and yg = thk (δ), for some 1 6 i, j, h, k 6 n, i 6= j, h 6= k, γ, δ ∈ Fq.

Definition 4.1.9. For a pair of transvections there are a few possibilities:

• Two transvections are called “orthogonal” if the (unique) root subgroups

in which they are contained are simultaneously conjugate in GLn (q) to
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a pair of elementary root subgroups Xij and Xhk, with i, j, h and k all

distinct.

• Two transvections are called “commuting” if the (unique) root subgroups

in which they are contained are simultaneously conjugate in GLn (q) to a

pair of elementary root subgroups Xij and Xhk, with three distinct indices

among i, j, h and k, and i 6= k, j 6= h.

• Two transvections are called “non-commuting” if the (unique) root sub-

groups in which they are contained are simultaneously conjugate in

GLn (q) to a pair of elementary root subgroups Xij and Xhk, with three

distinct indices among i, j, h and k, and i 6= h, j 6= k.

• If the (unique) root subgroups in which they are contained are simulta-

neously conjugate in GLn (q) to a pair of elementary root subgroups Xij

and Xhk, with (i, j) = (h, k), then the root subgroups coincide.

• Two transvections are called “opposite” if the (unique) root subgroups in

which they are contained are simultaneously conjugate in GLn (q) to a

pair of elementary root subgroups Xij and Xhk, with (i, j) = (k, h).

Now, under conjugation, the axis and centre of a transformation x behave

as follows:

a
(
g−1xg

)
= a (x) g and

c
(
g−1xg

)
= g−1c (x)

Thus, in particular, we have for transformations x and y:

a
(
g−1xg

)
c
(
g−1yg

)
= a (x) gg−1c (y)

= a (x) c (y) and similarly

a
(
g−1yg

)
c
(
g−1xg

)
= a (y) c (x)
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i.e. the values a (x) c (y) and a (y) c (x) are invariant under conjugation. Also,

for two transvections, x and y, collinearity of the row vectors a (x) and a (y) is

preserved under simultaneous conjugation (as is the collinearity of the column

vectors c (x) and c (y)). From these we get the following result:

Lemma 4.1.10. A necessary and sufficient condition for a pair of transvec-

tions x and y to be opposite is that both γ := a (x) c (y) and δ := a (y) c (x)

are distinct from zero. In this case the pair (x, y) is conjugate to the pair

(t12 (γ) , t21 (δ)).

Now, since the pair (t12 (γ) , t21 (δ)) is conjugate to the pair (t12 (1) , t21 (δγ)),

the above result, along with Dickson’s Lemma gives us:

Lemma 4.1.11. Let K := Fq be a finite field with char (K) 6= 2 and q 6= 9.

Suppose that x and y are such transvections that the product γδ, where γ :=

a (x) c (y) and δ := a (y) c (x), is a defining element of the field Fq. Then the

subgroup 〈x, y〉 contains a root subgroup X ∼= F+q .

4.1.2 Irreducibility

We now give some definitions and results to do with showing that a subgroup

of GLn (q) is irreducible over the vector space V ∼= Fnq . Again the majority of

these definitions and results are generally fairly well known.

Definition 4.1.12. Let G be a subgroup of GLn (q). A subspace U ⊆ V is

called “invariant with respect to G” (or “G-invariant”) if gu ∈ U for any

g ∈ G and u ∈ U . A subspace U ⊆ V is called “proper” if it is distinct from

V and 0. A subgroup G of GLn (q) is called “irreducible” if there is no proper

G-invariant subspaces in V . A direct sum decomposition V = U1⊕ · · · ⊕Ut is

called an “imprimitivity system” for the group G if G permutes the summands

Ui, i.e. for every element g ∈ G and for every i, 1 6 i 6 t, there exists

a j, 1 6 i 6 t, s.t. gUi = Uj. The summands, Ui, are called “blocks of
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imprimitivity” of G. G is called “primitive” if it does not admit a non-trivial

imprimitivity system, and is called “imprimitive” otherwise.

Note that, if a group, G, is irreducible but imprimitive then all blocks of an

imprimitivity system of G have the same dimension s, and G permutes them

transitively. In particular, n = st.

Definition 4.1.13. If V is a completely reducible H-module and W is an irre-

ducible submodule of V , then the “homogeneous component” U of V containing

W is the sum of all H-submodules of V isomorphic to W .

Now, we will need a result known as “Clifford’s Theorem”. The following

Lemma summarises the parts of Clifford’s Theorem that we will need:

Lemma 4.1.14. If G is irreducible and H E G is a normal subgroup of G,

then

1. V is completely reducible as a H-module;

2. The representatives W1, . . . ,Wt of the isomorphism classes of irreducible

H-submodules are G-conjugate;

3. Denote by Ui the homogeneous component of V , containing Wi. Then

U1, . . . , Ut form an imprimitivity system for G;

4. In particular, if G is both irreducible and primitive then with respect to an

appropriate base of V any element x of H has the form a (x)⊕· · ·⊕a (x),

for some matrix a (x) ∈ GLs (K).

Now, since we have that

res (a1 ⊕ . . .⊕ al) = res (a1) + . . .+ res (al) ,

and we know that for a transvection x, res (x) = 1, then we have that a

non-trivial transvection cannot be presented as a direct sum a⊕ . . .⊕ a with
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more than one summand. Thus Lemma 4.1.14 implies that if G is a primitive

irreducible group which contains a non-trivial transvection x, then the normal

closure H := 〈x〉G of x in G is irreducible.

The following result is useful:

Lemma 4.1.15. Consider a block-monomial matrix of the shape

z =


a1

. . .

al−1
al


where l > 2 and a1, . . . , al ∈ GLm (q), m > 2. Then no power of z is a

non-trivial transvection.

Proof. We consider the power of z, zr. If r is not divisible by l, then zr is

a block-monomial matrix which is not block-diagonal. Remember that the

residue of a transformation, x, is given by res (x) = rank (x− In). Thus, as

zr is not block-diagonal, its residue must be at least m.

Now a simple calculation shows that zl is a block-diagonal matrix of the

form

a1a2 · · · al−1al ⊕ a2a3 · · · ala1 ⊕ · · · ⊕ ala1 · · · al−2al−1,

and these summands are clearly all conjugate. Thus if r is divisible by l, the

residue of zr must be divisible by l.

Thus, as a non-trivial transvection has residue equal to 1, this shows that,

for l > 2 and m > 2, zr can never be a non-trivial transvection.

We now give the main results for this section:

Proposition 4.1.16. Let G be a subgroup of SLn (q) containing two elements,

b and c. Suppose some power, (bc)r, of bc is a non-trivial transvection and let

H := 〈(bc)r〉G be the normal subgroup of G generated by (bc)r. Suppose G

is irreducible and let V = U1 ⊕ · · · ⊕ Ul be a direct decomposition of V into
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H-homogeneous components. Denote by σ and τ the images of b and c in the

action of G on the set I := {U1, . . . , Ul} of components. Then:

1. If l = 1, then H is irreducible;

2. l 6= n;

3. If (bc)r acts non-trivially on some Ui ∈ I, then στUi = Ui.

Proof. 1. Here V is H-homogeneous. If it is not H-irreducible, then any

matrix in H is conjugate to a matrix of the form a ⊕ · · · ⊕ a for some

a ∈ GLm (K), m|n, m 6= n, which makes it impossible for H to contain

a transvection.

2. If l = n, then H is diagonalizable, so it cannot contain a non-trivial

transvection.

3. We may assume l < n. Suppose that a subspace Ui is such that στUi 6=

Ui. Then Ui is contained in an orbit of cardinality s > 2 with respect to

the element στ and we let W be the sum of the subspaces Uj from this

orbit. Then it follows from Lemma 4.1.15 that (bc)r must act trivially

on W and so on Ui.

Proposition 4.1.17. Let G be a subgroup of SLn (q) generated by three ele-

ments, x, b and c. Suppose some power, (bc)r, of bc is a non-trivial transvec-

tion, its conjugate, ((bc)r)
x
, is opposite to (bc)r and its conjugates ((bc)r)

b
and

((bc)r)
c

are both equal to ((bc)r)
−1

. Let H := 〈(bc)r〉G be the normal subgroup

of G generated by (bc)r. If G is irreducible, then H is also irreducible.

Proof. Let G be irreducible and assume H is not irreducible. We use the

notation from Proposition 4.1.16, and we denote by ρ, σ and τ the images of

x, b and c in the action of G on the set I := {U1, . . . , Ul} of components. Now,
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from Proposition 4.1.16, we may assume 1 < l < n. Let Ui be the subspace on

which (bc)r acts non-trivially. Then by Proposition 4.1.16, στUi = Ui. Now Ui

must be σ-invariant and τ -invariant as, if not, the transvections ((bc)r)
b

and

((bc)r)
c

would act non-trivially on some subspace Uj, for some j 6= i, and thus

must be orthogonal to (bc)r and then ((bc)r)
b

and ((bc)r)
c

could not be equal

to ((bc)r)
−1

. Now Ui cannot be ρ-invariant, else Ui would form a G-invariant

subspace of V , which cannot happen as l > 1. But then the transvection

((bc)r)
x

acts non-trivially on some subspace Uj for some j 6= i, and thus must

be orthogonal to (bc)r, and not opposite, contradicting the assumption. Thus,

we must have that H is irreducible.

So, if we can show that a group G, with the properties given in this Propo-

sition, is irreducible, then we will have an irreducible group generated by root

subgroups. To show that the group G is irreducible, we will use the following

result:

Lemma 4.1.18. Let G be a subgroup of GLn (q) containing a transvection g.

If U is a G-invariant subspace in V , then either U contains the centre of g,

or U is contained in the axis of g.

Proof. Since U is G-invariant and g ∈ G, we have (In + c (g) a (g))u ∈ U , and

so c (g) a (g)u ∈ U . If U is not contained in the axis of g, then ∃u ∈ U s.t.

a (g)u 6= 0. Then, as c (g) a (g)u ∈ U , we have c (g) ∈ U , i.e. the centre of g

is contained in U .

4.1.3 Invariant Forms

If n = 2l is even we denote by Spn (K) the symplectic group of degree n over

K. Spn (K) is defined in terms of a non-degenerate symplectic form 〈 , 〉 on

the space V , and consists of all matrices g ∈ GLn (K) s.t. 〈gu, gv〉 = 〈u, v〉 for

all u, v ∈ V . Since we are dealing with finite fields, K = Fq, we will also write

Spn (q). We will also consider the corresponding general group GSpn (K),
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consisting of all symplectic similarities, i.e. consisting of all matrices g ∈

GLn (K) s.t. for all u, v ∈ V , we have 〈gu, gv〉 = λ (g) 〈u, v〉, for some scalar

λ (g) ∈ K∗ dependent on g. We call λ (g) the “multiplier” corresponding to g.

This section is concerned with definitions and results to do with symplectic

forms. We will need these to exclude the possibility that certain groups are

symplectic groups. Again, these definitions and results are fairly well known.

Lemma 4.1.19. Let Γ := Spn (K). Then the normalizer of Γ in GLn (K)

coincides with GSpn (K).

The intersection of GSpn (K) with SLn (K), we denote by SGSpn (K),

and it is the normalizer of Spn (K).

From this, we have that to show H := 〈g〉G = 〈R〉G is not conjugate to

Spn (q) (and hence must be isomorphic to SLn (q)), we will be using the explicit

generators of G to show that G does not preserve a non-degenerate symplectic

form up to similarity (possibly with some restrictions on α). We will show

that any form that is preserved by G up to similarity must be degenerate,

i.e. 〈u, v〉 = 0 ∀u, v ∈ V . To do this, we will first consider the multipliers

corresponding to the generators of G, and show that they must all be equal

to 1. As such the following result will be useful:

Lemma 4.1.20. Let g, h1, h2 ∈ GSpn (K), and let λ (g), λ (h1) and λ (h2) ∈

K∗ be the multipliers corresponding to g, h1 and h2 respectively.

1. If g = 1, then λ (g) = 1.

2. If g = h1h2, then λ (g) = λ (h1)λ (h2).

3. If g is an element of order n then λ (g)n = 1.

4. If g is an involution then λ (g) = ±1.

5. If h1 and h2 are conjugate in GSpn (K), then λ (h1) = λ (h2).
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Proof. 1. If g = 1, then for u, v ∈ V , λ (g) 〈u, v〉 = 〈gu, gv〉 = 〈u, v〉, and

thus λ (g) = 1.

2. If g = h1h2, then for u, v ∈ V , λ (g) 〈u, v〉 = 〈gu, gv〉 = 〈h1h2u, h1h2v〉 =

λ (h1) 〈h2u, h2v〉 = λ (h1)λ (h2) 〈u, v〉, and thus λ (g) = λ (h1)λ (h2).

3. If g is an element of order n, then by the above λ (g)n = λ (gn) = λ (1) =

1.

4. If g is an involution, then by the above λ (g)2 = λ (g2) = λ (1) = 1, and

so λ (g) = ±1.

5. If h1 = hg2 for some g ∈ GSpn (K), then for u, v ∈ V , λ (h1) =

λ (g−1h2g) = λ (g−1)λ (h2)λ (g) = λ (g)−1 λ (g)λ (h2) = λ (h2).

Another useful result concerning multipliers is given below, but we will

first need another definition:

Definition 4.1.21. For an involution x, we denote by V + (x) and V − (x) the

eigenspaces of x corresponding to the eigenvalues 1 and −1 respectively.

Lemma 4.1.22. If x, an involution from SLn (K), preserves a non-degenerate

symplectic form up to similarity, with multiplier λ (x), then at least one of the

following holds:

1. λ (x) = 1;

2. dim (V + (x)) = dim (V − (x)).

Proof. Since x is an involution, we have λ (x) = ±1. Suppose that λ (x) = −1.

Then for any u, v ∈ V ε (x), for ε = ±1, we have 〈u, v〉 = 〈xu, xv〉 = −〈u, v〉.

This gives 〈u, v〉 = 0 for any u, v ∈ V ε (x), for ε = ±1. Hence we have that

V + (x) and V − (x) are totally isotropic. If then dim (V + (x)) 6= dim (V − (x))

the form must be degenerate.
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To show that H := 〈g〉G = 〈R〉G is not conjugate to Spn (q) (and hence

must be isomorphic to SLn (q)), we will be using the explicit generators of

G to show that G does not preserve a non-degenerate symplectic form up

to similarity (possibly with some restrictions on α). We will show that any

form that is preserved by G up to similarity must be degenerate, i.e. 〈u, v〉 =

0 ∀u, v ∈ V . For g ∈ G, u1, u2, v1, v2 ∈ V , if gu1 = u2 and gv1 = v2, as a

shorthand, we will replace

〈gu1, gv1〉 = 〈u2, v2〉

with

〈u1, v1〉 =g 〈u2, v2〉

4.1.4 Equations

There will be several conditions for the value α ∈ Fq to satisfy. As such, the

following result will be very useful:

Lemma 4.1.23. Let Fq for q = pm p prime, be a finite field and let f (α) ∈

Fq [α] be a polynomial over Fq of degree d > 0. Let X ⊆ Fq be a subset of the

field with |X| = s. Suppose one of the following holds:

• m = 1 and p > d+ s;

• m = 2 and p > max {d, s};

• m = 3 and p >
√
d+ s;

• m > 4 and p > max
{√

d, m−2
√
s
}

Then at least one value of f (α) on Fq\X is a defining element of Fq.

Proof. For a constant µ ∈ Fq, the polynomial f (α)−µ, has at most d distinct

roots. Therefore there are at most d distinct elements, λ ∈ Fq, s.t. f (λ) = µ.
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Hence we must have that f (α) assumes at least (pm − s) /d distinct values on

Fq\X. If the number of values that f (α) assumes on Fq\X is greater than

the number of non-defining elements of Fq, then at least one of the values of

f (α) on Fq\X must be a defining element of Fq.

• If m = 1, then any non-zero element of Fq is a defining element of K,

and the zero element is the only non-defining element of Fq. Thus if

(p− s) /d > 1 then at least one value of f (α) on Fq\X is a defining

element of Fq. This holds if p > d+ s.

• If m = 2, then there are p elements of Fq which are not defining elements

of Fq. Thus if (p2 − s) /d > p then at least one value of f (α) on Fq\X

is a defining element of Fq. This holds if p > d, s.

• If m = 3, then there are p elements of Fq which are not defining elements

of Fq. Thus if (p3 − s) /d > p then at least one value of f (α) on Fq\X

is a defining element of Fq. This holds if p >
√
d+ s.

• If m = 4, then there are p2 elements of Fq which are not defining elements

of Fq. Thus if (p4 − s) /d > p2 then at least one value of f (α) on Fq\X

is a defining element of Fq. This holds if p >
√
d,
√
s.

If m > 5, then there are no subfields of orders pm−1 and pm−2 in Fq. An

estimate shows us that there are at most pm−3+pm−4+. . .+p = pm−2−p
p−1 6

pm−2 elements which are not defining. Thus if (pm − s) /d > pm−2 then

at least one value of f (α) on Fq\X is a defining element of Fq. This

holds if p >
√
d, m−2

√
s.

4.2 Dimension n = 2, q > 5

In this section we consider the groups L2 (q) for q > 5. We show that the

group L2 (q) for q > 5 has Property 2 if and only if q 6= 7, 9, and has Property
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1 if and only q 6= 7. It may be noted that, since there is only one conjugacy

class of involutions in L2 (q), Property 1 and Property 2 are equivalent to:

Property 3. G can be generated by 5 involutions whose product is the identity.

and

Property 4. G can be generated by 3 involutions a, b and c, 2 of which, a

and b, commute.

respectively. Now the question of whether or not L2 (q) has Property 4 was

proved by Nuzhin in [Nuz97]. We include those results below with rewritten

proofs for completeness.

It may be noted at this stage that the conjugacy class of involutions in

L2 (q) is the image, under the natural homomorphism SL2 (q) −→ L2 (q), of

the conjugacy class of

(
0 1
−1 0

)
∈ SL2 (q) (i.e. the elements in SL2 (q) that

square to −I2). Thus we will work often in SL2 (q) with generators from this

conjugacy class. We work in the standard representation of SL2 (q), i.e. 2× 2

matrices acting on the space of column vectors of length 2.

4.2.1 q = 7

Consider the ordinary irreducible module, V , of dimension 6 and use Theorem

1.2.4. In the terminology of Theorem 1.2.4, n = 6, m = 5 and di = 2 for

i = 1, 2, 3, 4, 5, as the xi are all conjugate. Then we have

d1 + d2 + d3 + d4 + d5 = 10 < 12 = 2n.

So, by Theorem 1.2.4, L2 (7) does not have Property 1 (and so does not have

Property 2).

We do note however that L2 (7) can be generated by 6 conjugate involutions

whose product is 1. To prove this it is enough to show that SL2 (q) can be
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generated by an element that squares to −I2 and an element of order 3. This

is because then L2 (7) will be (2, 3)-generated, and by the discussion in chapter

1 will then be generated by 3 conjugate involutions.

We define:

a :=

(
0 1
−1 0

)
b :=

(
0 1
−1 −1

)
Then, a, and b have the desired properties, and we define G := 〈a, b〉. Now,

(ab)2 =

(
1 2
0 1

)
(ba)2 =

(
1 0
−2 1

)

These elements are simultaneously conjugate in GL2 (q) to

(
1 1
0 1

)
and(

1 1
3 1

)
respectively, and so by Lemma 4.1.2 (Dickson’s Lemma), if 3 is

a defining element of F7, 〈a, b〉 ∼= SL2 (7). Now, as 3 6= 0, 3 is a defining

element of F7, and so we conclude that L2 (7) can be generated by 6 conjugate

involutions whose product is 1.

4.2.2 q = 9

The linear group L2 (9) is isomorphic to the alternating group A6. Hence from

chapter 2, we have that L2 (9) has Property 1, but not Property 2.

4.2.3 q = 11

For q = 11 we define:

a :=

(
3 1
1 −3

)
b :=

(
0 1
−1 0

)
c :=

(
2 5
−1 −2

)
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Then, a, b and c map, to involutions a′, b′ and c′ ∈ L2 (11), under the

natural homomorphism SL2 (11) −→ L2 (11), with a′b′ = b′a′. We define

H := 〈a′, c′〉 6 L2 (11). Then H is a dihedral group of order 12. Thus,

from information in the Web-ATLAS, [WNB+05], H is a maximal subgroup

of L2 (11). Now b′ /∈ H, and so 〈a′, b′, c′〉 ∼= L2 (11). Hence the group L2 (11)

has Property 4, and so has Property 2.

