
Chapter 5

Sporadic groups

5.1 Introduction

In this chapter we introduce the 26 sporadic simple groups. These are in many
ways the most interesting of the finite simple groups, but are also the most
difficult to construct. These groups may be roughly divided into five types, as
follows:

• the five Mathieu groups M11, M12, M22, M23, M24; these are permutation
groups on 11, 12, 22, 23, or 24 points;

• the seven Leech lattice groups Co1, Co2, Co3, McL, HS, Suz, J2; these are
matrix groups in dimension at most 24;

• the three Fischer groups Fi22, Fi23, Fi′24; these are automorphism groups of
rank 3 graphs;

• the five Monstrous groups M, B, Th, HN, He; these are defined in terms
of centralizers of elements in the Monster; the Monster involves all the 20
sporadic groups mentioned so far;

• the six pariahs J1, J3, J4, O’N, Ly, Ru; these are oddments which do not fit
nicely into the above families, and have little to do even with each other.

5.2 The large Mathieu groups

5.2.1 The hexacode

To construct the Mathieu groups we start by defining the hexacode. This is the 3-
dimensional subspace of F6

4 spanned by the vectors (ω, ω, ω, ω, ω, ω), (ω, ω, ω, ω, ω, ω)
and (ω, ω, ω, ω, ω, ω), where F4 = {0, 1, ω, ω} is the field of order 4. Since the
sum of these three vectors is (ω, ω, ω, ω, ω, ω), there is an obvious symmetry
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2 CHAPTER 5. SPORADIC GROUPS

group 3 × S4 generated by scalar multiplications and the coordinate permuta-
tions (1, 2)(3, 4), (1, 3, 5)(2, 4, 6) and (1, 3)(2, 4). The non-zero vectors fall into
four orbits under this group, as follows:

Orbit representative Length of orbit
(1, 1, 1, 1, 0, 0) 9
(ω, ω, ω, ω, ω, ω) 12
(1, 1, ω, ω, ω, ω) 6
(0, 1, 0, 1, ω, ω) 36

(5.1)

The group of automorphisms of this code is defined to be the set of monomial
permutations of the coordinates which fix the code as a set. It is immediate
that any diagonal symmetry is a scalar, as it maps each of (1, 1, 1, 1, 0, 0) and
(0, 0, 1, 1, 1, 1) to a scalar multiple of itself. Modulo scalars, we can extend the
group S4 of permutations to A6 by adjoining the map

(x1, . . . , x6) 7→ (ωx1, ωx2, x3, x6, x4, x5). (5.2)

On the other hand, no automorphism induces an odd permutation, for if so, then
looking at the images of (1, 1, 1, 1, 0, 0) and (0, 0, 1, 1, 1, 1) we deduce that the
coordinate permutation (5,6) is an automorphism, but (0, 1, 0, 1, ω, ω) is not in
the hexacode. However, odd permutations are allowed provided they are always
followed by the field automorphism ω 7→ ω. This gives rise to a group 3.S6 of
semi-automorphisms of the hexacode.

5.2.2 The binary Golay code

We next construct a set of 24 points, labelled (i, x) where i is an integer from 1
to 6 (corresponding to one of the six coordinates of the hexacode) and x ∈ F4.
Let the hexacode act on this set in the ‘obvious’ way, by addition: a hexacode
word (x1, . . . , x6) maps (i, x) to (i, x + xi). Similarly the group 3.S6 of semi-
automorphisms acts on the set in the ‘obvious’ way: if the group element maps
1 in the ith coordinate to λ in the jth coordinate, then it maps (i, x) to (j, λx).
These 24 points are generally arranged in a 6× 4 array with columns labelled 1
to 6 and rows labelled 0, 1, ω, ω (called the MOG, or Miracle Octad Generator,
by Curtis, who first used such an array as a practical tool for calculating in the
Golay code) where these symmetries can be conveniently visualised. For example,
the group 26:3.S6 may be generated by the following permutations of 24 points
(where cycles of length 5 are represented by arrows, and it is understood that the
head of the arrow maps back to the start).
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The largest Mathieu group M24 may be viewed as a permutation group on
these 24 points, containing the group 26:3.S6 just constructed as a maximal sub-
group. To effect this construction we shall define the (extended binary) Golay
code as a set of binary vectors of length 24, with coordinates indexed by the 24
points (i, x). For convenience, we identify each vector with its support (that is,
the set of points where it has coordinate 1). The group M24 will then be defined
as the group of permutations which preserve this set of vectors.

