Problem sheet 5

Finite simple groups

Exercise 1. Show that the permutation

preserves the Golay code, and fuses the four orbits of the sextet group $2^6:3:S_6$ on sextets into a single orbit.

Exercise 2. Prove that the stabiliser of a sextet in the automorphism group of the extended binary Golay code is exactly $2^6:3:S_6$ (and no larger).

EXERCISE 3. Show that M_{24} acts transitively on the set of 2576 dodecads in the extended binary Golay code.

EXERCISE 4. Construct a 'Leech triangle' for the number of dodecads meeting $\{1, \ldots, j-1\}$ in $\{1, \ldots, i-1\}$, where $\{1, \ldots, 8\}$ is an octad of the Steiner system S(5, 8, 24).

Exercise 5. Using the following numbering of the MOG,

show that for each k, the set $\{x^2 + k \mid x \in \mathbb{F}_{23}\}$ is a dodecad. Deduce that $PSL_2(23)$ is a subgroup of M_{24} .

EXERCISE 6. Prove simplicity of M_{24} using Iwasawa's Lemma applied to the permutation action on the 759 octads in the extended binary Golay code.

EXERCISE 7. Prove that $M_{21} \cong PSL_3(4)$.

EXERCISE 8. Prove that M_{22} is simple by applying Iwasawa's Lemma to the action on the 77 hexads.

EXERCISE 9. Prove that M_{23} is simple by applying Iwasawa's Lemma to the action on the 253 heptads.

EXERCISE 10. Classify the orbits of 2¹²:M₂₄ on the vectors of norm 8 in the Leech lattice, and on the crosses. Deduce that Co₁ acts primitively on the set of 8292375 crosses.

EXERCISE 11. Prove that 2·Co₁ is transitive on the vectors of norm 4 in the Leech lattice, and on the vectors of norm 6.

EXERCISE 12. Apply Iwasawa's Lemma to the subgroup 2^{10} : M_{22} :2 of Co_2 to prove that Co_2 is simple.

EXERCISE 13. Let Γ be the graph on the 100 Leech lattice vectors of norm 4 with inner product 3 with each of the vectors $(1,5,1^{22})$ and $(5,1,1^{22})$, defined by joining two vectors if and only if their inner product is 1. Show that Γ is isomorphic to the Higman–Sims graph Δ with vertex set $\{*\} \cup S \cup H$, where S is a 22-element set, H is the set of 77 hexads of a Steiner system S(3,6,22) on S, and $s \in S$ is joined to * and the hexads not containing s, and two hexads are joined in Δ if and only if they are disjoint as subsets of S.