4.2.4 q ≡ 1 mod 4, q > 5 and q 6= 9

For q ≡ 1 mod 4, q > 5 and q 6= 9 then we take i as a square root of −1

(which exists since q ≡ 1 mod 4), and we define:

a :=

(
i 0
0 −i

)
b :=

(
0 1
−1 0

)
c :=

(
i 0
iα −i

)
Then, a, b and c map, to involutions a′, b′ and c′ ∈ L2 (q), under the natural

homomorphism SL2 (q) −→ L2 (q), with a′b′ = b′a′. Then,

cabb =

(
1 0
α 1

)
bcab =

(
1 −α
0 1

)
These elements are simultaneously conjugate in GL2 (q) to

(
1 0
−α2 1

)
and(

1 1
0 1

)
respectively, and so by Lemma 4.1.2 (Dickson’s Lemma), if −α2 is

a defining element of Fq, 〈a, b, c〉 ∼= SL2 (q). Hence for q > 5, q 6= 9, if ∃α ∈ Fq
s.t. −α2 is a defining element of Fq, L2 (q) has Property 4, and so has Property

2 (which of course means L2 (q) has Property 3 and Property 1 as well).

The only restrictions we have are that q ≡ 1 mod 4, q > 5 and q 6= 9 and

−α2 6= 0 and is a defining element of Fq. Taking α to be any primitive element

of Fq will satisfy these restrictions on α. Hence for q ≡ 1 mod 4, q > 5 and

q 6= 9, there exists an element α ∈ Fq that satisfies these restrictions.
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4.2.5 q ≡ 3 mod 4 and q > 11

When q ≡ 3 mod 4 and q > 11, we define:

a :=

(
γ δ
δ −γ

)
b :=

(
0 1
−1 0

)
c :=

(
0 α
−α−1 0

)
where γ2 + δ2 = −1 and α is a primitive element of Fq.

Then, a, b and c map, to involutions a′, b′ and c′ ∈ L2 (q), under the natural

homomorphism SL2 (q) −→ L2 (q), with a′b′ = b′a′. We define H := 〈b′, c′〉 6

L2 (q). Then H is a dihedral group of order q−1. Now, the subgroups of L2 (q)

were determined by Dickson (see [Dic01]), and we have that H is a maximal

subgroup of L2 (q). Now a′ /∈ H, and so 〈a′, b′, c′〉 ∼= L2 (q). Hence, for q ≡ 3

mod 4 and q > 11, the group L2 (q) has Property 4, and so has Property 2.

4.3 Dimension n = 3, q ≡ 1 mod 3

In this section, we show that, for q odd, q ≡ 1 mod 3, L3 (q) has Property

1. We do so by showing that SL3 (q) can be generated by suitable elements

by following the method outlined in section 4.1. We work in the standard

representation of SL3 (q), i.e. 3 × 3 matrices acting on the space of column

vectors of length 3. We call this vector space V . Note that in this case SL3 (q)

is not isomorphic to L3 (q).

4.3.1 Generators

For 0 6= α ∈ Fq and β ∈ Fq, s.t. β is a primitive element (note that βq−1 = 1),

we define:

a :=

 · 1 ·
1 · ·
· · −1


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b :=

 −1 · ·
· −1 ·
α αβ

q−1
6 1


c :=

 −1 · ·
· · 1
· 1 ·


d :=

 −1 · ·
· · β

q−1
3

· β2 q−1
3 ·


e :=

 · β5 q−1
6 ·

β
q−1
6 · ·

αβ
q−1
6 α −1


Hence

abcde =

 β
q−1
3 · ·
· β

q−1
3 ·

· · β
q−1
3


As a, b, c, d and e are involutions and there is only one conjugacy class of

involutions in SL3 (q), they are all conjugate. Also, under the natural homo-

morphism SL3 (q) −→ L3 (q), abcde maps to 1. We take G := 〈a, b, c, d, e〉.

4.3.2 Transvections and Root Subgroups

In this section, we show that the group G defined above contains two opposite

transvections, and so from Lemma 4.1.11, G contains a root subgroup.

We have:

g := (ab)2

=

 1 · ·
· 1 ·

α + αβ
q−1
6 α + αβ

q−1
6 1


= I3 +

 0
0

α + αβ
q−1
6

× 1×
(

1 1 0
)

Hence we have, g, a one-dimensional transformation the values a (g) and

c (g) given by:

a (g) =
(

1 1 0
)
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c (g) =

 0
0

α + αβ
q−1
6


Now, by Lemma 4.1.6, g is a transvection as

a (g) c (g) =
(

1 1 0
)
×

 0
0

α + αβ
q−1
6

 = 0

Now we want another transvection, h, such that h is opposite to g. From

Lemma 4.1.10 g and h are opposite if, for γ := a (g) c (h), and δ := a (h) c (g),

we have γδ 6= 0. We also want γδ to be a defining element of Fq.

We take h := gc. Since h is conjugate to g, h is a transvection. Now

h = gc

=

 1 · ·
−α− αβ q−1

6 1 α + αβ
q−1
6

· · 1


= I3 +

 0

−α− αβ q−1
6

0

× 1×
(

1 0 −1
)

Hence h has values a (h) and c (h) given by:

a (h) =
(

1 0 −1
)

c (h) =

 0

−α− αβ q−1
6

0


Now

γδ = a (g) c (h) a (h) c (g)

=
(

1 1 0
) 0

−α− αβ q−1
6

0

( 1 0 −1
) 0

0

α + αβ
q−1
6


=

(
−α− αβ

q−1
6

)(
−α− αβ

q−1
6

)
= α2

(
1 + β

q−1
6

)2
So if α is chosen such that α2

(
1 + β

q−1
6

)2
is a defining element of Fq, we

have, by Lemma 4.1.11, that 〈g, h〉 6 G contains a root subgroup R.
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4.3.3 Irreducibility

In this section we show that H := 〈g〉G = 〈R〉G acts irreducibly on the vector

space V . First we define the group G1 := 〈a, b, c〉.

Lemma 4.3.1. The group G1 acts irreducibly on the vector space V if αβ
q−1
6 −

α 6= 2.

Proof. Let U be a G1-invariant subspace. Let g be the transvection in G

calculated in the last section, with values a (g) and c (g), defined as above.

So we have:

a (g) = (1, 1, 0)

c (g) =
(

0, 0, α + αβ
q−1
6

)T
If there exists a vector u ∈ U which does not lie on the axis of g, then by

Lemma 4.1.18 we have that c (g) ∈ U , and since α 6= 0 and β
q−1
6 6= −1, we

have u := (0, 0, 1)T ∈ U . Then we have:

w1 := cu

= (0, 1, 0)T ∈ U

w2 := aw1

= (1, 0, 0)T ∈ U

The vectors u, w1 and w2 form a basis of V . Hence U = V .

So, we may assume that U is contained in the axis of g, i.e. if u =

(u1, u2, u3)
T ∈ U , then u1 + u2 = 0. We look at this dually, i.e. the ho-

mogeneous linear equations satisfied by all vectors of U are represented by

rows of length 3, on which G1 acts on the right. All such equations form a

subspace, X, of 3Fq. Since U is G1-invariant, X is also.

We have x := (1, 1, 0) ∈ X. Then we have:

y1 := xc

= (−1, 0, 1) ∈ X
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y2 := y1b

=
(

1 + α, αβ
q−1
6 , 1

)
∈ X

The vectors x, y1 and y2 form a basis of 3Fq, as long as αβ
q−1
6 −α 6= 2. So,

with these restrictions we have X = 3Fq, and so U = 0.

Hence G1 is irreducible if αβ
q−1
6 − α 6= 2.

Then, as the group G1 = 〈a, b, c〉 satisfies the conditions of Proposition

4.1.17, if αβ
q−1
6 −α 6= 2, the group H1 := 〈g〉G1 = 〈R〉G1 is irreducible, and so

the group H > H1 is also. Now, by the choice of H it is easy to see that it

contains the group R defined in the last section. Thus, if the restrictions on

α (from this section and from the previous section) are satisfied, we have that

H is an irreducible group generated by Root subgroups.

4.3.4 Invariant Forms

There are no non-degenerate symplectic forms in dimension 3.

4.3.5 Equations

The only restrictions we have are that q ≡ 1 mod 3, α2
(

1 + β
q−1
6

)2
6= 0 and

is a defining element of Fq and αβ
q−1
6 − α 6= 2. Thus we have a polynomial,

α2
(

1 + β
q−1
6

)2
∈ Fq [α] of degree 2 over Fq, for q = pk and q ≡ 1 mod 3.

We take the subset of Fq, X :=
{
α : αβ

q−1
6 − α = 2

}
. Thus |X| = 1. From

Lemma 4.1.23, one of values that f (α) assumes on Fq\X is a defining element

of Fq if one of the following hold:

1. k = 1 and p > 3;

2. k = 2 and p > 2;

3. k = 3 and p > 2;

4. k > 4 and p > 2;
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These clearly hold for all q, q = pk and q ≡ 1 mod 3. Hence for q ≡ 1 mod 3,

there exists an element α ∈ Fq that satisfies the restrictions above.

4.3.6 Conclusion

We conclude this section by summarising the above.

Lemma 4.3.2. For q odd and q ≡ 1 mod 3, ∃ α ∈ Fq s.t. the elements a, b,

c, d and e generate SL3 (q), and so L3 (q) has Property 1.

Proof. 1. In section 4.3.1 we exhibited elements in SL3 (q), a, b, c, d and

e such that a, b, c, d and e are conjugate involutions in SL3 (q). Under

the natural homomorphism SL3 (q) −→ L3 (q) they map to involutions

a′, b′, c′, d′ and e′ such that a′b′c′d′e′ = 1. The elements are defined

in terms of a variable α ∈ Fq. We called the group generated by these

elements G.

2. In section 4.3.2 we demonstrated that there is a non-trivial transvection,

in G, g := (ab)2. We also demonstrated that the transvection h := gc ∈

G is opposite to g. Dickson’s Lemma (Lemma 4.1.2) then gives us that

G contains the whole root subgroup R, consisting of all transvections

with the same centre and the same axis as g, subject to α2
(

1 + β
q−1
6

)2
being a defining element of Fq.

3. In section 4.3.3 we then considered a subgroup G1 := 〈a, b, c〉 6 G,

containing R, and the normal closure H1 := 〈g〉G1 = 〈R〉G1 E G1 of the

root subgroup R in G1. We have shown that the group G1 is irreducible

and so the group H1 is also irreducible. Thus H := 〈g〉G = 〈R〉G is

irreducible, and so is an irreducible group generated by root subgroups.

Thus from Lemma 4.1.1, H must coincide with SL3 (q).

4. There are no non-degenerate symplectic forms in dimension 3. This

implies that, when α satisfies the imposed restrictions, we have that

93



G D H = SL3 (q)and hence, G ∼= SL3 (q).

5. Finally, in section 4.3.5 it was shown that there exists an α such that

the restrictions on it can be satisfied.

4.4 Dimension n = 3, q ≡ 0 or 2 mod 3

In this section, we show that for q ≡ 0 or 2 mod 3, L3 (q) does not have

property 1, (and hence also does not have Property 2). Note that, in this

case, SL3 (q) ∼= L3 (q), and so it is sufficient to show that for general q odd,

SL3 (q) does not have Property 1. We use Theorem 1.2.4.

Lemma 4.4.1. When q is odd, the group SL3 (q) does not have Property 1.

Proof. Consider the Symmetric Square representation of the natural represen-

tation of SL3 (q) over Fq. This is an irreducible representation of SL3 (q) of

dimension 6. As we only have one conjugacy class of involutions to consider,

an involution in this representation will be conjugate in GL6 (q) to:
−1 · · · · ·
· −1 · · · ·
· · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1


Thus in the language of Theorem 1.2.4, n = 6 and di = 2, i = 1, 2, 3, 4, 5.

So we have:

d1 + d2 + d3 + d4 + d5 = 10 < 12 = 2n.

Hence, we have that SL3 (q) does not have Property 1.

Hence, when q ≡ 0 or 2 mod 3 (and thus L3 (q) ≡ SL3 (q)), we have that

L3 (q) does not have Property 1.
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We do note, however that for q odd and q ≡ 0 or 2 mod 3, L3 (q) ≡

SL3 (q) can be generated by 6 conjugate involutions whose product is 1. From

the discussion in chapter 1, it suffices to show that SL3 (q) is (2, 3)-generated,

and it has been shown in [Gar78] and [Coh81] that L3 (q) is (2, 3)-generated

for all odd q.

4.5 Dimension n = 3, Additional Notes

It is interesting to note at this stage that the following result holds:

Lemma 4.5.1. For q odd, the groups L3 (q) do not have Property 2.

This was originally proved by Nuzhin in [Nuz97]. This was done by show-

ing that any triple of elements in SL3 (q), with the desired properties, either

generate a reducible subgroup of SL3 (q) or generate a subgroup of SL3 (q)

conjugate in GL3 (q4) to a subgroup of 〈SO3 (q4) , λI3〉 with λ3 = 1.

Now, for q ≡ 0 or 2 mod 3, this result is a corollary of Lemma 4.4.1.

However, this result along with the results in section 4.3 gives us that L3 (q)

has Property 1, but not Property 2 for q ≡ 1 mod 3.

4.6 Dimension n = 4

In this section, we show that, for q odd and q 6= 9, L4 (q) has Property 2,

and hence Property 1. We do so by showing that SL4 (q) can be generated by

suitable elements by following the method outlined in section 4.1. We work in

the standard representation of SL4 (q), i.e. 4× 4 matrices acting on the space

of column vectors of length 4. We call this vector space V .
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4.6.1 Generators

We define:

a :=


· 1 · ·
1 · · ·
· · · 1
· · 1 ·



b :=


1 · · ·
· 1 · ·
· · −1 ·
· · · −1



c :=


· · 1 ·
· 1 · ·
1 · · ·
1 α 1 −1

 for some 0 6= α ∈ Fq

Hence

ab =


· 1 · ·
1 · · ·
· · · −1
· · −1 ·


As a, b, c and ab are all involutions with eigenvalues

{
(1)2 , (−1)2

}
, from

the properties of involutions, we can see that they are conjugate in SL4 (q),

and a and b commute. We take G := 〈a, b, c〉.

4.6.2 Transvections and Root Subgroups

In this section, we show that the group G defined above, contains two opposite

transvections, and so from Lemma 4.1.11, G contains a root subgroup.

We have:

g := (bc)4

=


1 · · ·
· 1 · ·
· · 1 ·
· −4α · 1



= I4 +


0
0
0
−4α

× 1×
(

0 1 0 0
)
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Hence, g is a one-dimensional transformation, and has values a (g) and

c (g) given by:

a (g) =
(

0 1 0 0
)

c (g) =


0
0
0
−4α


Thus, by Lemma 4.1.6, g is a transvection as

a (g) c (g) =
(

0 1 0 0
)
×


0
0
0
−4α

 = 0

Now we want another transvection, h, such that h is opposite to g. From

Lemma 4.1.10 g and h are opposite if, for γ := a (g) c (h), and δ := a (h) c (g),

we have γδ 6= 0. We also want γδ to be a defining element of Fq.

We take h := gk = k−1gk, where k := (ac)2. Since h is conjugate to g, h is

a transvection. Now

(ac)2 =


· · 1 ·
1 α 1 −1
· 1 + α 1 + α −1
· 1 · ·

 and

(ca)2 =


α 1 −1 1
· · · 1
1 · · ·

1 + α · −1 1 + α

 .

Hence

h := k−1gk

= (ca)2 g (ac)2

=


1− 4α −4α2 −4α 4α
−4α 1− 4α2 −4α 4α
· · 1 ·

−4α (1 + α) −4α2 (1 + α) −4α (1 + α) 1 + 4α (1 + α)



= I4 +


−4α
−4α

0
−4α (1 + α)

× 1×
(

1 α 1 −1
)
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Hence h has values a (h) and c (h) given by:

a (h) =
(

1 α 1 −1
)

c (h) =


−4α
−4α

0
−4α (1 + α)


Now

γδ = a (g) c (h) a (h) c (g)

=
(

0 1 0 0
)

−4α
−4α

0
−4α (1 + α)

( 1 α 1 −1
)

0
0
0
−4α


= (−4α)× (4α)

= −16α2

So if α is chosen such that −16α2 is a defining element of Fq, we have, by

Lemma 4.1.11, that 〈g, h〉 6 G contains a root subgroup R.

4.6.3 Irreducibility

In this section we show that H := 〈g〉G = 〈R〉G acts irreducibly on the vector

space V . First we define the group G1 := 〈b, c, (ac)2〉.

Lemma 4.6.1. The group G1 acts irreducibly on the vector space V if α 6= −2.

Proof. Let U be a G1-invariant subspace. Let g be the transvection in G

calculated in the last section, with values a (g) and c (g), defined as above.

So we have:

a (g) = (0, 1, 0, 0)

c (g) = (0, 0, 0,−4α)T

If there exists a vector u ∈ U which does not lie on the axis of g, then

by Lemma 4.1.18 we have that c (g) ∈ U , and since α 6= 0, we have u :=

(0, 0, 0, 1)T ∈ U . Then we have:

w1 := (ac)2 u
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= (1,−1,−1, 0)T ∈ U

w2 := cw1

= (−1,−1, 0, 0)T ∈ U

w3 := (ac)2w2

= (0,−1, 0, 0)T ∈ U

The vectors u, w1, w2 and w3 form a basis of V . Hence U = V .

So, we may assume that U is contained in the axis of g, i.e. if u =

(u1, u2, u3, u4)
T ∈ U , then u2 = 0. We look at this dually, i.e. the homo-

geneous linear equations satisfied by all vectors of U are represented by rows

of length 4, on which G1 acts on the right. All such equations form a subspace,

X, of 4Fq. Since U is G1-invariant, X is also.

We have x := (0, 1, 0, 0) ∈ X. Then we have:

y1 := x (ac)2

= (1, α, 1,−1) ∈ X

y2 := x (ca)2

= (0, 0, 0, 1) ∈ X

y3 := x (ca)4

= (1 + α, 0,−1, 1 + α) ∈ X

The vectors x, y1, y2 and y3 form a basis of 4Fq, as long as α 6= −2. So,

with these restrictions we have X = 4Fq, and so U = 0.

Hence G1 is irreducible if α 6= −2.

Then, as the group G1 = 〈b, c, (ac)2〉 satisfies the conditions of Proposition

4.1.17, if α 6= −2, the group H1 := 〈g〉G1 = 〈R〉G1 is irreducible, and so the

group H > H1 is also. Now, by the choice of H it is easy to see that it contains

the group R defined in the last section. Thus, if the restrictions on α (from
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this section and from the previous section) are satisfied, we have that H is an

irreducible group generated by Root subgroups.

4.6.4 Invariant Forms

Lemma 4.6.2. H does not preserve a non-degenerate symplectic form.

Proof. We need to prove that there exists no non-degenerate symplectic form

on V which is invariant under the action of G up to similarity. Let 〈 , 〉 be

a symplectic form on V that is preserved by G up to similarity. Then a,b

and c ∈ G preserve 〈 , 〉 up to similarity with multipliers λ (a), λ (b) and λ (c)

respectively. Then, as a, b and c are involutions we have, from Lemma 4.1.20,

λ (a) = ±1, λ (b) = ±1 and λ (c) = ±1.

Now we know that a, b, c and ab are conjugate in SL4 (q), and from

information in table 4.5.1 in [GLS98], we have that a, b, c and ab are conjugate

in GSp4 (q). Thus from Lemma 4.1.20, we have λ (a) = λ (b) = λ (c) =

λ (ab) = λ (a)λ (b), and so λ (a) = λ (b) = λ (c) = 1. Thus, as a, b and c

generate G, for all x ∈ G, the multiplier for x, λ (x) must be equal to 1, i.e.

for all x ∈ G and all u,v ∈ V , 〈xu, xv〉 = 〈u, v〉.

So we have:

〈v1, v2〉 =a 〈v2, v1〉

= −〈v1, v2〉 , and so

〈v1, v2〉 = 0.

〈v1, v3〉 =b 〈v1,−v3〉

= −〈v1, v3〉 , and so

〈v1, v3〉 = 0.

〈v1, v4〉 =b 〈v1,−v4〉

= −〈v1, v4〉 , and so

〈v1, v4〉 = 0.
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(4.6.1)

Hence we have 〈v1, vi〉 = 0∀i, 1 6 i 6 n. Thus, v1 ∈ V⊥ and so the form

〈 , 〉 is degenerate.

Hence there is no non-degenerate symplectic form on V which is invariant

under the action of G up to similarity, and so H does not preserve a non-

degenerate symplectic form.

Hence H cannot be conjugate to Sp4 (q).

4.6.5 Equations

The only restrictions we have are that q 6= 9, −16α2 6= 0 and is a defining

element of Fq and α 6= −2. Taking α to be any primitive element of Fq will

satisfy these restrictions on α, since for q > 3 there is more than one primitive

element in Fq and so we can take α 6= −2, and for q = 3 we have −2 = 1

which is not a primitive element of F3.

1. k = 1 and p > 3;

2. k = 2 and p > 2;

3. k = 3 and p > 2;

4. k > 4 and p > 2;

Hence for q 6= 9, there exists an element α ∈ Fq that satisfies these restrictions.

4.6.6 Conclusion

We conclude this section by summarising the above.