From each hexacode word (x1, . . . , x6) we derive 64 words in the Golay code,
as follows. Each coordinate xi corresponds either to an odd-order set, {(i, xi)}
or its complement {(i, x) | x 6= xi}, or to an even-order set, {(i, xi)} 4 {(i, 0)}
(where 4 denotes symmetric difference of sets) or its complement {(i, x) | 0 6=
x 6= xi or 0 = x = xi}. Now impose the further conditions that all 6 coordinates
have the same parity, and that this parity is equal to the parity of the number
of (i, 0) in the set, i.e. the parity of the top row. Thus we may choose the set
corresponding to the first coordinate in 4 ways, and the next four coordinates in
2 ways each, and the last set is determined. As an example, here are three Golay
code words corresponding to the hexacode word (0, 1, 0, 1, ω, ω).

1 1
1 1

1 1 1
1

1 1 1
1 1 1
1 1 1 1
1 1

1
1
1
1

1
1

1
1
1
1

1
1 1

1

1
1

(5.4)

It is straightforward to check from this definition that the Golay code is closed
under vector addition (symmetric difference of sets), and so forms a subspace of
dimension 12 of F24

2 . Moreover, the whole set (corresponding to the vector with
24 coordinates 1) satisfies the conditions to be in the Golay code, so the code is
closed under complementation. In total there are 759 sets of size 8 (called octads),
falling into three orbits under the action of the group 26:3.S6. These three orbits
are represented by {(i, 0)} 4 {(0, x)} (384 octads), {(i, x) | i ≤ 4, x = 0 or 1}
(360 octads), and {(i, x) | i ≤ 2} (15 octads), or in pictures:

1
1
1

1 1 1 1 1
1 1 1 1
1 1 1 1

1
1
1
1

1
1
1
1

(5.5)
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Hence, by complementation, there are 759 sets of size 16 in the code. All the
remaining sets have size 12: there are 2576 of them, lying in three orbits, of
lengths 576 + 720 + 1280, under 26:3.S6. In pictures:

1 1 1 1 1 1

1 1 1
1 1 1

1 1 1

1
1
1

1
1
1

1
1
1

1
1
1
11 1 1

1 1 1

1
1

(5.6)

Thus the code has weight distribution 01875912257616759241.

Now consider the 212 cosets of the Golay code in F24
2 , and look for coset repre-

sentatives of minimal weight (i.e. with as few non-zero coordinates as possible).
Certainly the difference (i.e. sum) of two representatives for the same coset is an
element of the code, so has weight at least 8. Therefore the vectors of weight 0,
1, 2, and 3 are unique in their cosets, so there are 1 + 24 + 24.23

2
+ 24.23.22

2.3
= 2325

such cosets. Two distinct vectors of weight at most 4 in the same coset must
be disjoint vectors of weight 4, so there can be at most 6 such vectors in each
coset. Therefore there are at least 24.23.22.21

4.3.2.6
= 1771 such cosets. But now we

have accounted for at least 2325 + 1771 = 4096 = 212 cosets. In particular, every
vector of weight 4 determines a partition of the 24 points into 6 sets of size 4.
These partitions are called sextets, consisting of six tetrads.

Now we can explicitly calculate these sextets, and we find that there are
just four orbits under the group 26:3.S6. The first orbit, of size 1, is the sextet
consisting of the 6 columns of the MOG. The second orbit, of size 90, consists of
sextets defined by two points in one column and two points in another. Every
tetrad in such a sextet splits across two columns in this way, so we write its
column distribution as (22, 22, 22, 22, 22, 22). The third orbit, of size 240, consists
of sextets defined by three points in one column and one in another column. The
column distribution of these sextets is (31, 31, 1111, 1111, 1111, 1111). The fourth
orbit, of size 1440, consists of sextets defined by two points in one column and
two other points in two other columns. These sextets have column distribution
(211, 211, 211, 211, 1111, 1111). This accounts for all 1771 sextets. In pictures,
representatives of the three non-trivial orbits are

1 1
1 1

2 2
2 2

3 3
3 3

4 4
4 4

5 5
5 5

6 6
6 6

3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 62

2
2
1

1
1
1
2 1 1 1

1 2 2 2
2

3
3

3
3
4

4
4

4
5

5 5

5

6
6 6

6

(5.7)

where the six tetrads of each sextet are labelled by the numbers 1 up to 6.
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5.2.3 The group M24

