Finite simple groups

Problem sheet 1: October 2008

Do whichever exercises you feel like doing. Good ones for testing your understanding are 5, 11 and 12.

EXERCISE 1. For a permutation $\pi \in S_n$ define

$$\varepsilon(\pi) = \prod_{1 \le i < j \le n} \frac{j-i}{j^{\pi} - i^{\pi}} \in \mathbb{Q}.$$

Show that $\varepsilon = \pm 1$ and that ε is a group homomorphism from S_n onto $C_2 = \{1, -1\}$. Hence obtain another proof that the sign of a permutation is well-defined.

EXERCISE 2. Let $G < S_n$ act transitively on $\Omega = \{1, ..., n\}$ and let $H = \{g \in G : a^g = a\}$ for fixed $a \in \Omega$. Prove that $\phi : a^g \mapsto Hg$ is a bijection between Ω and the set G : H of right cosets of H in G.

Prove also that $Hg = \{x \in G : a^x = a^g\}.$

EXERCISE 3. Prove that the orbits of a group H acting on a set Ω form a partition of Ω .

EXERCISE 4. Show that A_n is not (n-1)-transitive.

EXERCISE 5. Let G act transitively on Ω . Show that the average number of fixed points of the elements of G is 1, i.e.

$$\frac{1}{|G|} \sum_{g \in G} |\{x \in \Omega \mid x^g = x\}| = 1.$$

EXERCISE 6. Verify that the semidirect product $G :_{\phi} H$ is a group, with the given operations. Show that the subset $\{(g, 1_H) : g \in G\}$ is a normal subgroup isomorphic to G, and that the subset $\{(1_G, h) : h \in H\}$ is a subgroup isomorphic to H.

EXERCISE 7. Suppose that G has a normal subgroup A and a subgroup B satisfying G = AB and $A \cap B = 1$. Prove that $G \cong A:_{\phi}B$, where $\phi : B \to \text{Aut}A$ is defined by $\phi(b) : a \mapsto b^{-1}ab$.

EXERCISE 8. Prove that if the permutation π on n points is the product of k disjoint cycles (including trivial cycles), then π is an even permutation if and only if n-k is an even integer.

EXERCISE 9. Determine the number of conjugacy classes in A_8 , and write down one element from each class.

EXERCISE 10. Show that if $n \ge 5$ then there is no non-trivial conjugacy class in A_n with fewer than n elements.

EXERCISE 11. Let S_5 act on the 10 unordered pairs $\{a,b\} \subset \{1,2,3,4,5\}$. Show that this action is primitive. Determine the stabilizer of one of the 10 pairs, and deduce that it is a maximal subgroup of S_5 .

EXERCISE 12. The previous question defines a primitive embedding of S_5 in S_{10} . Show that this S_5 is not maximal in S_{10} .

[Hint: construct a primitive action of S_6 on 10 points, extending this action of S_5 .]

EXERCISE 13. If $k < \frac{n}{2}$, show that the action of S_n on the $\binom{n}{k}$ unordered k-tuples is primitive.

EXERCISE 14. If G acts k-transitively on $\{1,2,...,n\}$ for some k > 1, and H is the stabilizer of the point n, show that H acts (k-1)-transitively on $\{1,2,...,n-1\}$.

EXERCISE 15. Let G be the group of permutations of 8 points $\{\infty, 0, 1, 2, 3, 4, 5, 6\}$ generated by (0, 1, 2, 3, 4, 5, 6) and (1, 2, 4)(3, 6, 5) and $(\infty, 0)(1, 6)(2, 3)(4, 5)$. Show that G is 2-transitive. Show that the Sylow 7-subgroups of G have order 7, and that their normalisers have order 21. Show that there are just 8 Sylow 7-subgroups, and deduce that G has order 168. Show that G is simple.

EXERCISE 16. Let x be an element in S_n of cycle type $(c_1^{n_1}, \ldots, c_k^{n_k})$, where c_1, \ldots, c_k are distinct positive integers. Show that the centralizer of x in S_n has the shape $(C_{c_1} \wr S_{n_1}) \times \cdots \times (C_{c_k} \wr S_{n_k})$.

EXERCISE 17. Show that if $H \cong AGL_3(2) \cong 2^3$: $GL_3(2)$ is a subgroup of S_8 , and $K = H^g$ where g is an odd permutation, then H and K are not conjugate in A_8 .

EXERCISE 18. Prove that $S_k \wr S_2$ is maximal in S_{2k} for all $k \geq 2$.

EXERCISE 19. Prove that $S_k \wr S_m$ is maximal in S_{km} for all $k, m \ge 2$.

EXERCISE 20. Prove that the 'diagonal' subgroups of S_n (as defined in the notes) are primitive.

EXERCISE 21. Show that if H is abelian and transitive on Ω , then it is regular on Ω .

EXERCISE 22. Use the O'Nan-Scott theorem to write down as many maximal subgroups of S_5 as you can. Can you prove your subgroups are maximal?

EXERCISE 23. Do the same for A_5 .