Lemma 4.6.3. For q odd and q 6= 9, ∃ α ∈ Fq s.t. the elements a, b and c

generate SL4 (q), and so L4 (q) has Property 2 and hence also has Property 1.
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Proof. 1. In section 4.6.1 we exhibited elements in SL4 (q), a, b and c such

that a and b commute and a, b, c and ab are conjugate involutions in

SL4 (q). Under the natural homomorphism SL4 (q) −→ L4 (q) they map

to involutions a′, b′ and c′ such that a′ and b′ commute and a′, b′, c′

and a′b′ are conjugate in L4 (q). The elements are defined in terms of a

variable α ∈ Fq. We called the group generated by these elements G.

2. In section 4.6.2 we demonstrated that there is a non-trivial transvec-

tion, in G, g := (bc)4. We also demonstrated that the transvection

h := g(ac)
2 ∈ G is opposite to g. Dickson’s Lemma (Lemma 4.1.2) then

gives us that G contains the whole root subgroup R, consisting of all

transvections with the same centre and the same axis as g, subject to

−16α2 being a defining element of Fq.

3. In section 4.6.3 we then considered a subgroup G1 :=
〈
b, c, (ac)2

〉
6

G, containing R, and the normal closure H1 := 〈g〉G1 = 〈R〉G1 E G1

of the root subgroup R in G1. We have shown that the group G1 is

irreducible and so the group H1 is also irreducible. Thus H := 〈g〉G =

〈R〉G is irreducible, and so is an irreducible group generated by root

subgroups. Thus from Lemma 4.1.1, H either coincides with SL4 (q), or

H is conjugate to Sp4 (q).

4. In section 4.6.4 we excluded the symplectic case by showing that G does

not preserve a non-degenerate symplectic form up to similarity. This

implies that, when α satisfies the imposed restrictions, we have that

G D H = SL4 (q)and hence, G ∼= SL4 (q).

5. Finally, in section 4.6.5 it was shown that the there exists an α such that

the restrictions on it can be satisfied.
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4.7 Dimension n = 5

In this section, we show that, for q odd and q 6= 9, L5 (q) has Property 2,

and hence Property 1. We do so by showing that SL5 (q) can be generated by

suitable elements by following the method outlined in section 4.1. We work in

the standard representation of SL5 (q), i.e. 5× 5 matrices acting on the space

of column vectors of length 5. We call this vector space V .

4.7.1 Generators

We define:

a :=


· · 1 · ·
· 1 · · ·
1 · · · ·
· · · · 1
· · · 1 ·



b :=


1 · · · ·
· 1 · · ·
· · 1 · ·
· · · −1 ·
· · · · −1



c :=


· · · 1 ·
· · 1 · ·
· 1 · · ·
1 · · · ·
· α −α · 1

 for some 0 6= α ∈ Fq

Hence

ab =


· · 1 · ·
· 1 · · ·
1 · · · ·
· · · · −1
· · · −1 ·


As a, b, c and ab are all involutions with eigenvalues

{
(1)3 , (−1)2

}
, from

the properties of involutions, we can see that they are conjugate in SL5 (q),

and a and b commute. We take G := 〈a, b, c〉.
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4.7.2 Transvections and Root Subgroups

In this section, we show that the group G defined above, contains two opposite

transvections, and so from Lemma 4.1.11, G contains a root subgroup.

We have:

g := (bc)4

=


1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·
· 4α −4α · 1



= I5 +


0
0
0
0

4α

× 1×
(

0 1 −1 0 0
)

Hence, g is a one-dimensional transformation, and has values a (g) and

c (g) given by:

a (g) =
(

0 1 −1 0 0
)

c (g) =


0
0
0
0

4α


Thus, by Lemma 4.1.6, g is a transvection as

a (g) c (g) =
(

0 1 −1 0 0
)
×


0
0
0
0

4α

 = 0

Now we want another transvection, h, such that h is opposite to g. From

Lemma 4.1.10 g and h are opposite if, for γ := a (g) c (h), and δ := a (h) c (g),

we have γδ 6= 0. We also want γδ to be a defining element of Fq.
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We take h := gk = k−1gk, where k := (ac)2. Since h is conjugate to g, h is

a transvection. Now

(ac)2 =


· · 1 · ·
· · · 1 ·
· α −α · 1
1 · α −α ·
· 1 · · ·

 and

(ca)2 =


−α α · 1 ·
· · · · 1
1 · · · ·
· 1 · · ·
α · 1 · −α

 .

Hence

h := k−1gk

= (ca)2 g (ac)2

=


1 · · · ·
· 1− 4α2 4α2 4α −4α
· · 1 · ·
· · · 1 ·
· 4α3 −4α3 −4α2 1 + 4α2



= I5 +


0
−4α2

0
0

4α3

× 1×
(

0 1 −1 − 1
α

1
α

)

Hence h has values a (h) and c (h) given by:

a (h) =
(

0 1 −1 − 1
α

1
α

)

c (h) =


0
−4α2

0
0

4α3


Now

γδ = a (g) c (h) a (h) c (g)
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=
(

0 1 −1 0 0
)


0
−4α2

0
0

4α3

( 0 1 −1 − 1
α

1
α

)


0
0
0
0

4α


=

(
−4α2

)
× (4)

= −16α2

So if α is chosen such that −16α2 is a defining element of Fq, we have, by

Lemma 4.1.11, that 〈g, h〉 6 G contains a root subgroup R.

4.7.3 Irreducibility

In this section we show that H := 〈g〉G = 〈R〉G acts irreducibly on the vector

space V . First we define the group G1 := 〈b, c, (ac)2〉.

Lemma 4.7.1. The group G1 acts irreducibly on the vector space V .

Proof. Let U be a G1-invariant subspace. Let g be the transvection in G

calculated in the last section, with values a (g) and c (g), defined as above.

So we have:

a (g) = (0, 1,−1, 0, 0)

c (g) = (0, 0, 0, 0, 4α)T

If there exists a vector u ∈ U which does not lie on the axis of g, then

by Lemma 4.1.18 we have that c (g) ∈ U , and since α 6= 0, we have u :=

(0, 0, 0, 0, 1)T ∈ U . Then we have:

w1 := (ac)2 u

= (0, 0, 1, 0, 0)T ∈ U

w2 := cw1 + αu

= (0, 1, 0, 0, 0)T ∈ U

w3 := (ca)2w2

= (α, 0, 0, 1, 0)T ∈ U
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w4 := bw3

= (α, 0, 0,−1, 0)T ∈ U

The vectors u, w1, w2, w3 and w4 form a basis of V . Hence U = V .

So, we may assume that U is contained in the axis of g, i.e. if u =

(u1, u2, u3, u4, u5)
T ∈ U , then u2 − u3 = 0. We look at this dually, i.e. the

homogeneous linear equations satisfied by all vectors of U are represented by

rows of length 5, on which G1 acts on the right. All such equations form a

subspace, X, of 5Fq. Since U is G1-invariant, X is also.

We have x := (0, 1,−1, 0, 0) ∈ X. Then we have:

y1 := x (ca)2

= (−1, 0, 0, 0, 1) ∈ X

y2 := y1b

= (−1, 0, 0, 0,−1) ∈ X

y3 := y2 (ac)2

= (0,−1,−1, 0, 0) ∈ X

y4 := x (ac)2

= (0,−α, α, 1,−1) ∈ X

The vectors x, y1, y2, y3 and y4 form a basis of 5Fq, as long as α 6= 0. So,

with these restrictions we have X = 5Fq, and so U = 0.

Hence G1 is irreducible.

Then, as the group G1 = 〈b, c, (ac)2〉 satisfies the conditions of Proposition

4.1.17, and as α 6= 0, the group H1 := 〈g〉G1 = 〈R〉G1 is irreducible, and so

the group H > H1 is also. Now, by the choice of H it is easy to see that it

contains the group R defined in the last section. Thus, if the restrictions on α

from the previous section are satisfied, we have that H is an irreducible group

generated by Root subgroups.
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4.7.4 Invariant Forms

There are no non-degenerate symplectic forms in dimension 5.

4.7.5 Equations

The only restrictions we have are that q 6= 9 and −16α2 6= 0 and is a defining

element of Fq. Taking α to be any primitive element of Fq will satisfy these

restrictions on α. Hence for q 6= 9, there exists an element α ∈ Fq that satisfies

these restrictions.

4.7.6 Conclusion

We conclude this section by summarising the above.

Lemma 4.7.2. For q odd and q 6= 9, ∃ α ∈ Fq s.t. the elements a, b and c

generate SL5 (q), and so L5 (q) has Property 2 and hence also has Property 1.

Proof. 1. In section 4.7.1 we exhibited elements in SL5 (q), a, b and c such

that a and b commute and a, b, c and ab are conjugate involutions in

SL5 (q). Under the natural homomorphism SL5 (q) −→ L5 (q) they map

to involutions a′, b′ and c′ such that a′ and b′ commute and a′, b′, c′

and a′b′ are conjugate in L5 (q). The elements are defined in terms of a

variable α ∈ Fq. We called the group generated by these elements G.

2. In section 4.7.2 we demonstrated that there is a non-trivial transvec-

tion, in G, g := (bc)4. We also demonstrated that the transvection

h := g(ac)
2 ∈ G is opposite to g. Dickson’s Lemma (Lemma 4.1.2) then

gives us that G contains the whole root subgroup R, consisting of all

transvections with the same center and the same axis as g, subject to

−16α2 being a defining element of Fq.

3. In section 4.7.3 we then considered a subgroup G1 :=
〈
b, c, (ac)2

〉
6 G,

containing R, and the normal closure H1 := 〈g〉G1 = 〈R〉G1 E G1 of the
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root subgroup R in G1. We have shown that the group G1 is irreducible

and so the group H1 is also irreducible. Thus H := 〈g〉G = 〈R〉G is

irreducible, and so is an irreducible group generated by root subgroups.

Thus from Lemma 4.1.1, H must coincide with SL5 (q).

4. There are no non-degenerate symplectic forms in dimension 5. This

implies that, when α satisfies the imposed restrictions, we have that

G D H = SL5 (q)and hence, G ∼= SL5 (q).

5. Finally, in section 4.7.5 it was shown that the there exists an α such that

the restrictions on it can be satisfied.

4.8 Dimension n = 6, q ≡ 1 mod 4

In this section, we show that, for q ≡ 1 mod 4 and q 6= 9, L6 (q) has Property

2, and hence Property 1. We do so by showing that SL6 (q) can be generated

by suitable elements by following the method outlined in section 4.1. We work

in the standard representation of SL6 (q), i.e. 6 × 6 matrices acting on the

space of column vectors of length 6. We call this vector space V . The question

for other values of q are not dealt with in this Thesis.

4.8.1 Generators

We take q ≡ 1 mod 4 and q 6= 9, and so ∃ i ∈ Fq s.t. i2 = −1. The we define:

a :=


· 1 · · · ·
−1 · · · · ·
· · · 1 · ·
· · −1 · · ·
· · · · · 1
· · · · −1 ·


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b :=


· · · 1 · ·
· · 1 · · ·
· −1 · · · ·
−1 · · · · ·
· · · · i ·
· · · · · −i



c :=


· 1 · · · ·
−1 · · · · ·
· · −i · · ·
· · · · 1 ·
· · · −1 · ·
α iα · α iα i

 for some 0 6= α ∈ Fq

Hence

ab =


· · 1 · · ·
· · · −1 · ·
−1 · · · · ·
· 1 · · · ·
· · · · · −i
· · · · −i ·


As a, b, c and ab are conjugate in SL6 (q), and map to involutions, a′, b′, c′

and a′b′ in L6 (q), we can see that a′, b′, c′ and a′b′ are conjugate involutions

in L6 (q), and a′ and b′ commute. We take G := 〈a, b, c〉.

4.8.2 Transvections and Root Subgroups

In this section, we show that the group G defined above, contains two opposite

transvections, and so from Lemma 4.1.11, G contains a root subgroup.

We have:

g := (bc)5

=


1 · · · · ·
· 1 · · · ·
· · 1 · · ·
· · · 1 · ·
· · · · 1 ·

2α− 2iα 2α + 2iα 2α− 2iα −2α− 2iα 2α− 2iα 1


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= I6 +


0
0
0
0
0

2α− 2iα

× 1×
(

1 i 1 −i 1 0
)

Hence, g is a one-dimensional transformation, and has values a (g) and

c (g) given by:

a (g) =
(

1 i 1 −i 1 0
)

c (g) =


0
0
0
0
0

2α− 2iα


Thus, by Lemma 4.1.6, g is a transvection as

a (g) c (g) =
(

1 i 1 −i 1 0
)
×


0
0
0
0
0

2α− 2iα

 = 0

Now we want another transvection, h, such that h is opposite to g. From

Lemma 4.1.10 g and h are opposite if, for γ := a (g) c (h), and δ := a (h) c (g),

we have γδ 6= 0. We also want γδ to be a defining element of Fq.

We take h := ga = a−1ga. Since h is conjugate to g, h is a transvection.

Now

h := ga

=


1 · · · · ·
· 1 · · · ·
· · 1 · · ·
· · · 1 · ·

2α + 2iα −2α + 2iα −2α− 2iα −2α + 2iα 1 −2α + 2iα
· · · · · 1


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= I6 +


0
0
0
0

2α + 2iα
0

× 1×
(

1 i −1 i 0 i
)

Hence h has values a (h) and c (h) given by:

a (h) =
(

1 i −1 i 0 i
)

c (h) =


0
0
0
0

2α + 2iα
0


Now

γδ = a (g) c (h) a (h) c (g)

=
(

1 i 1 −i 1 0
)
· · ·

· · ·


0
0
0
0

2α + 2iα
0


(

1 i −1 i 0 i
)


0
0
0
0
0

2α− 2iα


= 1× (2α + 2iα)× i× (2α− 2iα)

= (2α + 2iα)× (2α + 2iα)

= 8iα2

So if α is chosen such that 8iα2 is a defining element of Fq, we have, by

Lemma 4.1.11, that 〈g, h〉 6 G contains a root subgroup R.

4.8.3 Irreducibility

In this section we show that H := 〈g〉G = 〈R〉G acts irreducibly on the vector

space V .
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Lemma 4.8.1. The group G acts irreducibly on the vector space V if α 6= i,−i.

Proof. Let U be a G-invariant subspace. Let g be the transvection in G

calculated in the last section, with values a (g) and c (g), defined as above.

Let us also assume that α 6= 0 and α 6= i,−i.

So we have:

a (g) = (1, i, 1,−i, 1, 0)

c (g) = (0, 0, 0, 0, 0, 2α + 2iα)T

If there exists a vector u ∈ U which does not lie on the axis of g, then by

Lemma 4.1.18 we have that c (g) ∈ U , and since α 6= 0 and α 6= i,−i, we have

u := (0, 0, 0, 0, 0, 1)T ∈ U . Then we have:

w1 := au

= (0, 0, 0, 0, 1, 0)T ∈ U

w2 := cw1

= (0, 0, 0, 1, 0, iα)T ∈ U

w3 := a (w2 − iαu)

= (0, 0, 1, 0, 0, 0)T ∈ U

w4 := bw3

= (0, 1, 0, 0, 0, 0)T ∈ U

w5 := aw4

= (1, 0, 0, 0, 0, 0) ∈ U

The vectors u, w1, w2, w3, w4 and w5 form a basis of V . Hence U = V .

So, we may assume that U is contained in the axis of g, i.e. if u =

(u1, u2, u3, u4, u5, u6)
T ∈ U , then u1 + iu2 + u3 − iu4 + u5 = 0. We look

at this dually, i.e. the homogeneous linear equations satisfied by all vectors of

U are represented by rows of length 6, on which G acts on the right. All such

equations form a subspace, X, of 6Fq. Since U is G-invariant, X is also.
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We have x := (1, i, 1,−i, 1, 0)T ∈ X. Then we have:

y1 := xac− (1 + iα)x

= (−2 + α− iα,−2i+ iα + α,−iα, i, 0, i) ∈ X

y2 := ixa− y1

= (3− α + iα, 3i− iα− α,−1 + iα, 0, 0, 0) ∈ X

y3 := y2a+ iy2

= (0, 0,−i− α,−1 + iα, 0, 0) ∈ X

y4 := (3i− iα− α) y3 + (i+ α) y2b

= (0, (1− iα) (i+ α) , 0, 0, 0, 0) ∈ X

y5 := y4a

= (− (1− iα) (i+ α) , 0, 0, 0, 0, 0) ∈ X

The vectors x, y1, y2, y3, y4 and y5, form a basis of 6Fq, as long as α 6= i,−i.

To see this is in fact a basis of 6Fq under these restrictions, we show here how

to obtain the standard basis from these vectors:

−1

(1− iα) (i+ α)
y5 = (1, 0, 0, 0, 0, 0) = eT1

1

(1− iα) (i+ α)
y4 = (0, 1, 0, 0, 0, 0) = eT2

1

−1 + iα

(
y2 − (3− α + iα) eT1

− (3i− iα− α) eT2
)

= (0, 0, 1, 0, 0, 0) = eT3
1

−1 + iα

(
y3 + (i+ α) eT3

)
= (0, 0, 0, 1, 0, 0) = eT4

x− eT1 − ieT2 − eT3 + ieT4 = (0, 0, 0, 0, 1, 0) = eT5

−i
(
y1 − (−2 + α− iα) eT1

− (−2i+ iα + α) eT2 + iαeT3 − ieT4
)

= (0, 0, 0, 0, 0, 1) = eT6

So, with these restrictions we have X = 6Fq, and so U = 0.

Hence G1 is irreducible if α 6= i,−i.
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Then, as the group G = 〈a, b, c〉 satisfies the conditions of Proposition

4.1.17, if α 6= i,−i, the group H := 〈g〉 = 〈R〉G is irreducible. Now, by the

choice of H it is easy to see that it contains the group R defined in the last

section. Thus, if the restrictions on α (from this section and from the previous

section) are satisfied, we have that H is an irreducible group generated by

Root subgroups.

4.8.4 Invariant Forms

Lemma 4.8.2. H does not preserve a non-degenerate symplectic form if either

1 + iα− α = 0 or −2i+ 2α + iα 6= 0.

Proof. We need to prove that there exists no non-degenerate symplectic form

on V which is invariant under the action of G up to similarity. Let 〈 , 〉 be

a symplectic form on V that is preserved by G up to similarity. Then a,b

and c ∈ G preserve 〈 , 〉 up to similarity with multipliers λ (a), λ (b) and λ (c)

respectively. Then, as a, b and c are elements of order 4 we have, from Lemma

4.1.20, λ (a)4 = 1, λ (b)4 = 1 and λ (c)4 = 1.

Now we know that a, b, c and ab are conjugate in SL6 (q), and from

information in table 4.5.1 in [GLS98], we have that a, b, c and ab are conjugate

in GSp6 (q). Thus from Lemma 4.1.20, we have λ (a) = λ (b) = λ (c) =

λ (ab) = λ (a)λ (b), and so λ (a) = λ (b) = λ (c) = 1. Thus, as a, b and c

generate G, for all x ∈ G, the multiplier for x, λ (x) must be equal to 1, i.e.

for all x ∈ G and all u,v ∈ V , 〈xu, xv〉 = 〈u, v〉.

Now,

〈v2, v5〉 =c 〈v1 + iαv6, v4 + iαv6〉

= 〈v1, v4〉+ 〈v1, iαv6〉+ 〈iαv6, v4〉+ 〈iαv6, iαv6〉

= 〈v1, v4〉+ iα 〈v1, v6〉 − iα 〈v4, v6〉

=a 〈v1, v4〉+ iα 〈−v2, v5〉 − iα 〈v3, v5〉

= 〈v1, v4〉 − iα 〈v2, v5〉 − iα 〈v3, v5〉
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=b 〈v1, v4〉 − iα 〈v2, v5〉 − iα 〈v2, iv5〉

= 〈v1, v4〉 − iα 〈v2, v5〉+ α 〈v2, v5〉

Hence

〈v1, v4〉 = 〈v2, v5〉+ iα 〈v2, v5〉 − α 〈v2, v5〉

= (1− α + iα) 〈v2, v5〉

Now if 1− α + iα = 0, then,

〈v1, v4〉 = 0

and so,

〈v2, v3〉 =a 〈v1,−v4〉

= −〈v1, v4〉

= 0

Now,

0 = 〈v2, v3〉

=c 〈v1 + iαv6,−iv3〉

= −i 〈v1, v3〉 − α 〈v3, v6〉

Hence,

−i 〈v1, v3〉 = α 〈v3, v6〉

Now,

〈v1, v5〉 =c 〈−v2 + αv6, v4 + iαv6〉

= −〈v2, v4〉 − iα 〈v2, v6〉 − α 〈v4, v6〉

and so,

〈v2, v4〉 = −〈v1, v5〉 − iα 〈v2, v6〉 − α 〈v4, v6〉
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=a −〈v1, v5〉 − iα 〈v1, v5〉 − α 〈v4, v6〉

=b −〈v1, v5〉 − iα 〈v1, v5〉 − α 〈v1,−iv6〉

= −〈v1, v5〉 − iα 〈v1, v5〉+ iα 〈v1, v6〉

=c −〈v1, v5〉 − iα 〈v1, v5〉+ iα 〈−v2 + αv6, iv6〉

= −〈v1, v5〉 − iα 〈v1, v5〉+ α 〈v2, v6〉

=a −〈v1, v5〉 − iα 〈v1, v5〉+ α 〈v1, v5〉

= (−1− iα + α) 〈v1, v5〉

= 0

Hence,

〈v1, v3〉 =a 〈v2, v4〉

= 0

Now,

〈v5, v6〉 =c 〈v4 + iαv6, iv6〉

= i 〈v4, v6〉

=a i 〈v3, v5〉

=b i 〈v2, iv5〉

= −〈v2, v5〉

=a −〈v1,−v6〉

= 〈v1, v6〉

=c 〈−v2 + αv6, iv6〉

= −i 〈v2, v6〉

=b −i 〈−v3,−iv6〉

= 〈v3, v6〉

= − i
α
〈v1, v3〉
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= 0

and

〈v1, v5〉 =b 〈−v4, iv5〉

= −i 〈v4, v5〉

=a −i 〈v3,−v6〉

= i 〈v3, v6〉

=
1

α
〈v1, v3〉

= 0

Hence

〈v1, v2〉 =b 〈−v4, v3〉

= 〈v3, v4〉

=c 〈−iv3,−v5 + αv6〉

= i 〈v3, v5〉 − iα 〈v3, v6〉

= 0

Hence, 〈vi, vj〉 = 0 ∀ 1 6 i, j 6 6.