By checking the action on a basis of the Golay code, it is easy to verify that the
element

α =

s s s s s ss s s s s ss s s s s ss s s s s s
��@@

(5.8)

fixes the code. Moreover, α fuses the four orbits of 26:3.S6 on sextets. Since this
group is the full sextet stabilizer, it follows that the order of M24 is

|M24| = 1771.26.3.6! = 244823040 = 210.33.5.7.11.23. (5.9)

It follows almost immediately from the transitivity of M24 on sextets that it
is 5-transitive on points. For we can take the sextet defined by the first four
points to any sextet, and then the sextet stabilizer is transitive on its six tetrads.
Moreover, fixing the tetrad we have a full S4 of permutations of the tetrad.
Finally, the pointwise stabilizer of this tetrad is a group 24:A5 which is visibly
transitive on the remaining 20 points.

Consequently, every set of five points is contained in an octad, but since(
24
5

)
= 759

(
8
5

)
, this octad is unique. (Alternatively, this follows from the

fact that the sum of two octads is in the code, so the octads cannot intersect in
more than four points.) This combinatorial property is the defining property of a
Steiner system S(5, 8, 24). More generally, a Steiner system S(t, k, v) is a system
of special k-subsets of a set of size v, with the property that every set of size t is
contained in a unique special k-subset (called a block). It is easy to see that the
(extended binary) Golay code gives rise to a Steiner system S(5, 8, 24), but the
converse is not obvious. It follows however from the fact that, up to relabelling
the points, there is a unique S(5, 8, 24). The proof of uniqueness also gives an
alternative proof that M24 is 5-transitive. We now sketch this proof.

5.2.4 Uniqueness of the Steiner system S(5, 8, 24)

If {1, 2, 3, 4, 5, 6, 7, 8} is an octad, the Steiner system property implies that the

number of octads containing {1, . . . , i} is

(
24− i
5− i

) /(
8− i
5− i

)
for 0 ≤ i ≤ 4 and

is 1 for 5 ≤ i ≤ 8. These numbers are 759, 253, 77, 21, 5, 1, 1, 1, 1 for i = 0, . . . , 8,
respectively. Hence the number of octads not containing the point 1 is 759−253 =
506, and so on. We complete the Leech triangle (see Figure 5.1), in which the ith
entry in the jth row is the number of octads intersecting {1, . . . , j−1} in exactly
{1, . . . , i− 1}, using this property that each entry is the sum of the two nearest
entries in the row below (cf. Pascal’s triangle). In particular we see from the
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759
506 253

330 176 77
210 120 56 21

130 80 40 16 5
78 52 28 12 4 1

46 32 20 8 4 0 1
30 16 16 4 4 0 0 1

30 0 16 0 4 0 0 0 1

Figure 5.1: The Leech triangle

bottom row of the triangle that two distinct octads intersect in 0, 2 or 4 points.
It follows easily that every set of 4 points determines a sextet, with the properties
described above, and that every octad is either the sum of two tetrads of the
sextet, or cuts across these tetrads with intersections of sizes (3, 15) or (24, 02).

Now we might as well arrange our first sextet to consist of the six columns of
a MOG array, and choose an octad of shape (3, 15) to be the first column plus
the top row. Indeed, we can arrange the points so that the sextet containing the
tetrad consisting of the last four points in the top row also contains the tetrads
consisting of the last four points in the other three rows. These now correspond
to hexacode words (0, 0, 1, 1, 1, 1) and its scalar multiples, and the sextet is the
second one displayed in Equation 5.7. Next consider the sextet containing the
tetrad which consists of the bottom three points of the first column and the second
point of the second column. Since the octads containing this tetrad cut across
both of our other sextets with the distribution (3, 15), we can choose one of them
to correspond to the hexacode word (0, 1, 0, 1, ω, ω). Then using the fact that
octads intersect evenly, the others correspond to (0, 1, 1, 0, ω, ω) and (without
loss of generality) (0, 1, ω, ω, 0, 1) and (0, 1, ω, ω, 1, 0). We now have most of the
structure of the hexacode and it is routine to complete the argument.