Now assume that 1 + iα− α 6= 0.

Then we have

〈v1, v5〉 =c 〈−v2 + αv6, v4 + iαv6〉

= −〈v2, v4〉 − iα 〈v2, v6〉 − α 〈v4, v6〉

=a −〈v2, v4〉 − iα 〈v1, v5〉 − α 〈v4, v6〉

=b −〈v2, v4〉 − iα 〈v1, v5〉 − α 〈v1,−iv6〉

= −〈v2, v4〉 − iα 〈v1, v5〉+ iα 〈v1, v6〉

=c −〈v2, v4〉 − iα 〈v1, v5〉+ iα 〈−v2 + αv6, iv6〉

= −〈v2, v4〉 − iα 〈v1, v5〉+ α 〈v2, v6〉
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=a −〈v2, v4〉 − iα 〈v1, v5〉+ α 〈v1, v5〉

(1 + iα− α) 〈v1, v5〉 = −〈v2, v4〉

〈v1, v5〉 =
−1

1 + iα− α
〈v2, v4〉

and

〈v1, v3〉 =c 〈−v2 + αv6,−iv3〉

= i 〈v2, v3〉+ iα 〈v3, v6〉

=a i 〈v1,−v4〉+ iα 〈v3, v6〉

= −i 〈v1, v4〉+ iα 〈v3, v6〉

= −i (1 + iα− α) 〈v2, v5〉+ iα 〈v3, v6〉

=a −i (1 + iα− α) 〈v1,−v6〉+ iα 〈v3, v6〉

= i (1 + iα− α) 〈v1, v6〉+ iα 〈v3, v6〉

=c i (1 + iα− α) 〈−v2 + αv6, iv6〉+ iα 〈v3, v6〉

= (1 + iα− α) 〈v2, v6〉+ iα 〈v3, v6〉

=b (1 + iα− α) 〈−v3,−iv6〉+ iα 〈v3, v6〉

= i (1 + iα− α) 〈v3, v6〉+ iα 〈v3, v6〉

= (i− α) 〈v3, v6〉

Also we have

〈v1, v3〉 =a 〈−v2,−v4〉

= 〈v2, v4〉

= (−1− iα + α) 〈v1, v5〉

=b (−1− iα + α) 〈−v4, iv5〉

= i (1 + iα− α) 〈v4, v5〉

=a i (1 + iα− α) 〈v3,−v6〉

= −i (1 + iα− α) 〈v3, v6〉
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Hence we have (i− α) 〈v3, v6〉 = 〈v1, v3〉 = −i (1 + iα− α) 〈v3, v6〉.

Hence if 〈v3, v6〉 6= 0 then, (i− α) = −i (1 + iα− α) which implies that

−2i+ 2α + iα = 0.

Hence if −2i+ 2α + iα 6= 0 then 〈v3, v6〉 = 0.

Now if 〈v3, v6〉 = 0, we have, similar to the above, 〈vi, vj〉 = 0∀1 6 i, j 6 6.

Hence under the restrictions above, there is no non-degenerate symplectic

form on V which is invariant under the action of G up to similarity, and so H

does not preserve a non-degenerate symplectic form.

Hence if the restrictions in the above lemma hold, then H cannot be con-

jugate to Sp6 (q).

4.8.5 Equations

The only restrictions we have are that q 6= 9, q ≡ 1 mod 4, 8iα2 6= 0 and

is a defining element of Fq, α 6= i,−i and that either 1 + iα − α = 0 or

−2i+ 2α+ iα 6= 0. Thus we have a polynomial, 8iα2 ∈ Fq [α] of degree 2 over

Fq, for q = pk, q ≡ 1 mod 4 and q 6= 9. Also, we require that α 6= i,−i and

that either 1 + iα−α = 0 or −2i+ 2α+ iα 6= 0, so we take X to be the subset

of Fq that contains the elements, α, s.t. α = i,−i or −2i+ 2α+ iα = 0. Thus

|X| 6 3. From Lemma 4.1.23, one of values that f (α) assumes on Fq\X is a

defining element of Fq if one of the following hold:

1. k = 1 and p > 5;

2. k = 2 and p > 3;

3. k = 3 and p > 3;

4. k > 4 and p > 2;

These clearly hold for all q ≡ 1 mod 4, q = pk and q 6= 5, 9. Now for q = 5,

if we take α = −1, then 8iα2 6= 0 and so is a defining element of Fq. Also
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α 6= i,−i and 1 + iα − α = 0. Hence for q ≡ 1 mod 4, q 6= 9, there exists an

element α ∈ Fq that satisfies the restrictions above.

4.8.6 Conclusion

We conclude this section by summarising the above.

Lemma 4.8.3. For q ≡ 1 mod 4 and q 6= 9, ∃ α ∈ Fq s.t. the elements

a, b and c generate SL6 (q), and so L6 (q) has Property 2 and hence also has

Property 1.

Proof. 1. In section 4.8.1 we exhibited elements in SL6 (q), a, b and c.

Under the natural homomorphism SL6 (q) −→ L6 (q) they map to invo-

lutions a′, b′ and c′ such that a′ and b′ commute and a′, b′, c′ and a′b′

are conjugate in L6 (q). The elements are defined in terms of a variable

α ∈ Fq. We called the group generated by these elements G.

2. In section 4.8.2 we demonstrated that there is a non-trivial transvection,

in G, g := (bc)5. We also demonstrated that the transvection h := ga ∈

G is opposite to g. Dickson’s Lemma (Lemma 4.1.2) then gives us that

G contains the whole root subgroup R, consisting of all transvections

with the same center and the same axis as g, subject to 8iα2 being a

defining element of Fq.

3. In section 4.8.3 we then considered the normal closure H := 〈g〉G =

〈R〉G E G of the root subgroup R in G. We have shown that the group G

is irreducible and so the group H is also irreducible, under the restriction

that α 6= 0, i,−i. Thus H := 〈g〉G = 〈R〉G is irreducible, and so is an

irreducible group generated by root subgroups. Thus from Lemma 4.1.1,

H either coincides with SL6 (q), or H is conjugate to Sp6 (q).

4. In section 4.8.4 we excluded the symplectic case by showing that G does

not preserve a non-degenerate symplectic form up to similarity. This
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implies that, when α satisfies the imposed restrictions, we have that

G D H = SL6 (q)and hence, G ∼= SL6 (q).

5. Finally, in section 4.8.5 it was shown that the there exists an α such that

the restrictions on it can be satisfied.

4.9 Dimension n = 7

In this section, we show that, for q odd and q 6= 9, L7 (q) has Property 2,

and hence Property 1. We do so by showing that SL7 (q) can be generated by

suitable elements by following the method outlined in section 4.1. We work in

the standard representation of SL7 (q), i.e. 7× 7 matrices acting on the space

of column vectors of length 7. We call this vector space V .

4.9.1 Generators

We define:

a :=



· · · 1 · · ·
· · 1 · · · ·
· 1 · · · · ·
1 · · · · · ·
· · · · −1 · ·
· · · · · · 1
· · · · · 1 ·



b :=



· 1 · · · · ·
1 · · · · · ·
· · · 1 · · ·
· · 1 · · · ·
· · · · 1 · ·
· · · · · −1 ·
· · · · · · −1


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c :=



· · · · · 1 ·
· · · · 1 · ·
· · · 1 · · ·
· · 1 · · · ·
· 1 · · · · ·
1 · · · · · ·
· · α α · · −1


for some 0 6= α ∈ Fq

Hence

ab =



· · 1 · · · ·
· · · 1 · · ·
1 · · · · · ·
· 1 · · · · ·
· · · · −1 · ·
· · · · · · −1
· · · · · −1 ·


As a, b, c and ab are all involutions with eigenvalues

{
(1)3 , (−1)4

}
, from

the properties of involutions, we can see that they are conjugate in SL7 (q),

and a and b commute. We take G := 〈a, b, c〉.

4.9.2 Transvections and Root Subgroups

In this section, we show that the group G defined above, contains two opposite

transvections, and so from Lemma 4.1.11, G contains a root subgroup.

We have:

g := (bc)8

=



1 · · · · · ·
· 1 · · · · ·
· · 1 · · · ·
· · · 1 · · ·
· · · · 1 · ·
· · · · · 1 ·
· · −8α −8α · · 1



= I7 +



0
0
0
0
0
0
−8α


× 1×

(
0 0 1 1 0 0 0

)
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Hence, g is a one-dimensional transformation, and has values a (g) and

c (g) given by:

a (g) =
(

0 0 1 1 0 0 0
)

c (g) =



0
0
0
0
0
0
−8α


Thus, by Lemma 4.1.6, g is a transvection as

a (g) c (g) =
(

0 0 1 1 0 0 0
)
×



0
0
0
0
0
0
−8α


= 0

Now we want another transvection, h, such that h is opposite to g. From

Lemma 4.1.10 g and h are opposite if, for γ := a (g) c (h), and δ := a (h) c (g),

we have γδ 6= 0. We also want γδ to be a defining element of Fq.

We take h := gk = k−1gk, where k := (ac)2. Since h is conjugate to g, h is

a transvection. Now

(ac)2 =



· · · · 1 · ·
· · · · · 1 ·
· −1 · · · · ·
· · α α · · −1
· · · −1 · · ·
−1 · · · α α ·
· · 1 · · · ·


and
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(ca)2 =



α α · · · −1 ·
· · −1 · · · ·
· · · · · · 1
· · · · −1 · ·
1 · · · · · ·
· 1 · · · · ·
· · · −1 −α · α


.

Hence

h := k−1gk

= (ca)2 g (ac)2

=



1 · · · · · ·
· 1 · · · · ·
· 8α 1− 8α2 −8α2 · · 8α
· · · 1 · · ·
· · · · 1 · ·
· · · · · 1 ·
· 8α2 −8α3 −8α3 · · 1 + 8α2



= I7 +



0
0

8α
0
0
0

8α2


× 1×

(
0 1 −α −α 0 0 1

)

Hence h has values a (h) and c (h) given by:

a (h) =
(

0 1 −α −α 0 0 1
)

c (h) =



0
0

8α
0
0
0

8α2


Now

γδ = a (g) c (h) a (h) c (g)

=
(

0 0 1 1 0 0 0
)
· · ·
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· · ·



0
0

8α
0
0
0

8α2


(

0 1 −α −α 0 0 1
)


0
0
0
0
0
0
−8α


= (8α)× (−8α)

= −64α2

So if α is chosen such that −64α2 is a defining element of Fq, we have, by

Lemma 4.1.11, that 〈g, h〉 6 G contains a root subgroup R.

4.9.3 Irreducibility

In this section we show that H := 〈g〉G = 〈R〉G acts irreducibly on the vector

space V . First we define the group G1 := 〈b, c, (ac)2〉.

Lemma 4.9.1. The group G1 acts irreducibly on the vector space V .

Proof. Let U be a G1-invariant subspace. Let g be the transvection in G

calculated in the last section, with values a (g) and c (g), defined as above.

So we have:

a (g) = (0, 0, 1, 1, 0, 0, 0)

c (g) = (0, 0, 0, 0, 0, 0,−8α)T

If there exists a vector u ∈ U which does not lie on the axis of g, then

by Lemma 4.1.18 we have that c (g) ∈ U , and since α 6= 0, we have u :=

(0, 0, 0, 0, 0, 0, 1)T ∈ U . Then we have:

w1 := (ac)2 u

= (0, 0, 0,−1, 0, 0, 0)T ∈ U

w2 := bw1

= (0, 0,−1, 0, 0, 0, 0)T ∈ U

w3 := (ca)2 u2
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= (0, 1, 0, 0, 0, 0, 0)T ∈ U

w4 := bw3

= (1, 0, 0, 0, 0, 0, 0)T ∈ U

w5 := cw3

= (0, 0, 0, 0, 1, 0, 0)T ∈ U

w6 := cw4

= (0, 0, 0, 0, 0, 1, 0)T ∈ U

The vectors u, w1, w2, w3, w4, w5 and w6 form a basis of V . Hence U = V .

So, we may assume that U is contained in the axis of g, i.e. if u =

(u1, u2, u3, u4, u5, u6, u7)
T ∈ U , then u3 + u4 = 0. We look at this dually,

i.e. the homogeneous linear equations satisfied by all vectors of U are repre-

sented by rows of length 5, on which G1 acts on the right. All such equations

form a subspace, X, of 7Fq. Since U is G1-invariant, X is also.

We have x := (0, 0, 1, 1, 0, 0, 0) ∈ X. Then we have:

y1 := x (ca)2

= (0, 0, 0, 0,−1, 0, 1) ∈ X

y2 := y1b

= (0, 0, 0, 0,−1, 0,−1) ∈ X

y3 := y1c− αx

= (0,−1, 0, 0, 0, 0,−1) ∈ X

y4 := y3b

= (−1, 0, 0, 0, 0, 0, 1) ∈ X

y5 := y4c− αx

= (0, 0, 0, 0, 0,−1,−1) ∈ X

y6 := y2 (ac)2

= (0, 0,−1, 1, 0, 0, 0) ∈ X
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The vectors x, y1, y2, y3, y4, y5 and y6 form a basis of 7Fq, as long as α 6= 0.

So, with these restrictions we have X = 7Fq, and so U = 0.

Hence G1 is irreducible.

Then, as the group G1 = 〈b, c, (ac)2〉 satisfies the conditions of Proposition

4.1.17, an as α 6= 0, the group H1 := 〈g〉G1 = 〈R〉G1 is irreducible, and so

the group H > H1 is also. Now, by the choice of H it is easy to see that it

contains the group R defined in the last section. Thus, if the restrictions on α

from the previous section are satisfied, we have that H is an irreducible group

generated by Root subgroups.

4.9.4 Invariant Forms

There are no non-degenerate symplectic forms in dimension 7.

4.9.5 Equations

The only restrictions we have are that q 6= 9 and −64α2 6= 0 and is a defining

element of Fq. Taking α to be any primitive element of Fq will satisfy these

restrictions on α. Hence for q 6= 9, there exists an element α ∈ Fq that satisfies

these restrictions.

4.9.6 Conclusion

We conclude this section by summarising the above.

Lemma 4.9.2. For q odd and q 6= 9, ∃ α ∈ Fq s.t. the elements a, b and c

generate SL7 (q), and so L7 (q) has Property 2 and hence also has Property 1.

Proof. 1. In section 4.9.1 we exhibited elements in SL7 (q), a, b and c such

that a and b commute and a, b, c and ab are conjugate involutions in

SL7 (q). Under the natural homomorphism SL7 (q) −→ L7 (q) they map

to involutions a′, b′ and c′ such that a′ and b′ commute and a′, b′, c′
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and a′b′ are conjugate in L7 (q). The elements are defined in terms of a

variable α ∈ Fq. We called the group generated by these elements G.

2. In section 4.9.2 we demonstrated that there is a non-trivial transvec-

tion, in G, g := (bc)4. We also demonstrated that the transvection

h := g(ac)
2 ∈ G is opposite to g. Dickson’s Lemma (Lemma 4.1.2) then

gives us that G contains the whole root subgroup R, consisting of all

transvections with the same centre and the same axis as g, subject to

−64α2 being a defining element of Fq.

3. In section 4.9.3 we then considered a subgroup G1 :=
〈
b, c, (ac)2

〉
6 G,

containing R, and the normal closure H1 := 〈g〉G1 = 〈R〉G1 E G1 of the

root subgroup R in G1. We have shown that the group G1 is irreducible

and so the group H1 is also irreducible. Thus H := 〈g〉G = 〈R〉G is

irreducible, and so is an irreducible group generated by root subgroups.

Thus from Lemma 4.1.1, H must coincide with SL7 (q).

4. There are no non-degenerate symplectic forms in dimension 7. This

implies that, when α satisfies the imposed restrictions, we have that

G D H = SL7 (q)and hence, G ∼= SL7 (q).

5. Finally, in section 4.9.5 it was shown that the there exists an α such that

the restrictions on it can be satisfied.

4.10 Dimension n = 8

In this section, we show that, for q odd and q 6= 9, L8 (q) has Property 2,

and hence Property 1. We do so by showing that SL8 (q) can be generated by

suitable elements by following the method outlined in section 4.1. We work in

the standard representation of SL8 (q), i.e. 8× 8 matrices acting on the space

of column vectors of length 8. We call this vector space V .
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4.10.1 Generators

We define:

a :=



· 1 · · · · · ·
1 · · · · · · ·
· · · 1 · · · ·
· · 1 · · · · ·
· · · · · 1 · ·
· · · · 1 · · ·
· · · · · · · 1
· · · · · · 1 ·



b :=



1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · −1 · · ·
· · · · · −1 · ·
· · · · · · −1 ·
· · · · · · · −1



c :=



· · · · · · 1 ·
· · · · · 1 · ·
· · · · 1 · · ·
· · · 1 · · · ·
· · 1 · · · · ·
· 1 · · · · · ·
1 · · · · · · ·
· · 1 α 1 · · −1


for some 0 6= α ∈ Fq

Hence

ab =



· 1 · · · · · ·
1 · · · · · · ·
· · · 1 · · · ·
· · 1 · · · · ·
· · · · · −1 · ·
· · · · −1 · · ·
· · · · · · · −1
· · · · · · −1 ·


As a, b, c and ab are all involutions with eigenvalues

{
(1)4 , (−1)4

}
, from

the properties of involutions, we can see that they are conjugate in SL8 (q),

and a and b commute. We take G := 〈a, b, c〉.
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4.10.2 Transvections and Root Subgroups

In this section, we show that the group G defined above, contains two opposite

transvections, and so from Lemma 4.1.11, G contains a root subgroup.

We have:

g := (bc)4

=



1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · · −4α · · · 1



= I8 +



0
0
0
0
0
0
0
−4α


× 1×

(
0 0 0 1 0 0 0 0

)

Hence, g is a one-dimensional transformation, and has values a (g) and c (g)

given by:

a (g) =
(

0 0 0 1 0 0 0 0
)

c (g) =



0
0
0
0
0
0
0
−4α


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Thus, by Lemma 4.1.6, g is a transvection as

a (g) c (g) =
(

0 0 0 1 0 0 0 0
)
×



0
0
0
0
0
0
0
−4α


= 0

Now we want another transvection, h, such that h is opposite to g. From

Lemma 4.1.10 g and h are opposite if, for γ := a (g) c (h), and δ := a (h) c (g),

we have γδ 6= 0. We also want γδ to be a defining element of Fq.

We take h := gk = k−1gk, where k := (ac)4. Since h is conjugate to g, h is

a transvection. Now

(ac)4 =



· · · · 1 · · ·
· α · · 1 −1 1 ·
· · · · · · 1 ·
· · 1 α 1 · · −1
−1 1 · 1 α · · ·
· 1 · · · · · ·
· 1 · α 1 · α −1
· · · 1 · · · ·


and

(ca)4 =



α · · · −1 1 · 1
· · · · · 1 · ·
· · α 1 · 1 −1 ·
· · · · · · · 1
1 · · · · · · ·
1 −1 1 · · α · ·
· · 1 · · · · ·
1 · α · · 1 −1 α


Hence

h := k−1gk

= (ca)4 g (ac)4
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=



1 · −4α −4α2 −4α · · 4α
· 1 · · · · · ·
· · 1 · · · · ·
· · −4α 1− 4α2 −4α · · 4α
· · · · 1 · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · −4α2 −4α3 −4α2 · · 1 + 4α2



= I8 +



−4α
0
0
−4α

0
0
0
−4α2


× 1×

(
0 0 1 α 1 0 0 −1

)

Hence h has values a (h) and c (h) given by:

a (h) =
(

0 0 1 α 1 0 0 −1
)

c (h) =



−4α
0
0
−4α

0
0
0
−4α2


Now

γδ = a (g) c (h) a (h) c (g)

=
(

0 0 0 1 0 0 0 0
)
· · ·

· · ·



−4α
0
0
−4α

0
0
0
−4α2


(

0 0 1 α 1 0 0 −1
)


0
0
0
0
0
0
0
−4α


= (−4α)× (4α)
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= −16α2

So if α is chosen such that −16α2 is a defining element of Fq, we have, by

Lemma 4.1.11, that 〈g, h〉 6 G contains a root subgroup R.