5.2.5 Simplicity of M24

To prove that M24 is simple we can use Iwasawa’s Lemma as with the classical
groups. It is easy to see that the action of M24 on the 1771 sextets is primitive,
since the sextet stabilizer has orbits of lengths 1 + 90 + 240 + 1440 on the 1771
sextets. Moreover, the sextet stabilizer 26:3.S6 has a normal abelian subgroup
of order 26, and the elements of this 26 are easily seen to be commutators of
elements of 26:3.S6. The latter group is generated by conjugates of the third
element of Equation 5.3, and to generate M24 we need only adjoin the element α
defined in Equation 5.8. Since both of these elements are in the normal 26 of the
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stabilizer of the first sextet of Equation 5.7, we have verified all the hypotheses
of Iwasawa’s Lemma, and therefore conclude that M24 is simple.

5.2.6 Subgroups of M24

The stabilizer of a point is by definition the group M23, which therefore has order
|M24|/24 = 10200960, while the stabilizer of two points is the group M22 of order
|M23|/23 = 443520. These three groups M22, M23 and M24 are collectively known
as the large Mathieu groups, and were first described by Mathieu in 1873. The
stabilizer of three points similarly has order |M22|/22 = 20160, and is sometimes
called M21, but turns out to be isomorphic to PSL3(4). This isomorphism can
be seen by showing that the Golay code structure gives rise to a projective plane
of order 4 on the 21 remaining points. Of course, the multiple transitivity of
M24 shows that these groups extend to subgroups M22:2 and PSL3(4):S3, both of
which are in fact maximal subgroups of M24.

The stabilizer of an octad has order |M24|/759 = 32560. Now if all 8 points
of the octad are fixed, then we may assume these are the first two columns of
the MOG, so by looking inside the sextet stabilizer we see that there is only an
elementary abelian group of order 16 left. Modulo this, the permutation action
on the octad has order 20160, and is therefore A8. Thus the octad stabilizer is
24A8. Indeed, by fixing one of the 16 points outside the octad, we see a subgroup
A8, so the extension splits (i.e. the octad stabilizer is a semidirect product 24:A8).
Moreover, the 16 points outside the octad now have a vector space structure on
them, and we see the isomorphism A8

∼= L4(2).
The stabilizer of one of the Golay code words of weight 12 (a dodecad) is a

group of order |M24|/2576 = 95040, and is the group M12. The fact that M12

is a subgroup of M24 was not known to Mathieu, and was first discovered by
Frobenius. In fact, it is not maximal, as the complement of a dodecad is another
dodecad, and since M24 is transitive on dodecads, we have a subgroup M12:2
(which is, in fact, maximal) fixing the pair of complementary dodecads.

Fixing a point in one of these dodecads we obtain the smallest Mathieu group,
M11 of order |M12|/12 = 7920.

In fact, there are just three more classes of maximal subgroups of M24 (for a
complete list of the maximal subgroups of all the Mathieu groups, see Table 5.1).
One is the stabilizer of a set of three mutually disjoint octads (such as the three
bricks of the MOG: these bricks are the leftmost 8 points, the rightmost 8 points,
and the middle 8 points), and has the shape 26:(L3(2)×S3), with the quotient S3

acting as permutations of the three octads. Another is the group PSL2(23), which
was known to Mathieu, and was in a sense the basis of his original construction.
(He first constructed M23 and then extended the maximal subgroup 23:11 to
PSL2(23) to generate M24. It is not easy to prove that M24 exists from this
definition, and it appears that Mathieu’s construction did not entirely convince
his contemporaries. Even 30 years later it was possible for Miller to publish
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a paper purporting to prove that M24 did not exist—although, to be fair, he
quickly realised his mistake and retracted the claim. The first really convincing
construction was that of Witt in 1938—his paper is well worth reading, even
today, for those who read German.)

Another way to see the subgroup PSL2(23) is to construct the Golay code
by taking the 24 points to be the points of the projective line F23 ∪ {∞}, and
defining the code to be spanned by the set {x2 | x ∈ F23} and its images under
t 7→ t + 1, and complementation. It takes a little bit of work to show that this
defines a code with the same weight distribution as the Golay code, and then
the uniqueness of the Steiner system S(5, 8, 24) implies it is isomorphic to the
Golay code. The group PSL2(23) of symmetries generated by t 7→ t + 1, t 7→ 2t,
and t 7→ −1/t can be extended to M24 by adjoining the map t 7→ t3/9 for t a
quadratic residue or 0, and t 7→ 9t3 for t a non-residue or ∞, i.e. the permutation

(1, 18, 4, 2, 6)(8, 16, 13, 9, 12)(5, 21, 20, 10, 7)(11, 19, 22, 14, 17).