4.10.3 Irreducibility

In this section we show that H := 〈g〉G = 〈R〉G acts irreducibly on the vector

space V . First we define the group G1 := 〈b, c, (ac)4〉.

Lemma 4.10.1. The group G1 acts irreducibly on the vector space V .

Proof. Let U be a G1-invariant subspace. Let g be the transvection in G

calculated in the last section, with values a (g) and c (g), defined as above.

So we have:

a (g) = (0, 0, 0, 1, 0, 0, 0, 0)

c (g) = (0, 0, 0, 0, 0, 0, 0,−4α)T

If there exists a vector u ∈ U which does not lie on the axis of g, then

by Lemma 4.1.18 we have that c (g) ∈ U , and since α 6= 0, we have u :=

(0, 0, 0, 0, 0, 0, 0, 1)T ∈ U . Then we have:

w1 := (ac)4 u

= (0, 0, 0,−1, 0, 0,−1, 0)T ∈ U

w2 := bw1

= (0, 0, 0,−1, 0, 0, 1, 0)T ∈ U

w3 := (ac)4w1

= (0,−1,−1,−α,−1, 0,−2α,−1)T ∈ U

w4 := (ca)4 u

= (1, 0, 0, 1, 0, 0, 0, α)T ∈ U

w5 := (ca)4w4

=
(
2α, 0, 1, α, 1, 1, 0, 1 + α2

)T ∈ U
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w6 := (ac)4w2 − w3

= (0, 2, 2, 0, 0, 0, 2α, 0)T ∈ U

w7 := (ca)4w2 − u

= (0, 0,−1, 0, 0, 0, 0,−1)T ∈ U

The vectors u, w1, w2, w3, w4, w5, w6 and w7 form a basis of V . To see

this is in fact a basis of F8q, we show here how to obtain the standard basis

from these vectors:

u = (0, 0, 0, 0, 0, 0, 0, 1)T = e8
1

−2
(w1 + w2) = (0, 0, 0, 1, 0, 0, 0, 0)T = e4

1

2
(w2 − w1) = (0, 0, 0, 0, 0, 0, 1, 0)T = e7

−w7 − u = (0, 0, 1, 0, 0, 0, 0, 0)T = e3

w4 − e4 − αe8 = (1, 0, 0, 0, 0, 0, 0, 0)T = e1
1

2
(w6 − 2e3 − 2αe7) = (0, 1, 0, 0, 0, 0, 0, 0)T = e2

−w3 − e2 − e3 − αe4 − 2αe7 − e8 = (0, 0, 0, 0, 1, 0, 0, 0)T = e5

w5 − 2αe1 − e3 − αe4 − e5 −
(
1 + α2

)
e8 = (0, 0, 0, 0, 0, 1, 0, 0)T = e6

Hence U = V .

So, we may assume that U is contained in the axis of g, i.e. if u =

(u1, u2, u3, u4, u5, u6, u7, u8)
T ∈ U , then u4 = 0. We look at this dually, i.e.

the homogeneous linear equations satisfied by all vectors of U are represented

by rows of length 8, on which G1 acts on the right. All such equations form a

subspace, X, of 8Fq. Since U is G1-invariant, X is also.

We have x := (0, 0, 0, 1, 0, 0, 0, 0)T ∈ X. Then we have:

y1 := x (ca)4

= (0, 0, 0, 0, 0, 0, 0, 1) ∈ X

y2 := x (ac)4 − αx+ y1
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= (0, 0, 1, 0, 1, 0, 0, 0) ∈ X

y3 := y2b

= (0, 0, 1, 0,−1, 0, 0, 0) ∈ X

y4 := y2 (I8 − b) (ca)4

= (2, 0, 0, 0, 0, 0, 0, 0) ∈ X

y5 := y2 (I8 + b) (ac)4

= (0, 0, 0, 0, 0, 0, 2, 0) ∈ X

y6 := y5 (ac)4

= (0, 1, 0, α, 1, 0, α,−1) ∈ X

y7 := y2 (I8 + b) (ca)4

= (0, 0, α, 1, 0, 1,−1, 0) ∈ X

The vectors x, y1, y2, y3, y4, y5, y6 and y7 form a basis of 8Fq, as long as

α 6= 0. To see this is in fact a basis of 8Fq with these restrictions, we show

here how to obtain the standard basis from these vectors:

x = (0, 0, 0, 1, 0, 0, 0, 0) = eT4

y1 = (0, 0, 0, 0, 0, 0, 0, 1) = eT8
1

2
(y2 + y3) = (0, 0, 1, 0, 0, 0, 0, 0) = eT3

1

2
(y2 − y3) = (0, 0, 0, 0, 1, 0, 0, 0) = eT5

1

2
y4 = (1, 0, 0, 0, 0, 0, 0, 0) = eT1

1

2
y5 = (0, 0, 0, 0, 0, 0, 1, 0) = eT7

y6 − αeT4 − eT5 − αeT7 + eT8 = (0, 1, 0, 0, 0, 0, 0, 0) = eT2

y7 − αeT3 − eT4 + eT7 = (0, 0, 0, 0, 0, 1, 0, 0) = eT6

So, with these restrictions we have X = 8Fq, and so U = 0.

Hence G1 is irreducible.

Then, as the group G1 = 〈b, c, (ac)4〉 satisfies the conditions of Proposition
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4.1.17, and as α 6= 0, the group H1 := 〈g〉G1 = 〈R〉G1 is irreducible, and so

the group H > H1 is also. Now, by the choice of H it is easy to see that it

contains the group R defined in the last section. Thus, if the restrictions on α

from the previous section are satisfied, we have that H is an irreducible group

generated by Root subgroups.

4.10.4 Invariant Forms

Lemma 4.10.2. H does not preserve a non-degenerate symplectic form.

Proof. We need to prove that there exists no non-degenerate symplectic form

on V which is invariant under the action of G up to similarity. Let 〈 , 〉 be

a symplectic form on V that is preserved by G up to similarity. Then a,b

and c ∈ G preserve 〈 , 〉 up to similarity with multipliers λ (a), λ (b) and λ (c)

respectively. Then, as a, b and c are involutions we have, from Lemma 4.1.20,

λ (a) = ±1, λ (b) = ±1 and λ (c) = ±1.

Now we know that a, b, c and ab are conjugate in SL8 (q), and from

information in table 4.5.1 in [GLS98], we have that a, b, c and ab are conjugate

in GSp8 (q). Thus from Lemma 4.1.20, we have λ (a) = λ (b) = λ (c) =

λ (ab) = λ (a)λ (b), and so λ (a) = λ (b) = λ (c) = 1. Thus, as a, b and c

generate G, for all x ∈ G, the multiplier for x, λ (x) must be equal to 1, i.e.

for all x ∈ G and all u,v ∈ V , 〈xu, xv〉 = 〈u, v〉.

So for 1 6 i 6 4 and 5 6 j 6 8, we have:

〈vi, vj〉 =b 〈vi,−vj〉

= −〈vi, vj〉 , and so

〈vi, vj〉 = 0 for 1 6 i 6 4 and 5 6 j 6 8.

Also, for i = 1, 3, 5, 7 and j = i+ 1, we have:

〈vi, vj〉 =a 〈vj, vi〉

= −〈vi, vj〉 , and so
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〈vi, vj〉 = 0 for i = 1, 3, 5, 7 and j = i+ 1.

Thus, we have:

〈v6, v8〉 =c 〈v2,−v8〉

= −〈v2, v8〉

= 0,

〈v5, v7〉 =a 〈v6, v8〉

= 0,

〈v1, v3〉 =c 〈v7, v5 + v8〉

= 〈v7, v5〉+ 〈v7, v8〉

= −〈v5, v7〉+ 〈v7, v8〉

= 0,

〈v2, v4〉 =a 〈v1, v3〉

= 0,

〈v2, v3〉 =c 〈v6, v5 + v8〉

= 〈v6, v5〉+ 〈v6, v8〉

= −〈v5, v6〉+ 〈v6, v8〉

= 0,

〈v1, v4〉 =a 〈v2, v3〉

= 0,

〈v5, v8〉 =c 〈v3 + v8,−v8〉

= 〈v3,−v8〉+ 〈v8,−v8〉

= −〈v3, v8〉 − 〈v8, v8〉

= 0,

〈v6, v7〉 =c 〈v2, v1〉

= −〈v1, v2〉
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= 0.

Hence we have 〈vi, vj〉 = 0∀i, j, 1 6 i, j 6 n.

Hence there is no non-degenerate symplectic form on V which is invariant

under the action of G up to similarity, and so H does not preserve a non-

degenerate symplectic form.

Hence H cannot be conjugate to Sp8 (q).

4.10.5 Equations

The only restrictions we have are that q 6= 9 and −16α2 6= 0 and is a defining

element of Fq. Taking α to be any primitive element of Fq will satisfy these

restrictions on α. Hence for q 6= 9, there exists an element α ∈ Fq that satisfies

these restrictions.

4.10.6 Conclusion

We conclude this section by summarising the above.

Lemma 4.10.3. For q odd and q 6= 9, ∃ α ∈ Fq s.t. the elements a, b and c

generate SL4 (q), and so L4 (q) has Property 2 and hence also has Property 1.

Proof. 1. In section 4.10.1 we exhibited elements in SL8 (q), a, b and c such

that a and b commute and a, b, c and ab are conjugate involutions in

SL8 (q). Under the natural homomorphism SL8 (q) −→ L8 (q) they map

to involutions a′, b′ and c′ such that a′ and b′ commute and a′, b′, c′

and a′b′ are conjugate in L8 (q). The elements are defined in terms of a

variable α ∈ Fq. We called the group generated by these elements G.

2. In section 4.10.2 we demonstrated that there is a non-trivial transvec-

tion, in G, g := (bc)4. We also demonstrated that the transvection

h := g(ac)
4 ∈ G is opposite to g. Dickson’s Lemma (Lemma 4.1.2) then

gives us that G contains the whole root subgroup R, consisting of all
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transvections with the same centre and the same axis as g, subject to

−16α2 being a defining element of Fq.

3. In section 4.10.3 we then considered a subgroup G1 :=
〈
b, c, (ac)2

〉
6

G, containing R, and the normal closure H1 := 〈g〉G1 = 〈R〉G1 E G1

of the root subgroup R in G1. We have shown that the group G1 is

irreducible and so the group H1 is also irreducible. Thus H := 〈g〉G =

〈R〉G is irreducible, and so is an irreducible group generated by root

subgroups. Thus from Lemma 4.1.1, H either coincides with SL8 (q), or

H is conjugate to Sp8 (q).

4. In section 4.10.4 we excluded the symplectic case by showing that G

does not preserve a non-degenerate symplectic form up to similarity.

This implies that, when α satisfies the imposed restrictions, we have

that G D H = SL8 (q)and hence, G ∼= SL8 (q).

5. Finally, in section 4.10.5 it was shown that the there exists an α such

that the restrictions on it can be satisfied.

4.11 Dimension n = 4m + 1, m > 2

In this section, we show that, for q odd, q 6= 9 and m > 2, L4m+1 (q) has

Property 2, and hence Property 1. We do so by showing that SL4m+1 (q) can be

generated by suitable elements by following the method outlined in section 4.1.

We work in the standard representation of SL4m+1 (q), i.e. (4m+ 1)×(4m+ 1)

matrices acting on the space of column vectors of length 4m+ 1. We call this

vector space V .
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4.11.1 Generators

We define:

a :=



1

. .
.

1

2m︷ ︸︸ ︷

︸ ︷︷ ︸
2m+1

0 1
1 0

. . .

0 1
1 0


which can be thought of as permuting the

standard basis as the permutation

a′ = (1, 2m+ 1) . . . (m,m+ 2)︸ ︷︷ ︸
(l,2m+1−l) 16l6m

(m+ 1) (2m+ 2, 2m+ 3) . . . (n− 1, n)︸ ︷︷ ︸
(2l,2l+1) m+16l62m

b :=



1
. . .

1

2m︷ ︸︸ ︷

︸ ︷︷ ︸
2m+1

−1
. . .

−1



c :=



1

. .
.

1
1

1
1

. .
.

1
0 · · · 0 α −α 0 · · · 0 1


for some 0 6= α ∈ Fq

︸ ︷︷ ︸
2m−1

︸ ︷︷ ︸
2m−1

which is close to permuting the standard basis as the permutation

c′ = (1, n− 1) . . . (2m, 2m+ 1)︸ ︷︷ ︸
(l,n−l) 16l62m

(n)

Hence
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ab =



1

. .
.

1

2m︷ ︸︸ ︷

︸ ︷︷ ︸
2m+1

0 −1
−1 0

. . .

0 −1
−1 0


As a, b, c and ab are all involutions with eigenvalues

{
(1)2m+1 , (−1)2m

}
,

from the properties of involutions, we can see that they are conjugate in

SL4m+1 (q), and a and b commute. We take G := 〈a, b, c〉.

4.11.2 Transvections and Root Subgroups

In this section, we show that the group G defined above, contains two opposite

transvections, and so from Lemma 4.1.11, G contains a root subgroup.

We have:

g := (bc)4

=



1
. . .

1
1

1
1

. . .

1
0 · · · 0 4α −4α 0 · · · 0 1


︸ ︷︷ ︸

2m−1
︸ ︷︷ ︸

2m−1

= In +


0
...
0

4α

× 1× (0 · · · 0| 1 −1 |0 · · · 0)︸ ︷︷ ︸
2m−1

︸ ︷︷ ︸
2m

Hence, g is a one-dimensional transformation, and has values a (g) and
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c (g) given by:

a (g) = (0 · · · 0| 1 −1 |0 · · · 0)︸ ︷︷ ︸
2m−1

︸ ︷︷ ︸
2m

c (g) =


0
...
0

4α


Thus, by Lemma 4.1.6, g is a transvection as

a (g) c (g) = (0 · · · 0| 1 −1 |0 · · · 0)︸ ︷︷ ︸
2m−1

︸ ︷︷ ︸
2m

×


0
...
0

4α

 = 0

Now we want another transvection, h, such that h is opposite to g. From

Lemma 4.1.10 g and h are opposite if, for γ := a (g) c (h), and δ := a (h) c (g),

we have γδ 6= 0. We also want γδ to be a defining element of Fq.

We take h := gk = k−1gk, where k := (ac)2. Since h is conjugate to g,

h is a transvection. Now, since we only want to know the value of γδ, we

do not need to calculate h explicitly. We use the fact that the generators we

have chosen are very close to being permutation matrices to do a much easier

calculation.
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Now

ac =



1
1

1
. . .

1
1

1

. .
.

1
1

0 0 · · · · · · · · · 0 α −α 0 · · · 0 1
1



and

︸ ︷︷ ︸
2m−2

︸ ︷︷ ︸
2m−1

ca = (ac)−1

=



1
1

1

. .
.

1
1

1
. . .

1
1

1
1

0 · · · 0 α 0 −α 0 · · · · · · · · · 0 1 0


︸ ︷︷ ︸

2m−2
︸ ︷︷ ︸

2m−2

i.e. ac is very close to being the permutation matrix representing the

permutation

a′c′ = (1, 2m,n− 2, 3, . . . 2, 2m+ 1, n− 1, n) ,

(a cycle of length 4m+ 1). Using this we can easily calculate (ac)2 and (ca)2.

Note that (a′c′)2 : 2m 7−→ n 7−→ 2m+ 1.
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In calculating γδ, we will need the (2m)th and the (2m+ 1)th rows of k−1,

and the entries (k)2m,n, (k)2m+1,n, (k)n−3,n and (k)n,n from k. This will be made

clear below. Since ca is very close to being a permutation matrix, it is easy to

see that the (2m)th row of k−1 = (ca)2 is in fact equal to
(

0 · · · 0 1
)
, The

(2m+ 1)th row of k−1 is equal to
(

0 · · · 0 1 0 0 0
)

Similarly, since ac

is very close to being a permutation matrix, it is easy to see that (k)2m,n = 0,

(k)2m+1,n = 1, (k)n−3,n = 0 and (k)n,n = 0.

Now

γδ = a (g) c (h) a (h) c (g)

= (0 · · · 0| 1 −1 |0 · · · 0)︸ ︷︷ ︸
2m−1

︸ ︷︷ ︸
2m

(c (h) a (h))


0
...
0

4α



= (0 · · · 0| 1 −1 |0 · · · 0)︸ ︷︷ ︸
2m−1

︸ ︷︷ ︸
2m

(h− In)


0
...
0

4α


=

(
1×

(
(2m)th row of (h− In)

)
· · ·

· · · −1×
(

(2m+ 1)th row of (h− In)
))
×


0
...
0

4α


=

(
1×

(
(h− In)2m,n

)
− 1×

(
(h− In)2m+1,n

))
× (4α)

= (4α)×
(

(h)2m,n − (h)2m+1,n

)
= (4α)×

((
k−1gk

)
2m,n
−
(
k−1gk

)
2m+1,n

)
= (4α)×

((
(2m)th row of k−1

)
×
(
nth column of gk

)
· · ·

· · · −
(

(2m+ 1)th row of k−1
)
×
(
nth column of gk

))
= (4α)×

((
0 · · · 0 1

)
×
(
nth column of gk

)
− · · ·

· · ·
(

0 · · · 0 1 0 0 0
)
×
(
nth column of gk

))

145



= (4α)×
(

1× (gk)n,n − 1× (gk)n−3,n

)
= (4α)×

((
nth row of g

)
×
(
nth column of k

)
· · ·

· · · −
(

(n− 3)th row of g
)
×
(
nth column of k

))
= (4α)× · · ·

· · · ×
((

0 · · · 0 4α −4α 0 · · · 0 1
)
×
(
nth column of k

)
· · ·

· · · −
(

0 · · · 0 1 0 0 0
)
×
(
nth column of k

))
= (4α)× · · ·

· · · ×
((

4α× (k)2m,n − 4α× (k)2m+1,n + 1× (k)n,n

)
− 1× (k)n−3,n

)
= (4α)× (4α× 0− 4α× 1 + 1× 0− 1× 0)

= (4α)× (−4α)

= −16α2

So if α is chosen such that −16α2 is a defining element of Fq, we have, by

Lemma 4.1.11, that 〈g, h〉 6 G contains a root subgroup R.

4.11.3 Irreducibility

In this section we show that H := 〈g〉G = 〈R〉G acts irreducibly on the vector

space V . First we define the group G1 := 〈b, c, (ac)2〉.

Lemma 4.11.1. The group G1 acts irreducibly on the vector space V .

Proof. Let U be a G1-invariant subspace. Let g be the transvection in G

calculated in the last section, with values a (g) and c (g), defined as above.

So we have:

a (g) = (0 · · · 0| 1 −1 |0 · · · 0)︸ ︷︷ ︸
2m−1

︸ ︷︷ ︸
2m

c (g) = (0, . . . , 0, 4α)T

If there exists a vector u ∈ U which does not lie on the axis of g, then

by Lemma 4.1.18 we have that c (g) ∈ U , and since α 6= 0, we have u :=
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(0, . . . , 0, 1)T ∈ U . In fact, u is the standard basis vector en. Now since the

matrix ac is close to being a permutation matrix, it is relatively simple to see

how (ac)2 acts on standard basis vectors. For i 6= 2m, 2m+ 1, n− 2, n− 1 we

have:

(ac)2 ei = ±ej, where j = i(c
′a′)2 .

Thus, for i 6= 2m, 2m+ 1, n− 2, n− 1, if ei ∈ U then e
i(c
′a′)2 ∈ U . Also:

(ac)2 e2m = en + αe2m+1

= e
(2m)(c

′a′)2 + αe2m+1

(ac)2 e2m+1 = en−3 − αe2m+1

= e
(2m+1)(c

′a′)2 + αe2m+1

(ac)2 en−2 = e1 + αen−1

= e
(n−2)(c′a′)

2 + αen−1

(ac)2 en−1 = e2 − αen−1

= e
(n−1)(c′a′)

2 − αen−1

Thus, for i = 2m, 2m+ 1, if ei ∈ U and e2m+1 ∈ U , then e
i(c
′a′)2 ∈ U . Also, for

i = n − 2, n − 1, if ei ∈ U then (b+ I4m+1)
(
e
i(c
′a′)2 ± αen−1

)
= 2e

i(c
′a′)2 ∈ U

and so e
i(c
′a′)2 ∈ U .

Now, from above, we have en ∈ U . Also, (ac)2 en = e2m+1 ∈ U . And so, as

en ∈ U , e2m+1 ∈ U , en−2 ∈ U , en−1 ∈ U and the permutation (c′a′)2 is a cycle

of length 4m + 1, we have ei ∈ U for all i, 1 6 i 6 4m + 1. Hence, since U is

G1-invariant, we have U = V .

So, we may assume that U is contained in the axis of g, i.e. if u =

(u1, . . . , un)T ∈ U , then u2m − u2m+1 = 0. We look at this dually, i.e. the

homogeneous linear equations satisfied by all vectors of U are represented by

rows of length 4m+ 1, on which G1 acts on the right. All such equations form

a subspace, X, of 4m+1Fq. Since U is G1-invariant, X is also.
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So, we have x := (0 · · · 0| 1 −1 |0 · · · 0)︸ ︷︷ ︸
2m−1

︸ ︷︷ ︸
2m

∈ X.

Then
(
x (ca)2

)
(I4m+1 − b) = (0, . . . , 0, 2, 0) ∈ X. So we have the standard

basis vector eTn−1 ∈ X. Now since ca is close to being a permutation matrix,

it is relatively simple to see how (ca)2 acts on standard basis vectors. For

i 6= 1, n we have:

eTi (ac)2 = ±eTj , where j = i(c
′a′)2 .

Thus, for i 6= 1, n, if eTi ∈ X then eT
i(c
′a′)2
∈ X. Also:

eTn (ca)2 = eT2m+1 + αeT2m+3 − αeT2

= eT
(n)(c

′a′)2
+ αeT2m+3 − αeT2

and, if eTn ∈ X, then
(
eT2m+1 + αeT2m+3 − αeT2

)
(1− b) = 2αeT2m+3 ∈ X, and so

we have e2m+3 ∈ X. Thus, if en ∈ X, and eT2 ∈ X, then eT
(n)(c

′a′)2
∈ X.

Now, from above, we have eTn−1 ∈ X. Also, since the permutation (c′a′)2 is

a cycle of length 4m + 1 and we have (n− 1)(c
′a′)4m = n, (n− 1)(c

′a′)8m+2

= 1

and (n− 1)(c
′a′)2 = 2 then we can see that eTn−1 (ca)2 = eT2 ∈ X. From this it

can be seen that for all i, 1 6 i 6 4m + 1, eTi ∈ X. Since X is G1-invariant,

we have X = 4m+3Fq, and so U = 0.

Hence G1 is irreducible.

Then, as the group G1 = 〈b, c, (ac)2〉 satisfies the conditions of Proposition

4.1.17, and as α 6= 0, the group H1 := 〈g〉G1 = 〈R〉G1 is irreducible, and so

the group H > H1 is also. Now, by the choice of H it is easy to see that it

contains the group R defined in the last section. Thus, if the restrictions on α

from the previous section are satisfied, we have that H is an irreducible group

generated by Root subgroups.

4.11.4 Invariant Forms

There are no non-degenerate symplectic forms in dimension 4m+ 1.
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4.11.5 Equations

The only restrictions we have are that q 6= 9 and −16α2 6= 0 and is a defining

element of Fq. Taking α to be any primitive element of Fq will satisfy these

restrictions on α. Hence for q 6= 9, there exists an element α ∈ Fq that satisfies

these restrictions.

4.11.6 Conclusion

We conclude this section by summarising the above.

Lemma 4.11.2. For q odd, q 6= 9 and m > 2, ∃ α ∈ Fq s.t. the elements a,

b and c generate SL4m+1 (q), and so L4m+1 (q) has Property 2 and hence also

has Property 1.

Proof. 1. In section 4.11.1 we exhibited elements in SL4m+1 (q), a, b and

c such that a and b commute and a, b, c and ab are conjugate involu-

tions in SL4m+1 (q). Under the natural homomorphism SL4m+1 (q) −→

L4m+1 (q) they map to involutions a′, b′ and c′ such that a′ and b′ com-

mute and a′, b′, c′ and a′b′ are conjugate in L4m+1 (q). The elements are

defined in terms of a variable α ∈ Fq. We called the group generated by

these elements G.

2. In section 4.11.2 we demonstrated that there is a non-trivial transvec-

tion, in G, g := (bc)4. We also demonstrated that the transvection

h := g(ac)
2 ∈ G is opposite to g. Dickson’s Lemma (Lemma 4.1.2) then

gives us that G contains the whole root subgroup R, consisting of all

transvections with the same centre and the same axis as g, subject to

−16α2 being a defining element of Fq.

3. In section 4.11.3 we then considered a subgroup G1 :=
〈
b, c, (ac)2

〉
6 G,

containing R, and the normal closure H1 := 〈g〉G1 = 〈R〉G1 E G1 of the

root subgroup R in G1. We have shown that the group G1 is irreducible
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and so the group H1 is also irreducible. Thus H := 〈g〉G = 〈R〉G is

irreducible, and so is an irreducible group generated by root subgroups.

Thus from Lemma 4.1.1, H must coincide with SL4m+1 (q).

4. There are no non-degenerate symplectic forms in dimension 4m + 1.

This implies that, when α satisfies the imposed restrictions, we have

that G D H = SL4m+1 (q) and hence, G ∼= SL4m+1 (q).

5. Finally, in section 4.11.5 it was shown that the there exists an α such

that the restrictions on it can be satisfied.

4.12 Dimension n = 4m + 2, m > 2

In this section, we show that, for q odd, q 6= 9 and m > 2, L4m+2 (q) has

Property 2, and hence Property 1. We do so by showing that SL4m+2 (q) can be

generated by suitable elements by following the method outlined in section 4.1.

We work in the standard representation of SL4m+2 (q), i.e. (4m+ 2)×(4m+ 2)

matrices acting on the space of column vectors of length 4m+ 2. We call this

vector space V .

4.12.1 Generators

We define:

a :=



0 1
1 0

. . .

0 1
1 0

1
1

0 1
1 0


which can be thought of as permuting the
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standard basis as the permutation

a′ = (1, 2) . . . (n− 5, n− 4)︸ ︷︷ ︸
(2l−1,2l) 16l62m−1

(n− 1, n) ,

b :=



1
1

1
1

2m−4︷ ︸︸ ︷
−1

. . .

−1

2m︷ ︸︸ ︷
1

. . .

1
−1

−1


which is close to permuting the standard basis as the permutation

b′ = (1, 4) (2, 3)

c :=



1
1

1
1

. .
.

1
1

1
1
0 α α 0 · · · 0 −α −α 0 1


for some 0 6= α ∈ Fq

which is close to permuting the standard basis as the permutation

c′ = (1, n− 1) . . . (2m, 2m+ 2)︸ ︷︷ ︸
(l,n−l) 16l62m

(2m+ 1) (n)

Hence
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ab =



1
1

1
1

2m−4︷ ︸︸ ︷
−1

−1
. . .

−1
−1

2m−2︷ ︸︸ ︷
1

1
. . .

1
1

1
1

−1
−1


As a, b, c and ab are all involutions with eigenvalues

{
(1)2m+2 , (−1)2m

}
,

from the properties of involutions, we can see that they are conjugate in

SL4m+2 (q), and a and b commute. We take G := 〈a, b, c〉.

4.12.2 Transvections and Root Subgroups

In this section, we show that the group G defined above, contains two opposite

transvections, and so from Lemma 4.1.11, G contains a root subgroup.

We have:

g := (bc)8

=



1
1

1
1

. . .

1
1

1
1

0 8α 8α 0 · · · 0 −8α −8α 0 1


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= In +


0
...
0

8α

× 1×
(

0 1 1 0 · · · 0 −1 −1 0 0
)

Hence, g is a one-dimensional transformation, and has values a (g) and c (g)

given by:

a (g) =
(

0 1 1 0 · · · 0 −1 −1 0 0
)

c (g) =


0
...
0

8α


Thus, by Lemma 4.1.6, g is a transvection as

a (g) c (g) =
(

0 1 1 0 · · · 0 −1 −1 0 0
)
×


0
...
0

8α

 = 0

Now we want another transvection, h, such that h is opposite to g. From

Lemma 4.1.10 g and h are opposite if, for γ := a (g) c (h), and δ := a (h) c (g),

we have γδ 6= 0. We also want γδ to be a defining element of Fq.

We take h := gk = k−1gk, where k := (ac)2. Since h is conjugate to g,

h is a transvection. Now, since we only want to know the value of γδ, we

do not need to calculate h explicitly. We use the fact that the generators we

have chosen are very close to being permutation matrices to do a much easier

calculation.
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Now

ac =



1
1

1
1

. .
.

. .
.

1
1

1
1

0 α α 0 0 · · · · · · 0 −α −α 0 1
1



and

ca =



1
1

1
1

1

. .
.

. .
.

1
1

1
1

α 0 0 α 0 · · · 0 0 −α −α 1 0


i.e. ac is very close to being the permutation matrix representing the

permutation

a′c′ = (1, n− 2, 2, n− 1, n) (3, n− 4, 5, n− 6, . . . , 6, n− 5, 4, n− 3) .

(a product of two distinct cycles, one of length 5, one of length 4m−3). Using

this we can easily calculate (ac)2 and (ca)2.

Note that (a′c′)2 : 2 7−→ n 7−→ n− 2.

In calculating γδ, we will only need the 2nd, the 3rd, the (n− 3)rd and the

(n− 2)nd rows of k−1 and the entries (k)1,n, (k)2,n, (k)3,n, (k)4,n, (k)n−5,n,

(k)n−3,n, (k)n−2,n and (k)n,n from k, as will be made clear below. Since
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ca is very close to being a permutation matrix, it is easy to see that the

2nd row of k−1 = (ca)2 is in fact equal to
(

1 0 · · · 0
)
, the 3rd row of

k−1 is equal to
(

0 0 0 1 0 · · · 0
)
, the (n− 3)rd row of k−1 is equal

to
(

0 · · · 0 1 0 0 0 0 0
)
, and the (n− 2)nd row of k−1 is equal to(

0 · · · 0 1
)
. Similarly, since ac is very close to being a permutation ma-

trix, it is easy to see that (k)1,n = 0, (k)2,n = 1, (k)3,n = 0, (k)4,n = 0, (k)n−5,n

= 0, (k)n−3,n = 0, (k)n−2,n = 0 and (k)n,n = 0.

Now

γδ = a (g) c (h) a (h) c (g)

=
(

0 1 1 0 · · · 0 −1 −1 0 0
)

(c (h) a (h))


0
...
0

8α



=
(

0 1 1 0 · · · 0 −1 −1 0 0
)

(h− In)


0
...
0

8α


=

(
1×

(
2nd row of (h− In)

)
· · ·

· · · +1×
(
3rd row of (h− In)

)
· · ·

· · · −1×
(

(n− 3)rd row of (h− In)
)
· · ·

· · · −1×
(

(n− 2)nd row of (h− In)
))
×


0
...
0

8α


=

(
1×

(
(h− In)2,n

)
+ 1×

(
(h− In)3,n

)
· · ·

· · · −1×
(

(h− In)n−3,n

)
− 1×

(
(h− In)n−2,n

))
× (8α)

= (8α)×
(

(h)2,n + (h)3,n − (h)n−3,n − (h)n−2,n

)
= (8α)×

((
k−1gk

)
2,n

+
(
k−1gk

)
3,n
−
(
k−1gk

)
n−3,n −

(
k−1gk

)
n−2,n

)
= (8α)×

((
2nd row of k−1

)
×
(
nth column of gk

)
· · ·

· · · +
(
3rd row of k−1

)
×
(
nth column of gk

)

155



−
(

(n− 3)rd row of k−1
)
×
(
nth column of gk

)
· · ·

· · · −
(

(n− 2)nd row of k−1
)
×
(
nth column of gk

))
= (8α)×

((
1 0 · · · 0

)
×
(
nth column of gk

)
· · ·

· · · +
(

0 0 0 1 0 · · · 0
)
×
(
nth column of gk

)
· · ·

· · · −
(

0 · · · 0 1 0 0 0 0 0
)
×
(
nth column of gk

)
· · ·

· · · −
(

0 · · · 0 1
)
×
(
nth column of gk

))
= (8α)×

(
1× (gk)1,n + 1× (gk)4,n − 1× (gk)n−5,n − 1× (gk)n,n

)
= (8α)×

((
1st row of g

)
×
(
nth column of k

)
· · ·

· · · +
(
4th row of g

)
×
(
nth column of k

)
· · ·

· · · −
(

(n− 5)th row of g
)
×
(
nth column of k

)
· · ·

· · · −
(
nth row of g

)
×
(
nth column of k

))
= (8α)×

((
1 0 · · · 0

)
×
(
nth column of k

)
· · ·

· · · +
(

0 0 0 1 0 · · · 0
)
×
(
nth column of k

)
· · ·

· · · −
(

0 · · · 0 1 0 0 0 0 0
)
×
(
nth column of k

)
· · ·

· · · −
(

0 8α 8α 0 · · · 0 −8α −8α 0 1
)
× · · ·

· · · ×
(
nth column of k

))
= (8α)×

((
1× (k)1,n + 1× (k)4,n − 1× (k)n−5,n − 8α× (k)2,n · · ·

· · · −8α× (k)3,n

)
+ 8α× (k)n−3,n + 8α× (k)n−2,n − 1× (k)n,n

)
= (8α)× (1× 0 + 1× 0− 1× 0− 8α× 1− 8α× 0 + 8α× 0 · · ·

· · · +8α× 0− 1× 0)

= (8α)× (−8α)

= −64α2

So if α is chosen such that −64α2 is a defining element of Fq, we have, by

Lemma 4.1.11, that 〈g, h〉 6 G contains a root subgroup R.
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4.12.3 Irreducibility

In this section we show that H := 〈g〉G = 〈R〉G acts irreducibly on the vector

space V . First we define the group G1 := 〈b, c, (ac)2〉.

Lemma 4.12.1. The group G1 acts irreducibly on the vector space V .

Proof. Let U be a G1-invariant subspace. Let g be the transvection in G

calculated in the last section, with values a (g) and c (g), defined as above.

So we have:

a (g) = (0, 1, 1, 0 . . . , 0,−1,−1, 0, 0)

c (g) = (0, . . . , 0, 8α)T

If there exists a vector u ∈ U which does not lie on the axis of g, then

by Lemma 4.1.18 we have that c (g) ∈ U , and since α 6= 0, we have u :=

(0, . . . , 0, 1)T ∈ U . In fact, u is the standard basis vector en. Now since the

matrices ac and ca are close to being a permutation matrices, it is relatively

simple to see how (ac)2 and (ca)2 act on standard basis vectors. For i 6=

2, 3, n− 4, n− 3, n− 2, n− 1 we have:

(ac)2 ei = ej, where j = i(c
′a′)2 .

Thus, for i 6= 2, 3, n−4, n−3, n−2, n−1, if ei ∈ U then e
i(c
′a′)2 ∈ U . Also:

(ac)2 e2 = e1 + αe2 − αen−1

= e
2(c
′a′)2 + αe2 − αen−1

(ac)2 e3 = e4 + αe2 − αen−1

= e
3(c
′a′)2 + αe2 − αen−1

(ac)2 en−4 = en−3 + αen−1

= e
(n−4)(c′a′)

2 + αen−1

(ac)2 en−3 = en−5 − αe2

= e
(n−3)(c′a′)

2 − αe2

(ac)2 en−2 = en − αe2
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= e
(n−2)(c′a′)

2 − αe2

(ac)2 en−1 = en−2 + αen−1

= e
(n−1)(c′a′)

2 + αen−1

Thus, for any i, 1 6 i 6 4m + 2, if ei ∈ U , e2 ∈ U and en−1 ∈ U then

e
i(c
′a′)2 ∈ U .

Now from above, we have en ∈ U . Hence we have (ac)2 en = e2 ∈ U .

Also we have (ca)2 en = en−2 + αen ∈ U giving us en−2 ∈ U . Thus, we have

(ca)2 en−2 = −αe2 + en−1 ∈ U giving us en−1 ∈ U .

So, for any i, 1 6 i 6 4m + 2, if ei ∈ U then e
i(c
′a′)2 ∈ U . Now, we also

have be2 = e3 ∈ U . And so, as en ∈ U , e3 ∈ U and the permutation (c′a′)2

is a product of a cycle of length 5 containing n and a cycle of length 4m − 3

containing 3, we have ei ∈ U for all i, 1 6 i 6 4m + 2. Hence, since U is

G1-invariant, we have U = V .

So, we may assume that U is contained in the axis of g, i.e. if u =

(u1, . . . , un)T ∈ U , then u2 + u3 − un−3 − un−2 = 0. We look at this du-

ally, i.e. the homogeneous linear equations satisfied by all vectors of U are

represented by rows of length 4m+ 2, on which G1 acts on the right. All such

equations form a subspace, X, of 4m+2Fq. Since U is G1-invariant, X is also.

So, we have x := (0, 1, 1, 0 . . . , 0,−1,−1, 0, 0) ∈ X.

Then (b+ I4m+2)
(
x (ac)2 − αx

)
= (0, . . . 0,−2, 0, 0, 0, 0) ∈ X. So we have

the standard basis vector eTn−4 ∈ X. Now since ac is close to being a permu-

tation matrix, it is relatively simple to see how (ac)2 acts on standard basis

vectors. For i 6= 2, n− 1 we have:

eTi (ac)2 = eTj , where j = i(a
′c′)2 .

Thus, for i 6= 2, n− 1, if eTi ∈ X then eT
i(a
′c′)2
∈ X.

Now, from above, we have eTn−4 ∈ X. Also, since the permutation (a′c′)2

is the product of a cycle of length 5 containing 1, 2, n − 2, n − 1 and n,

and a cycle of length 4m − 3 containing n − 4, then we can see that for
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i 6= 1, 2, n − 2, n − 1, n, eTi ∈ X. Moreover, eT4 b = eT1 ∈ X, eT3 b = eT2 ∈ X,

eT2 c = eTn−2 ∈ X, eT1 c = eTn−1 ∈ X and eTn−2 (ca)2 = eTn ∈ X. Therefore,for all

i, 1 6 i 6 4m+ 2, eTi ∈ X. Since X is G1-invariant, we have X = 4m+2Fq, and

so U = 0.

Hence G1 is irreducible.

Then, as the group G1 = 〈b, c, (ac)2〉 satisfies the conditions of Proposition

4.1.17, and as α 6= 0, the group H1 := 〈g〉G1 = 〈R〉G1 is irreducible, and so

the group H > H1 is also. Now, by the choice of H it is easy to see that it

contains the group R defined in the last section. Thus, if the restrictions on α

from the previous section are satisfied, we have that H is an irreducible group

generated by Root subgroups.

4.12.4 Invariant Forms

Lemma 4.12.2. H does not preserve a non-degenerate symplectic form.

Proof. We need to prove that there exists no non-degenerate symplectic form

on V which is invariant under the action of G up to similarity. Let 〈 , 〉 be

a symplectic form on V that is preserved by G up to similarity. Then a,b

and c ∈ G preserve 〈 , 〉 up to similarity with multipliers λ (a), λ (b) and λ (c)

respectively. Then, as a, b and c are involutions we have, from Lemma 4.1.20,

λ (a) = ±1, λ (b) = ±1 and λ (c) = ±1.

Now as dim (V + (x)) = 2m + 2 6= 2m = dim (V − (x)) for all x ∈ {a, b, c},

by Lemma 4.1.22, λ (a) = λ (b) = λ (c) = 1. Thus, as a, b and c generate G,

for all x ∈ G, the multiplier for x, λ (x) must be equal to 1, i.e. for all x ∈ G

and all u,v ∈ V , 〈xu, xv〉 = 〈u, v〉.

So, for i 6= 2, 3, n− 3, n− 2 we have:

〈vi, v2〉 =g 〈vi, v2 − 8αvn〉

= 〈vi, v2〉 − 8α 〈vi, vn〉
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and so

〈vi, vn〉 = 0.

Also, we have:

〈v2, v3〉 =g 〈v2 + 8αvn, v3 + 8αvn〉

= 〈v2, v3〉+ 8α 〈v2, vn〉+ 8α 〈vn, v3〉+ 64α2 〈vn, vn〉

= 〈v2, v3〉+ 8α 〈v2, vn〉 − 8α 〈v3, vn〉+ 0,

〈v2, vn−3〉 =g 〈v2 + 8αvn, vn−3 − 8αvn〉

= 〈v2, vn−3〉 − 8α 〈v2, vn〉+ 8α 〈vn, vn−3〉 − 64α2 〈vn, vn〉

= 〈v2, vn−3〉 − 8α 〈v2, vn〉 − 8α 〈vn−3, vn〉+ 0,

〈v2, vn−2〉 =g 〈v2 + 8αvn, vn−2 − 8αvn〉

= 〈v2, vn−2〉 − 8α 〈v2, vn〉+ 8α 〈vn, vn−2〉 − 64α2 〈vn, vn〉

= 〈v2, vn−2〉 − 8α 〈v2, vn〉 − 8α 〈vn−2, vn〉+ 0

and so

〈v2, vn〉 = 〈v3, vn〉

= −〈vn−3, vn〉

= −〈vn−2, vn〉

Now since we also have:

〈v2, vn〉 =b 〈v3,−vn〉

= −〈v3, vn〉 ,

we have, for all i, 1 6 i 6 n, 〈vi, vn〉 = 0. Thus, vn ∈ V⊥ and so the form

〈 , 〉 is degenerate.