A correspondence with the MOG may be given by labelling the points of the
MOG with the points of the projective line as follows:

5
15
19
0

9
6
3
∞

21
14
20
1

13
16
4
11

7
17
10
2

12
8
18
22

(5.10)

The last, and smallest, maximal subgroup of M24 is a subgroup PSL2(7) of
order 168. As this contains a subgroup S4 which commutes with an element of
order 2 in M24, this leads to a way of generating M24 in a nice symmetric way
with seven elements of order 2.

5.3 The Leech lattice and the Conway group

5.3.1 The Leech lattice

We construct the biggest Conway group 2.Co1 (a double cover of the simple group
Co1) as a group of 24× 24 real matrices. At the same time we construct a lattice
(i.e. a discrete set of vectors closed under addition and subtraction) which is
invariant under the group, in order to determine the order of the group and other
properties. The process is analagous to the construction of M24 and the Golay
code, using the subgroup 26:3.S6 derived from the hexacode. Here we use instead
a group 212:M24 derived from the Golay code to help with the construction.

There is an obvious action of M24 on 24-space, in which it permutes the
coordinate vectors naturally. There is also an action of the Golay code itself,
whereby a codeword acts by negating all the coordinates corresponding to a 1 in
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Table 5.1: Maximal subgroups of the Mathieu groups

Group M24 M23 M22 M12 M11

cocode M23 M22 L3(4) M11 A6
.2

subgroups M22:2 L3(4):2 24:S5 A6
.22 32:SD16

L3(4):S3 24:(3× A5):2 32:2S4 2S4

26:3S6 21+4S3

42D12

code 24:A8 24:A7 24:A6 M11 L2(11)
subgroups M12:2 A8 A7 A6

.22 S5

26:(L3(2)× S3) M11 A7 32:2S4

23:L3(2)
A6

.2
L2(11)

others L2(23) 23:11 L2(11)
L2(7) 2× S5

A4 × S3

the word. Thus an octad acts by negating an 8-space, for example. Taking both
groups together we obtain a group 212:M24 acting monomially on 24-space.

The Leech lattice is named after John Leech although it was apparently first
discovered by Witt in 1940. It may be defined as the Z-linear combinations of the
1104 + 97152 + 98304 = 196560 images under the group 212:M24 of the following
vectors

4 4

2
2
2
2

2
2
2
2 −3 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

(5.11)

More helpfully, it may be defined as the set of all integral vectors (x1, . . . , x24)
(i.e. xi ∈ Z) such that either all the xi are even or they are all odd, and congruent
modulo 2 to 1

4
of the sum of the coordinates, and additionally the residue classes

modulo 4 are in the Golay code. Thus

xi ≡ m mod 2
24∑
i=1

xi ≡ 4m mod 8

for each k, the set {i | xi ≡ k mod 4} is in the Golay code (5.12)

To show that these two definitions are equivalent we first show that all the span-
ning vectors in the first definition satisfy the congruence conditions in the second
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definition. This is a straightforward exercise. Conversely, suppose that x is a
vector satisfying the conditions of the second definition. If the coordinates of x
are odd, subtract the vector (−3, 123) to get a new vector x with even coordinates,
still satisfying the conditions. If now x has some coordinates not divisible by 4,
we can subtract some octad vectors (i.e. vectors of shape (28, 016)) until all the
coordinates are divisible by 4, and the new vector x still satisfies the conditions.
Now the sum of the coordinates is congruent to 0 modulo 8, so the vector x is a
sum of vectors of the shape (±4,±4, 022). Hence x is in the lattice spanned by
the vectors given in the first definition.

Now it is easy to see that the 196560 vectors listed above are the only vectors
of smallest norm in the lattice. (We scale the usual norm by dividing by 8, so
that these vectors have norm (i.e. squared length) 4. This is the smallest scale
on which all inner products of vectors in the lattice are integers.) Similarly, the
vectors of norm 6 fall into four orbits under the group 212:M24, with lengths

2576.211 = 5275648,

(
24
3

)
.212 = 8290304, 759.16.28 = 3108864, and 24.212 =

98304 (making 16773120 in all), and representatives as follows:

2 2 2

2
2
2

2
2
2

2
2
2

2
2
2
2

2
2
2
−2 4 5 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

−3−3−3 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

(5.13)

The 398034000 vectors of norm 8 similarly fall into eight orbits under the
group 212:M24.

Let Λ denote the Leech lattice. As an abelian group under addition, Λ is
isomorphic to Z24, so that Λ/2Λ ∼= 224, a vector space of dimension 24 over F2.
In particular there are just 224 congruence classes mod 2Λ of vectors in Λ. These
are just the cosets of 2Λ in Λ. If x and y are in the same congruence class, then
x ± y both lie in 2Λ, so have norm 0 or at least 16. Therefore the sum of the
norms of x and y must be at least 16, unless x = ±y. In particular, the vectors
of norms 0, 4, and 6 are congruent only to their negatives, while two vectors
of norm 8 can be congruent only if they are either negatives of each other, or
orthogonal to each other. Since orthogonal vectors are linearly independent, we
have accounted for at least

1 + 196560/2 + 16773120/2 + 398034000/48 = 16777216
= 224 (5.14)

congruence classes.
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5.3.2 The Conway group Co1

Thus all the vectors of norm 8 in the Leech lattice fall into congruence classes of 48
pairs of mutually orthogonal vectors (which we call coordinate frames or crosses,
or sometimes double bases), and therefore there are exactly 398034000/48 =
8292375 such crosses. Since the stabilizer of a cross is just 212:M24 (as is clear
from the second definition of the Leech lattice), we only need to prove transi-
tivity on the crosses in order to compute the order of the automorphism group
as 8292375.212.|M24|. Clearly this automorphism group has a centre of order 2
generated by the scalar −1. The quotient by the centre is therefore a group Co1

of order 4 157 776 806 543 360 000 = 221.39.54.72.11.13.23.

To prove transitivity on the crosses it is sufficient to exhibit an element which
fuses the orbits of the monomial group 212:M24. Alternatively, a non-constructive
proof can be obtained by showing that any even integral lattice (i.e. a lattice such
that all inner products are integers, and all norms are even integers) containing
the given numbers of vectors of all norms up to and including 8, is isomorphic
to the Leech lattice. In effect this gives us a third definition of the Leech lattice,
which we record formally in the following Theorem.

Theorem 1. If Λ is a 24-dimensional even integral lattice containing no vectors
of norm 2, 196560 vectors of norm 4, 16773120 vectors of norm 6 and 398034000
vectors of norm 8, then Λ is isomorphic to the Leech lattice.

Proof. The same counting argument as above (see Equation 5.14) shows that
in any such lattice the vectors of norm 8 form coordinate frames. Writing the
lattice with respect to a basis such that such a coordinate frame consists of the
vectors of shape (±8, 023), we see that (±8,±8, 022) is in twice that lattice, so that
(±4,±4, 022) belongs to the lattice. Since all inner products are integral (after
dividing by 8), it follows that for any vector in the lattice, all its coordinates
are integers, and are congruent, to m say, modulo 2. Hence all vectors of shape
(±4,±4,±4,±4, 0, . . . , 0) belong to the lattice and also form coordinate frames.
These vectors therefore determine splittings of the 24 coordinates into sextets, or
equivalently, every set of five coordinates determines an octad. Thus we obtain
the structure of a Steiner system S(5, 8, 24) on the 24 coordinates. Using the fact
that this Steiner system is essentially unique (see Section 5.2.3) we may label the
vectors of our coordinate frame so that it is the same Steiner system as before.
Moreover, vectors of shape (±28, 016) with 2s on an octad are also in the lattice
(with signs yet to be determined). Since there are no vectors of norm less than
4, and there are 196560 vectors of norm 4, there must be some vectors of norm 4
with odd coordinates. Changing signs on some coordinates if necessary, we may
assume this vector is (−3, 123). Therefore the octad vectors have an even number
of − signs, and we have the same Leech lattice as we had before. �
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5.3.3 Simplicity of Co1

We can prove that Co1 is simple using Iwasawa’s Lemma again. To do this we
first show that the group acts primitively on the crosses. This is an easy exercise.
Then we show that the stabilizer of a cross in 2.Co1 is 212:M24. This is more or
less obvious given what we already know. Next we show that 2.Co1 is generated
by conjugates of the normal abelian subgroup 212 of the cross stabilizer, by first
finding an element of this form in 212:M24 \ 212, so that by the simplicity of M24

the whole group 212:M24 is generated by such elements. But 212:M24 is maximal
in 2.Co1, and there are conjugates of the 212 not contained in this copy of 212:M24,
so 2.Co1 is generated by these conjugates, as required. Finally, we easily see that
the 212 is generated by commutators already in 212:M24. Hence we have all the
ingredients of Iwasawa’s Lemma, and conclude that Co1 is simple.