Hence there is no non-degenerate symplectic form on V which is invariant

under the action of G up to similarity, and so H does not preserve a non-

degenerate symplectic form.

Hence H cannot be conjugate to Sp4m+2 (q).
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4.12.5 Equations

The only restrictions we have are that q 6= 9 and −64α2 6= 0 and is a defining

element of Fq. Taking α to be any primitive element of Fq will satisfy these

restrictions on α. Hence for q 6= 9, there exists an element α ∈ Fq that satisfies

these restrictions.

4.12.6 Conclusion

We conclude this section by summarising the above.

Lemma 4.12.3. For q odd, q 6= 9 and m > 2, ∃ α ∈ Fq s.t. the elements a,

b and c generate SL4m (q), and so L4m (q) has Property 2 and hence also has

Property 1.

Proof. 1. In section 4.12.1 we exhibited elements in SL4m+2 (q), a, b and

c such that a and b commute and a, b, c and ab are conjugate involu-

tions in SL4m+2 (q). Under the natural homomorphism SL4m+2 (q) −→

L4m+2 (q) they map to involutions a′, b′ and c′ such that a′ and b′ com-

mute and a′, b′, c′ and a′b′ are conjugate in L4m+2 (q). The elements are

defined in terms of a variable α ∈ Fq. We called the group generated by

these elements G.

2. In section 4.12.2 we demonstrated that there is a non-trivial transvec-

tion, in G, g := (bc)8. We also demonstrated that the transvection

h := g(ac)
2 ∈ G is opposite to g. Dickson’s Lemma (Lemma 4.1.2) then

gives us that G contains the whole root subgroup R, consisting of all

transvections with the same centre and the same axis as g, subject to

−64α2 being a defining element of Fq.

3. In section 4.12.3 we then considered a subgroup G1 :=
〈
b, c, (ac)2

〉
6 G,

containing R, and the normal closure H1 := 〈g〉G1 = 〈R〉G1 E G1 of the

root subgroup R in G1. We have shown that the group G1 is irreducible
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and so the group H1 is also irreducible. Thus H := 〈g〉G = 〈R〉G is

irreducible, and so is an irreducible group generated by root subgroups.

Thus from Lemma 4.1.1, H either coincides with SL4m+2 (q), or H is

conjugate to Sp4m+2 (q).

4. In section 4.12.4 we excluded the symplectic case by showing that G

does not preserve a non-degenerate symplectic form up to similarity.

This implies that, when α satisfies the imposed restrictions, we have

that G D H = SL4m+2 (q) and hence, G ∼= SL4m+2 (q).

5. Finally, in section 4.12.5 it was shown that the there exists an α such

that the restrictions on it can be satisfied.

4.13 Dimension n = 4m + 3, m > 2

In this section, we show that, for q odd, q 6= 9 and m > 2, L4m+3 (q) has

Property 2, and hence Property 1. We do so by showing that SL4m+3 (q) can be

generated by suitable elements by following the method outlined in section 4.1.

We work in the standard representation of SL4m+3 (q), i.e. (4m+ 3)×(4m+ 3)

matrices acting on the space of column vectors of length 4m+ 3. We call this

vector space V .

4.13.1 Generators

We define:

a :=



1

. .
.

1
−1

0 1
1 0


which is close to permuting the standard basis as the permutation
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a′ = (1, n− 3) . . . (2m, 2m+ 1)︸ ︷︷ ︸
(l,n−2−l) 16l62m

(n− 2) (n− 1, n)

b :=



0 1
1 0

. . .

0 1
1 0

1
−1

−1


which is close to permuting the standard basis as the permutation

b′ = (1, 2) . . . (n− 4, n− 3)︸ ︷︷ ︸
(2l−1,2l) 16l62m

c :=



1
1

1
1

1

. .
.

1
1

1
1

1
0 0 α α 0 · · · 0 α α 0 0 −1



for some 0 6= α ∈ Fq

which is close to permuting the standard basis as the permutation

c′ = (1, n− 1) . . . (2m+ 1, 2m+ 2)︸ ︷︷ ︸
(l,n−l) 16l62m+1

(n)

Hence

ab =



1
1

. .
.

1
1

−1
0 −1
−1 0


As a, b, c and ab are all involutions with eigenvalues

{
(1)2m+1 , (−1)2m+2},
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from the properties of involutions, we can see that they are conjugate in

SL4m+3 (q), and a and b commute. We take G := 〈a, b, c〉.

4.13.2 Transvections and Root Subgroups

In this section, we show that the group G defined above, contains two opposite

transvections, and so from Lemma 4.1.11, G contains a root subgroup.

We have:

g := (bc)8

=



1
1

1
1

1
. . .

1
1

1
1

1
0 0 −8α −8α 0 · · · 0 −8α −8α 0 0 −1



= In +


0
...
0
−8α

× 1×
(

0 0 1 1 0 · · · 0 1 1 0 0 0
)

Hence, g is a one-dimensional transformation, and has values a (g) and

c (g) given by:

a (g) =
(

0 0 1 1 0 · · · 0 1 1 0 0 0
)

c (g) =


0
...
0
−8α


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Thus, by Lemma 4.1.6, g is a transvection as

a (g) c (g) =
(

0 0 1 1 0 · · · 0 1 1 0 0 0
)
×


0
...
0
−8α

 = 0

Now we want another transvection, h, such that h is opposite to g. From

Lemma 4.1.10 g and h are opposite if, for γ := a (g) c (h), and δ := a (h) c (g),

we have γδ 6= 0. We also want γδ to be a defining element of Fq.

We take h := gk = k−1gk, where k := (ac)2. Since h is conjugate to g,

h is a transvection. Now, since we only want to know the value of γδ, we

do not need to calculate h explicitly. We use the fact that the generators we

have chosen are very close to being permutation matrices to do a much easier

calculation.

Now

ac =



1
1

1
. . .

1
1

1
1

1
−1

0 0 α α 0 · · · 0 α α 0 0 −1
1



and
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ca =



1
−1

1
1

1
. . .

1
1

1
1

1
α α 0 · · · 0 α α 0 0 0 −1 0


i.e. ac is very close to being the permutation matrix representing the

permutation

a′c′ = (1, 3, 5, . . . , n− 2, 2, 4, 6, . . . , n− 1, n) .

(a cycle of length 4m+ 3). Using this we can easily calculate (ac)2 and (ca)2.

Note that (a′c′)2 : n− 3 7−→ n 7−→ 3.

In calculating γδ, we will only need the 1st and the (2m+ 1)th rows of k−1

and the entries (k)1,n, (k)2m+1,n, (k)n−2,n and (k)n,n from k, as will be made

clear below. Since ca is very close to being a permutation matrix, it is easy to

see that the 1st row of k−1 = (ca)2 is in fact equal to
(

0 · · · 0 1 0 0
)
,

and the (2m+ 1)th row of k−1 is equal to
(

0 · · · 0 1
)
. Similarly, since ac

is very close to being a permutation matrix, it is easy to see that (k)1,n = −1,

(k)2m+1,n = 0, (k)n−2,n = 0 and (k)n,n = 0.

Now

γδ = a (g) c (h) a (h) c (g)

=
(

0 0 1 1 0 · · · 0 1 1 0 0 0
)

(c (h) a (h))


0
...
0
−8α


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=
(

0 0 1 1 0 · · · 0 1 1 0 0 0
)

(h− In)


0
...
0
−8α


=

(
1×

(
3rd row of (h− In)

)
+ 1×

(
4th row of (h− In)

)
· · ·

· · · +1×
(

(n− 4)th row of (h− In)
)
· · ·

· · · +1×
(

(n− 3)th row of (h− In)
))
×


0
...
0
−8α


=

(
1×

(
(h− In)3,n

)
+ 1×

(
(h− In)4,n

)
· · ·

· · · +1×
(

(h− In)n−4,n

)
+ 1×

(
(h− In)n−3,n

))
× (−8α)

= (−8α)×
(

(h)3,n + (h)4,n + (h)n−4,n + (h)n−3,n

)
= (−8α)×

((
k−1gk

)
3,n

+
(
k−1gk

)
4,n

+
(
k−1gk

)
n−4,n +

(
k−1gk

)
n−3,n

)
= (−8α)×

((
3rd row of k−1

)
×
(
nth column of gk

)
· · ·

· · · +
(
4th row of k−1

)
×
(
nth column of gk

)
· · ·

· · · +
(

(n− 4)th row of k−1
)
×
(
nth column of gk

)
· · ·

· · · +
(

(n− 3)rd row of k−1
)
×
(
nth column of gk

))
= (−8α)×

((
0 · · · 0 1

)
×
(
nth column of gk

)
· · ·

· · · +
(

0 · · · 0 −1 0 0
)
×
(
nth column of gk

)
· · ·

· · · +
(

0 · · · 0 1 0 0 0 0 0 0 0 0
)
× · · ·

· · · ×
(
nth column of gk

)
+ · · ·

· · · +
(

0 · · · 0 1 0 0 0 0 0 0 0
)
×
(
nth column of gk

))
= (−8α)× · · ·

· · · ×
(

1× (gk)n,n − 1× (gk)n−2,n + 1× (gk)n−8,n + 1× (gk)n−7,n

)
= (−8α)×

((
nth row of g

)
×
(
nth column of k

)
· · ·

· · · −
(

(n− 2)th row of g
)
×
(
nth column of k

)
· · ·

· · · +
(

(n− 8)th row of g
)
×
(
nth column of k

)
· · ·
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· · · +
(

(n− 7)th row of g
)
×
(
nth column of k

))
= (−8α)×

((
0 0 −8α −8α 0 · · · 0 −8α −8α 0 0 1

)
· · ·

· · · ×
(
nth column of k

)
· · ·

· · · −
(

0 · · · 0 1 0 0
)
×
(
nth column of k

)
· · ·

· · · +
(

0 · · · 0 1 0 0 0 0 0 0 0 0
)
× · · ·

· · · ×
(
nth column of k

)
+ · · ·

· · · +
(

0 · · · 0 1 0 0 0 0 0 0 0
)
×
(
nth column of k

))
= (−8α)×

((
−8α× (k)3,n − 8α× (k)4,n − 8α× (k)n−4,n · · ·

· · · −8α× (k)n−3,n + 1× (k)n,n

)
· · ·

· · · −1× (k)n−2,n + 1× (k)n−8,n + 1× (k)n−7,n

)
= (−8α)× ((−8α× 0− 8α× 0− 8α× 0− 8α× (−1) + 1× 0) · · ·

· · · −1× 0 + 1× 0 + 1× 0)

= (−8α)× (8α)

= −64α2

So if α is chosen such that −64α2 is a defining element of Fq, we have, by

Lemma 4.1.11, that 〈g, h〉 6 G contains a root subgroup R.

4.13.3 Irreducibility

In this section we show that H := 〈g〉G = 〈R〉G acts irreducibly on the vector

space V . First we define the group G1 := 〈b, c, (ac)2〉.

Lemma 4.13.1. The group G1 acts irreducibly on the vector space V .

Proof. Let U be a G1-invariant subspace. Let g be the transvection in G

calculated in the last section, with values a (g) and c (g), defined as above.

So we have:

a (g) = (0, 0, 1, 1, 0, . . . , 0, 1, 1, 0, 0, 0)

c (g) = (0, . . . , 0,−8α)T
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If there exists a vector u ∈ U which does not lie on the axis of g, then

by Lemma 4.1.18 we have that c (g) ∈ U , and since α 6= 0, we have u :=

(0, . . . , 0, 1)T ∈ U . In fact, u is the standard basis vector en. Now since the

matrix ca is close to being a permutation matrix, it is relatively simple to see

how (ca)2 acts on standard basis vectors. For i 6= 1, 2, n− 8, n− 7, n− 6, n−

5, n− 2, n we have:

(ca)2 ei = ±ej, where j = i(a
′c′)2 .

Thus, for i 6= 1, 2, n−8, n−7, n−6, n−5, n−2, n, if ei ∈ U then e
i(a
′c′)2 ∈ U .

Also:

(ca)2 e1 = e5 + αe1

= e
1(a
′c′)2 + αe1

(ca)2 e2 = e6 + αe1

= e
2(a
′c′)2 + αe1

(ca)2 en−8 = en−4 + αen

= e
(n−8)(a′c′)

2 + αen

(ca)2 en−7 = en−3 + αen

= e
(n−7)(a′c′)

2 + αen

(ca)2 en−6 = en−2 + αe1

= e
(n−6)(a′c′)

2 + αe1

(ca)2 en−5 = en−1 + αe1

= e
(n−5)(a′c′)

2 + αe1

(ca)2 en−2 = e4 + αen

= e
(n−5)(a′c′)

2 + αen

(ca)2 en = e3 + αen

= e
n(a
′c′)2 + αen

Thus, for i = 1, 2, n − 6, n − 5, if ei ∈ U and e1 ∈ U , then e
i(a
′c′)2 ∈ U . Also,
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for i = n− 8, n− 7, n− 2, n, if ei ∈ U and en ∈ U , then e
i(a
′c′)2 ∈ U .

Now, from above, we have en ∈ U . Also, n(a′c′)2m+2

= 2, and as n(a′c′)2i 6=

1, n− 6, n− 5 for 1 6 i 6 m+ 1, we have e2 ∈ U . Thus, we have be2 = e1 ∈ U .

And so, as e1 ∈ U , en ∈ U and the permutation (a′c′)2 is a cycle of length

4m+3, we have ei ∈ U for all i, 1 6 i 6 4m+3. Hence, since U is G1-invariant,

we have U = V .

So, we may assume that U is contained in the axis of g, i.e. if u =

(u1, . . . , un)T ∈ U , then u3 + u4 + un−4 + un−3 = 0. We look at this du-

ally, i.e. the homogeneous linear equations satisfied by all vectors of U are

represented by rows of length 4m+ 3, on which G1 acts on the right. All such

equations form a subspace, X, of 4m+3Fq. Since U is G1-invariant, X is also.

So, we have x := (0, 0, 1, 1, 0, . . . , 0, 1, 1, 0, 0, 0) ∈ X.

Then x(ac)2 (I4m+3 − b) = (0, . . . , 0, 2) ∈ X. So we have the standard

basis vector eTn ∈ X. Now since ac is close to being a permutation matrix,

it is relatively simple to see how (ac)2 acts on standard basis vectors. For

i 6= n− 1, n− 3 we have:

eTi (ac)2 = ±eTj , where j = i(a
′c′)2 .

Thus, for i 6= n− 1, n− 3, if eTi ∈ X then eT
i(a
′c′)2
∈ X.

Now, from above, we have eTn ∈ X. Also, since the permutation (a′c′)2 is

a cycle of length 4m + 3 and we have n(a′c′)2m+2

= 2, n(a′c′)4m+2

= n − 1 and

n(a′c′)8m+4

= n − 3, then we can see that eTn (ac)2m+2 = eT2 ∈ X. Thus eT2 b =

eT1 ∈ X. From this it can be seen that the set{
eTn (ac)2k , eT1 (ac)2l |0 6 k 6 2m+ 1, 0 6 l 6 2m

}
⊂ X must be a set of stan-

dard basis vectors of size 4m+ 3. Therefore, for all i, 1 6 i 6 4m+ 3, eTi ∈ X.

Since X is G1-invariant, we have X = 4m+3Fq, and so U = 0.

Hence G1 is irreducible.

Then, as the group G1 = 〈b, c, (ac)2〉 satisfies the conditions of Proposition

4.1.17, and as α 6= 0, the group H1 = 〈g〉G1 = 〈R〉G1 is irreducible, and so
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the group H > H1 is also. Now, by the choice of H it is easy to see that it

contains the group R defined in the last section. Thus, if the restrictions on α

from the previous section are satisfied, we have that H is an irreducible group

generated by Root subgroups.

4.13.4 Invariant Forms

There are no non-degenerate symplectic forms in dimension 4m+ 3.

4.13.5 Equations

The only restrictions we have are that q 6= 9 and −64α2 6= 0 and is a defining

element of Fq. Taking α to be any primitive element of Fq will satisfy these

restrictions on α. Hence for q 6= 9, there exists an element α ∈ Fq that satisfies

these restrictions.

4.13.6 Conclusion

We conclude this section by summarising the above.

Lemma 4.13.2. For q odd, q 6= 9 and m > 2, ∃ α ∈ Fq s.t. the elements a,

b and c generate SL4m+3 (q), and so L4m+3 (q) has Property 2 and hence also

has Property 1.

Proof. 1. In section 4.13.1 we exhibited elements in SL4m+3 (q), a, b and

c such that a and b commute and a, b, c and ab are conjugate involu-

tions in SL4m+3 (q). Under the natural homomorphism SL4m+3 (q) −→

L4m+3 (q) they map to involutions a′, b′ and c′ such that a′ and b′ com-

mute and a′, b′, c′ and a′b′ are conjugate in L4m+3 (q). The elements are

defined in terms of a variable α ∈ Fq. We called the group generated by

these elements G.

2. In section 4.13.2 we demonstrated that there is a non-trivial transvec-

tion, in G, g := (bc)8. We also demonstrated that the transvection
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h := g(ac)
2 ∈ G is opposite to g. Dickson’s Lemma (Lemma 4.1.2) then

gives us that G contains the whole root subgroup R, consisting of all

transvections with the same centre and the same axis as g, subject to

−16α2 being a defining element of Fq.

3. In section 4.13.3 we then considered a subgroup G1 :=
〈
b, c, (ac)2

〉
6 G,

containing R, and the normal closure H1 := 〈g〉G1 = 〈R〉G1 E G1 of the

root subgroup R in G1. We have shown that the group G1 is irreducible

and so the group H1 is also irreducible. Thus H := 〈g〉G = 〈R〉G is

irreducible, and so is an irreducible group generated by root subgroups.

Thus from Lemma 4.1.1, H must coincide with SL4m+3 (q).

4. There are no non-degenerate symplectic forms in dimension 4m + 1.

This implies that, when α satisfies the imposed restrictions, we have

that G D H = SL4m+3 (q) and hence, G ∼= SL4m+3 (q).

5. Finally, in section 4.13.5 it was shown that the there exists an α such

that the restrictions on it can be satisfied.

4.14 Dimension n = 4m, m > 3

In this section, we show that, for q odd, q 6= 9 and m > 3, L4m (q) has Property

2, and hence Property 1. We do so by showing that SL4m (q) can be generated

by suitable elements by following the method outlined in section 4.1. We work

in the standard representation of SL4m (q), i.e. (4m) × (4m) matrices acting

on the space of column vectors of length 4m. We call this vector space V .
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4.14.1 Generators

We define:

a :=


0 1
1 0

. . .

0 1
1 0


which can be thought of as permuting the

standard basis as the permutation

a′ = (1, 2) . . . (n− 1, n)︸ ︷︷ ︸
(2l−1,2l) 16l62m

,

b :=



1
1

1
1

2m−4︷ ︸︸ ︷
−1

. . .

−1

2m−2︷ ︸︸ ︷
1

. . .

1
−1

−1


which is close to permuting the standard basis as the permutation

b′ = (1, 4) (2, 3)

c :=



1
1

1
1

. .
.

1
1

1
1
0 α α 0 · · · 0 α α 0 −1


for some 0 6= α ∈ Fq

which is close to permuting the standard basis as the permutation
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c′ = (1, n− 1) . . . (2m− 1, 2m+ 1)︸ ︷︷ ︸
(l,n−l) 16l62m−1

(2m) (n)

Hence

ab =



1
1

1
1

2m−4︷ ︸︸ ︷
−1

−1
. . .

−1
−1

2m−2︷ ︸︸ ︷
1

1
. . .

1
1

−1
−1


As a, b, c and ab are all involutions with eigenvalues

{
(1)2m , (−1)2m

}
, from

the properties of involutions, we can see that they are conjugate in SL4m (q),

and a and b commute. We take G := 〈a, b, c〉.

4.14.2 Transvections and Root Subgroups

In this section, we show that the group G defined above, contains two opposite

transvections, and so from Lemma 4.1.11, G contains a root subgroup.

We have:

g := (bc)8

=



1
1

1
1

. . .

1
1

1
1

0 −8α −8α 0 · · · 0 −8α −8α 0 1


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= In +


0
...
0
−8α

× 1×
(

0 1 1 0 · · · 0 1 1 0 0
)

Hence, g is a one-dimensional transformation, and has values a (g) and

c (g) given by:

a (g) =
(

0 1 1 0 · · · 0 1 1 0 0
)

c (g) =


0
...
0
−8α


Thus, by Lemma 4.1.6, g is a transvection as

a (g) c (g) =
(

0 1 1 0 · · · 0 1 1 0 0
)
×


0
...
0
−8α

 = 0

Now we want another transvection, h, such that h is opposite to g. From

Lemma 4.1.10 g and h are opposite if, for γ := a (g) c (h), and δ := a (h) c (g),

we have γδ 6= 0. We also want γδ to be a defining element of Fq.

We take h := gk = k−1gk, where k := (ac)2. Since h is conjugate to g,

h is a transvection. Now, since we only want to know the value of γδ, we

do not need to calculate h explicitly. We use the fact that the generators we

have chosen are very close to being permutation matrices to do a much easier

calculation.
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Now

ac =



1
1

. .
.