5.3.4 The small Conway groups

Now that we have shown that 2.Co1 is transitive on crosses, it follows easily
that it is transitive on vectors of norm 4, and on vectors of norm 6. For the
cross stabilizer is transitive on norm 4 vectors having inner products ±4 or 0
with each vector of the cross: thus for example (4, 4, 022) with respect to the
standard cross, and (28, 016) with respect to the cross containing (44, 020), and
(3,−17, 116) with respect to the cross containing (5,−3,−3, 121). Therefore the
three orbits of 212:M24 on vectors of norm 4 are fused into a single orbit under
2.Co1. Similarly for norm 6, the cross stabilizer is transitive on norm 6 vectors
having inner products±2 or 0 with each vector of the cross. Examples of such vec-
tors are (212, 012) with respect to the standard cross, (−3, 13,−3, 13,−3, 115) and
(22, 02, 22, 02, 22, 02, 2,−2, 02, 4, 07), with respect to the cross containing (44, 020),
and (5, 123) with respect to the cross containing (−2, 211, 4, 011). For clarity we
display these vectors in the MOG array below. The top row contains a represen-
tative vector of the cross, and the bottom row the vector of norm 4.

4
4
4
4

4
4
4
4

5 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

−3−3−3 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

2 2 −2 4

2
2
2

2
2
2

2
2
2

2 2 2 2
2 2 2 −2 4

(5.15)

The stabilizer of a vector of norm 4 is denoted Co2, and has order

|Co2| = |Co1|/98280



5.3. THE LEECH LATTICE AND THE CONWAY GROUP 13

= 42 305 421 312 000. (5.16)

The stabilizer of a vector of norm 6 is denoted Co3, and has order

|Co3| = |Co1|/8386560
= 495 766 656 000. (5.17)

We can proceed further, to define the McLaughlin group and the Higman–
Sims group, and determine their orders, by proving transitivity of Co2 or Co3 on
suitable sets of vectors. In the McLaughlin group case we need to prove that Co3,
the stabilizer of a vector v of norm 6, is transitive on the 552 vectors of norm 4
which have inner product −3 with v. If v = (−212, 012) then the monomial group
2 ×M12 fixes v and has orbits of lengths 24 + 264 + 264 on these vectors, with
representatives (112,−3, 111), (26, 06, 22, 010) and (3,−1, 110, 16,−16) respectively.
On the other hand, if v = (−5,−123), then the monomial group M23 has orbits of
lengths 23+23+253+253, with representatives (4, 4, 022), (1,−3, 122), (2, 27, 016)
and (3,−17, 116) respectively. The only way for both these sets of orbits to fuse
into orbits for Co3 is as a single orbit of length 552.

Thus the stabilizer in Co3 of such a vector is a subgroup of index 552 in Co3,
so has order |Co3|/552 = 898128000. This is the McLaughlin group.

Similarly, in the Higman–Sims case we need to prove that Co3 is transitive
on the 11178 vectors of norm 4 which have inner product −2 with v. When
v = (−212, 012), the monomial group 2 ×M12 has six orbits on these vectors, as
follows:

Orbit representative Orbit length
(−3, 111, 112) 24
(42, 010, 012) 66
(25,−2, 06, 22, 010) 1584
(110,−12,−16,−3, 15) 1584
(24, 08, 24, 08) 3960
(3,−13, 18,−14, 18) 3960

(5.18)

But when v = (−5,−123), the group M23 has five orbits, as follows:

Orbit representative Orbit length
(4,−4, 022) 23
(0, 28, 015) 506
(3,−111, 112) 1288
(1, 3,−115, 17) 4048
(2, 25,−22, 016) 5313

(5.19)

Again it is easy to see that Co3 must act transitively on these vectors, since these
two sets of orbit lengths are incompatible with anything else.

Thus the stabilizer in Co3 of such a vector is a subgroup of index 11178 in
Co3, so has order |Co3|/11178 = 44352000. This is the Higman–Sims group.