. .
.

. .
.

. .
.

1
1

0 α α 0 · · · 0 α α 0 −1
1



and

ca =



1
1

1

. .
.

. .
.

. .
.

1
1

1
1

α 0 0 α 0 · · · 0 α α −1 0


i.e. ac is very close to being the permutation matrix representing the

permutation

a′c′ = (1, n− 2, 3, n− 4, . . . , 2, n− 1, n) ,

(a cycle of length 4m). Using this we can easily calculate (ac)2 and (ca)2.

Note that (a′c′)2 : 2 7−→ n 7−→ n− 2.

In calculating γδ, we will only need the 2nd, 3rd, (n− 3)rd and (n− 2)nd

rows of k−1 and the entries (k)1,n, (k)2,n, (k)3,n, (k)4,n, (k)n−5,n, (k)n−3,n,

(k)n−2,n and (k)n,n from k, as will be made clear below. Since ca is very close

to being a permutation matrix, it is easy to see that the 2nd row of k−1 = (ca)2

is in fact equal to
(

0 0 0 0 1 0 · · · 0
)
, the 3rd row of k−1 is equal to

176



(
1 0 · · · 0

)
, the (n− 3)rd row of k−1 is equal to(

0 · · · 0 1 0 0 0 0 0
)
, and the (n− 2)nd row of k−1 is equal to(

0 · · · 0 1
)

Similarly, since ac is very close to being a permutation matrix,

it is easy to see that (k)1,n = 0, (k)2,n = −1, (k)3,n = 0, (k)4,n = 0, (k)n−5,n =

0, (k)n−3,n = 0, (k)n−2,n = 0 and (k)n,n = 0.

Now

γδ = a (g) c (h) a (h) c (g)

=
(

0 1 1 0 · · · 0 1 1 0 0
)

(c (h) a (h))


0
...
0
−8α



=
(

0 1 1 0 · · · 0 1 1 0 0
)

(h− In)


0
...
0
−8α


=

(
1×

(
2nd row of h− In

)
+ 1×

(
3rd row of h− In

)
· · ·

· · · +1×
(

(n− 3)rd row of h− In
)

+ · · ·

· · · +1×
(

(n− 2)nd row of h− In
))
×


0
...
0
−8α


=

(
1×

(
(h− In)2,n

)
+ 1×

(
(h− In)3,n

)
· · ·

· · · +1×
(

(h− In)n−3,n

)
+ 1×

(
(h− In)n−2,n

))
× (−8α)

= (−8α)×
(

(h)2,n + (h)3,n + (h)n−3,n + (h)n−2,n

)
= (−8α)×

((
k−1gk

)
2,n

+
(
k−1gk

)
3,n

(
k−1gk

)
n−3,n +

(
k−1gk

)
n−2,n

)
= (−8α)×

((
2nd row of k−1

)
×
(
nth column of gk

)
· · ·

· · · +
(
3rd row of k−1

)
×
(
nth column of gk

)
· · ·

· · · +
(

(n− 3)rd row of k−1
)
×
(
nth column of gk

)
· · ·

· · · +
(

(n− 2)nd row of k−1
)
×
(
nth column of gk

))
= (−8α)×

((
0 0 0 0 1 0 · · · 0

)
×
(
nth column of gk

)
· · ·
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· · · +
(

1 0 · · · 0
)
×
(
nth column of gk

)
· · ·

· · · +
(

0 · · · 0 1 0 0 0 0 0
)
×
(
nth column of gk

)
· · ·

· · · +
(

0 · · · 0 1
)
×
(
nth column of gk

)
+
)

= (−8α)×
(

1× (gk)4,n + 1× (gk)1,n + 1× (gk)n−5,n + 1× (gk)n,n

)
= (−8α)×

((
4th row of g

)
×
(
nth column of k

)
· · ·

· · · +
(
1st row of g

)
×
(
nth column of k

)
· · ·

· · · +
(

(n− 5)th row of g
)
×
(
nth column of k

)
· · ·

· · · +
(
nth row of g

)
×
(
nth column of k

))
= (−8α)×

((
0 0 0 1 0 · · · 0

)
×
(
nth column of k

)
· · ·

· · · +
(

1 0 · · · 0
)
×
(
nth column of k

)
· · ·

· · · +
(

0 · · · 0 1 0 0 0 0 0
)
×
(
nth column of k

)
· · ·

· · · +
(

0 −8α −8α 0 · · · 0 −8α −8α 0 1
)
× · · ·

· · · ×
(
nth column of k

))
= (−8α)×

(
1× (k)4,n + 1× (k)1,n + 1× (k)n−5,n · · ·

· · · + (−8α× k2,n − 8α× k3,n − 8α× kn−3,n − 8α× kn−2,n · · ·

· · · +1× kn,n))

= (−8α)× (1× (0) + 1× (0) + 1× (0)− 8α× (−1)− 8α× (0) · · ·

· · · −8α× (0)− 8α× (0) + 1× (0))

= (−8α)× (8α)

= −64α2

So if α is chosen such that −64α2 is a defining element of Fq, we have, by

Lemma 4.1.11, that 〈g, h〉 6 G contains a root subgroup R.

4.14.3 Irreducibility

In this section we show that H := 〈g〉G = 〈R〉G acts irreducibly on the vector

space V . First we define the group G1 := 〈b, c, (ac)2〉.
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Lemma 4.14.1. The group G1 acts irreducibly on the vector space V .

Proof. Let U be a G1-invariant subspace. Let g be the transvection in G

calculated in the last section, with values a (g) and c (g), defined as above.

So we have:

a (g) = (0, 1, 1, 0 . . . , 0, 1, 1, 0, 0)

c (g) = (0, . . . , 0,−8α)T

If there exists a vector u ∈ U which does not lie on the axis of g, then

by Lemma 4.1.18 we have that c (g) ∈ U , and since α 6= 0, we have u :=

(0, . . . , 0, 1)T ∈ U . In fact, u is the standard basis vector en. Now since the

matrix ac is close to being a permutation matrix, it is relatively simple to see

how (ac)2 acts on standard basis vectors. For i 6= 2, 3, n− 4, n− 3, n− 2, n− 1

we have:

(ac)2 ei = ±ej, where j = i(c
′a′)2 . Thus, for i 6= 2, 3, n−4, n−3, n−2, n−1,

if ei ∈ U then e
i(c
′a′)2 ∈ U . Also:

(ac)2 e2 = e4 + αe2 + αen−1

= e
2(c
′a′)2 + αe2 + αen−1

(ac)2 e3 = e1 + αe2 + αen−1

= e
3(c
′a′)2 + αe2 + αen−1

(ac)2 en−4 = en−2 + αen−1

= e
(n−4)(c′a′)

2 + αen−1

(ac)2 en−3 = en−5 + αe2

= e
(n−3)(c′a′)

2 + αe2

(ac)2 en−2 = en + αe2

= e
(n−2)(c′a′)

2 + αe2

(ac)2 en−1 = en−3 + αen−1

= e
(n−1)(c′a′)

2 + αen−1
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Thus, for i = 2, 3, n − 4, n − 3, n − 2, n − 1, if ei ∈ U , e2 ∈ U and en−1 ∈ U ,

then e
i(c
′a′)2 ∈ U .

Now, from above, we have en ∈ U and so we have e2 ∈ U . Thus we have

(ac)2 be2 = e1 + αe2 + αen−1 ∈ U , and so e1 + αen−1 ∈ U . Also, we have

(ac)2 e2 = e4 + αe2 + αen−1 ∈ U , and so e4 + αen−1 ∈ U , which gives us

b (e4 + αen−1) = e1 − αen−1 ∈ U . Thus we must also have en−1 ∈ U . And

so, as en ∈ U , en−1 ∈ U , e2 ∈ U and the permutation (c′a′)2 is a product

of two cycles of length 2m, one containing all odd numbers and the other all

even, and be4 = e1, we have ei ∈ U for all i, 1 6 i 6 4m. Hence, since U is

G1-invariant, we have U = V .

So, we may assume that U is contained in the axis of g, i.e. if u =

(u1, . . . , un)T ∈ U , then u2 + u3 + un−3 + un−2 = 0. We look at this du-

ally, i.e. the homogeneous linear equations satisfied by all vectors of U are

represented by rows of length 4m, on which G1 acts on the right. All such

equations form a subspace, X, of 4mFq. Since U is G1-invariant, X is also.

So, we have x := (0, 1, 1, 0 . . . , 0, 1, 1, 0, 0) ∈ X.

Then
(
x (ca)2

)
(I4m − b) = (0, . . . , 0, 2, 0) ∈ X. So we have the standard

basis vector eTn−1 ∈ X. Now since ca is close to being a permutation matrix,

it is relatively simple to see how (ca)2 acts on standard basis vectors. For

i 6= 1, n we have:

eTi (ca)2 = ±eTj , where j = i(c
′a′)2 . Thus, for i 6= 1, n, if eTi ∈ X then

eT
i(c
′a′)2
∈ X.

Now, from above, we have eTn−1 ∈ X. Also, since the permutation (c′a′)2

is a prouct of two cycles of length 2m, one containing all odd numbers and

the other all even, and we have n(c′a′)4m−2

= 1 and n(c′a′)4m−2

= 3 then we have

eTi ∈ X for odd i, 1 6 i 6 4m−1. Thus we also have eT3 b = eT2 ∈ X, and since

2(c′a′)4m−2

= n, we have eTi ∈ X for even i, 2 6 i 6 4m. and n(a′c′)8m+4

= n− 3,

then we can see that eTn (ac)2m+2 = eT2 ∈ X. Therefore,for all i, 1 6 i 6 4m,

eTi ∈ X. Since X is G1-invariant, we have X = 4mFq, and so U = 0.
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Hence G1 is irreducible.

Then, as the group G1 = 〈b, c, (ac)2〉 satisfies the conditions of Proposition

4.1.17, and as α 6= 0, the group H1 := 〈g〉G1 = 〈R〉G1 is irreducible, and so

the group H > H1 is also. Now, by the choice of H it is easy to see that it

contains the group R defined in the last section. Thus, if the restrictions on α

from the previous section are satisfied, we have that H is an irreducible group

generated by Root subgroups.

4.14.4 Invariant Forms

Lemma 4.14.2. H does not preserve a non-degenerate symplectic form.

Proof. We need to prove that there exists no non-degenerate symplectic form

on V which is invariant under the action of G up to similarity. Let 〈 , 〉 be

a symplectic form on V that is preserved by G up to similarity. Then a,b

and c ∈ G preserve 〈 , 〉 up to similarity with multipliers λ (a), λ (b) and λ (c)

respectively. Then, as a, b and c are involutions we have, from Lemma 4.1.20,

λ (a) = ±1, λ (b) = ±1 and λ (c) = ±1.

Now we know that a, b, c and ab are conjugate in SL4m (q), and from

information in table 4.5.1 in [GLS98], we have that a, b, c and ab are conjugate

in GSp4m (q). Thus from Lemma 4.1.20, we have λ (a) = λ (b) = λ (c) =

λ (ab) = λ (a)λ (b), and so λ (a) = λ (b) = λ (c) = 1. Thus, as a, b and c

generate G, for all x ∈ G, the multiplier for x, λ (x) must be equal to 1, i.e.

for all x ∈ G and all u,v ∈ V , 〈xu, xv〉 = 〈u, v〉.

So, for i 6= 2, 3, n− 3, n− 2 we have:

〈vi, v2〉 =g 〈vi, v2 − 8αvn〉

= 〈vi, v2〉 − 8α 〈vi, vn〉

and so

〈vi, vn〉 = 0.
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Also, for i, j ∈ {2, 3, n− 3, n− 2}, we have:

〈vi, vj〉 =g 〈vi − 8αvn, vj − 8αvn〉

= 〈vi, vj〉 − 8α 〈vi, vn〉 − 8α 〈vn, vj〉+ 64α2 〈vn, vn〉

= 〈vi, vj〉 − 8α 〈vi, vn〉+ 8α 〈vj, vn〉+ 0

and so

〈vi, vn〉 = 〈vj, vn〉 .

Now since we also have:

〈v2, vn〉 =b 〈v2,−vn〉

= −〈v3, vn〉 ,

we have, for all i, 1 6 i 6 n, 〈vi, vn〉 = 0. Thus, vn ∈ V⊥ and so the form

〈 , 〉 is degenerate.

Hence there is no non-degenerate symplectic form on V which is invariant

under the action of G up to similarity, and so H does not preserve a non-

degenerate symplectic form.

Hence H cannot be conjugate to Sp4m (q).

4.14.5 Equations

The only restrictions we have are that q 6= 9, −64α2 6= 0 and is a defining

element of Fq. Taking α to be any primitive element of Fq will satisfy these

restrictions on α. Hence for q 6= 9, there exists an element α ∈ Fq that satisfies

these restrictions.

4.14.6 Conclusion

We conclude this section by summarising the above.
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Lemma 4.14.3. For q odd, q 6= 9 and m > 3, ∃ α ∈ Fq s.t. the elements a,

b and c generate SL4m (q), and so L4m (q) has Property 2 and hence also has

Property 1.

Proof. 1. In section 4.14.1 we exhibited elements in SL4m (q), a, b and c

such that a and b commute and a, b, c and ab are conjugate involutions

in SL4m (q). Under the natural homomorphism SL4m (q) −→ L4m (q)

they map to involutions a′, b′ and c′ such that a′ and b′ commute and a′,

b′, c′ and a′b′ are conjugate in L4m (q). The elements are defined in terms

of a variable α ∈ Fq. We called the group generated by these elements

G.

2. In section 4.14.2 we demonstrated that there is a non-trivial transvec-

tion, in G, g := (bc)8. We also demonstrated that the transvection

h := g(ac)
2 ∈ G is opposite to g. Dickson’s Lemma (Lemma 4.1.2) then

gives us that G contains the whole root subgroup R, consisting of all

transvections with the same centre and the same axis as g, subject to

−64α2 being a defining element of Fq.

3. In section 4.14.3 we then considered a subgroup G1 :=
〈
b, c, (ac)2

〉
6

G, containing R, and the normal closure H1 := 〈g〉G1 = 〈R〉G1 E G1

of the root subgroup R in G1. We have shown that the group G1 is

irreducible and so the group H1 is also irreducible. Thus H := 〈g〉G =

〈R〉G is irreducible, and so is an irreducible group generated by root

subgroups. Thus from Lemma 4.1.1, H either coincides with SL4m (q),

or H is conjugate to Sp4m (q).

4. In section 4.14.4 we excluded the symplectic case by showing that G

does not preserve a non-degenerate symplectic form up to similarity.

This implies that, when α satisfies the imposed restrictions, we have

that G D H = SL4m (q) and hence, G ∼= SL4m (q).
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5. Finally, in section 4.14.5 it was shown that the there exists an α such

that the restrictions on it can be satisfied.
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Chapter 5

Concluding Remarks

We conclude with a brief discussion about this Thesis. As we have seen, we

have determined that the following simple groups have Property 1:

• The alternating groups, An for n > 5, n 6= 7, 8, 12;

• The sporadic groups except for M11, M12, M22, M23 and McL;

• The projective linear groups, Ln (q), over fields of odd order for n = 2

with q > 5 and q 6= 7; n = 3 with q ≡ 1 mod 3; n = 6 with q ≡ 1

mod 4 and q 6= 9; n > 4, n 6= 6 with q 6= 9,

and that the following simple groups have Property 2:

• The alternating groups, An for n > 5, n 6= 6, 7, 8, 12;

• The sporadic groups except for M11, M12, M22, M23 and McL;

• The projective linear groups, Ln (q), over fields of odd order for n = 2

with q > 5 and q 6= 7, 9; n = 6 with q ≡ 1 mod 4 and q 6= 9; n > 4,

n 6= 6 with q 6= 9,

Also, we have determined that the following simple groups do not have Prop-

erty 1:

• The alternating groups, An for n = 7, 8, 12;
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• The sporadic groups M11, M12, M22, M23 and McL;

• The projective linear groups, Ln (q), over fields of odd order for n = 2

with q = 7; n = 3 with q ≡ 0 or 2 mod 3,

and that the following simple groups do not have Property 2:

• The alternating groups, An for n = 6, 7, 8, 12;

• The sporadic groups M11, M12, M22, M23 and McL;

• The projective linear groups, Ln (q), over fields of odd order for n = 2

with q = 7, 9; n = 3 for all odd q∗,

(∗ Note that part of this proof is not included in this Thesis but can be found

in [Nuz97]) Also we have also seen that the following simple groups can be

generated by the following minimum number of conjugate involutions whose

product is 1:

• A7 and A12 - 6 involutions;

• A8 - 7 involutions;

• M11, M12, M22, M23 and McL - 6 involutions;

• L2 (7) - 6 involutions;

• L3 (q) with q ≡ 0 or 2 mod 3 - 6 involutions.

The above suggests several areas in which to continue this inquiry:

1. Determine whether the remaining simple Linear groups have Property 1

and/or Property 2;

2. Determine whether other simple groups, from the other families, have

Property 1 and/or Property 2;
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3. For those simple groups that do not have Property 1, determine the

minimum number of conjugate involutions whose product is 1 which are

required to generate the group.

We briefly discuss these areas below.

5.1 The Remaining Linear Groups

This thesis has not determined whether or not the following simple projective

linear groups have Property 1 and/or Property 2:

1. L6 (q) with q ≡ 3 mod 4;

2. Ln (q) with n > 4 and q = 9.

The following discussion of the methods used in chapter 4 will hopefully shed

light on why I have not been able to answer these questions for these groups.

The method that was used in chapter 4 relies, first of all, on finding suit-

able generators in SLn (q). This, in many cases, was a matter of “educated

guesswork”.

First a ‘likely’ conjugacy class must be found. The non-generation results

from chapter 1 (i.e. Theorems 1.2.3, 1.2.4 and 1.2.5) can be used to prove

that a group does not have Property 1 and/or Property 2, and so a ‘likely’

conjugacy class is one whose elements fail to satisfy the conditions implied

by these Theorems. The groups above contain such conjugacy classes, and so

may have Property 1 and/or Property 2.

Next, we want elements in the conjugacy class that are easily manipulated.

Generally this was obtained by using elements close to being permutation

matrices. This then made the calculations to determine irreducibility easier.

Of course, suitable root subgroups must be obtained from the generators.

As can be seen in the majority of cases, two opposite transvections are easily

obtained. However, in the case of q = 9, the opposite transvections do not
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always generate a group isomorphic to SL2 (q). In fact the pairs of transvec-

tions obtained in each case do not generate such a group. This was the main

barrier encountered in answering the questions for q = 9.

In the case of L6 (q) with q ≡ 3 mod 4, the main barrier encountered was

finding elements that met the desired conditions, that clearly generated an

irreducible group on F6q and that gave suitable transvections easily.

Now it may be noted that for the linear groups L6 (q) with q ≡ 1 mod 4,

where suitable generators were found, this thesis did not prove that the cor-

responding special linear groups have Property 1 and/or Property 2 as it

did with the other dimensions. Again, this was due to the difficulty in find-

ing elements with the desired conditions that generated an irreducible group

on F6q and that gave suitable transvections easily. Instead of involutions in

SL6 (q), elements that mapped to involutions under the natural homomor-

phism SL6 (q) −→ L6 (q) were used. In this way the groups L6 (q) could still

be shown to have Property 1 and Property 2 even if the corresponding results

for SL6 (q) were not obtained.

In summary, I have no reason to believe that these groups do not have

Property 1 and/or Property 2. However, due to the reasons outlined above, I

have been unable to find suitable elements that generate these groups. Anec-

dotal evidence from similar problems to this suggest that as n increases, the

group is more likely to contain suitable generators, and so given time and pa-

tience I do believe that these groups could be shown to have Property 1 and

Property 2 (possibly with some exceptions).

5.2 The Other Simple Groups

The methods that have been used in this thesis rely on knowledge of the

structure of the groups in question. Since an increasing amount is known

about the simple groups, it is reasonable to approach this problem from a
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similar angle for the remaining simple groups. A first step would be to consider

the problem for the remaining simple classical groups over odd ordered fields.

In [TZ97], [TWG94] and [TWG95] the authors consider matrix groups over

commutative rings to simultaneously prove that groups from several different

families can be generated in certain ways. It may be possible to use this

method, along with information from this thesis, to obtain generators for these

groups that satisfy our requirements.

Another direction that may be taken is to consider the classical groups

over fields of even order. There are of course added complications with this

problem, as the conjugacy classes of involutions behave differently when the

field has even order.

5.3 Minimum Number of Involutions

We finish where we started - For each simple group, asking what is the min-

imum number of conjugate involutions, whose product is 1, that are needed

to generate the group. Since a large number of simple groups are known to

be generated by 3 conjugate involutions, then if it can be proved that you

need more than 5 conjugate involutions whose product is 1, then it may be

that only 6 involutions are needed. However, we have already seen that the

alternating group A8 needs 7 involutions with these properties to generate it,

and so it is possible that more work may be required with other simple groups.
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