Chapter 4

The exceptional groups

4.1 Introduction

It is the aim of this Chapter to describe some of the ten families of so-called
‘exceptional groups of Lie type’. There are three main ways to approach these
groups. The first is via Lie algebras, as is wonderfully developed in Carter’s book
‘Simple groups of Lie type’. The second, more modern, approach is via algebraic
groups (see for example Geck’s book ‘Introduction to algebraic geometry and
algebraic groups’). The third is via ‘alternative’ algebras, as in ‘Octonions, Jordan
algebras and exceptional groups’ by Springer and Veldkamp. I shall adopt the
‘alternative’ approach, for a number of reasons: although it lacks the elegance and
uniformity of the other approaches, it gains markedly when it comes to performing
concrete calculations. We obtain not only the smallest representations in this
way, but also construct the (generic) covering groups, whereas the Lie algebra
approach only constructs the simple groups.

The ten families of exceptional groups are (from the Lie algebra point of view)
of three different types. Most straightforward are the five families of Chevalley
(or untwisted) groups Ga(q), Fy(q), and E,(q) for n = 6,7,8. Next in difficulty
are the Steinberg—Tits—Hertzig twisted groups 3Dy4(q) and ? E¢(q) which also exist
for any finite field Fy, and whose construction is analogous to the construction
of the unitary groups from the special linear groups. Finally there are the three
families of Suzuki and Ree groups 2By (22"1) = Sz(22+1) 2G4 (32"1) = R(3%"H1)
and 2F,(2*"*1) = R(2*"*!), which only exist in one characteristic.
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2 CHAPTER 4. THE EXCEPTIONAL GROUPS

4.2 QOctonions and groups of type G,

4.2.1 Quaternions

The quaternion group Qs consists of the 8 elements £1, +4¢, 7, £k and is defined
by the presentation

from which it follows that i? = j2 = k? = —1 and ji = —k, kj = —i, ik = —j.
The (real) quaternion algebra H (named after Hamilton) consists of all real linear
combinations of these elements (where —1 in the group is identified with —1 in
R). Thus

H = {a+bi+cj+dk:a,bcdeR} (4.2)

with the obvious addition, and multiplication defined by the above rules and the
distributive law. This is a non-commutative algebra which has many applications
in physics and elsewhere. Given a quaternion ¢ = a + bi + ¢j + dk we write
q = a—bi—cj — dk for the (quaternion) conjugate of ¢, and Re (¢) = a = %(q—i—ﬁ)
is the real part of q. There is a natural norm N under which {1,4,7,k} is an
orthonormal basis, and this norm satisfies N(q) = ¢g.

More generally, we may replace the real numbers in this definition by any field
F' of characteristic not 2 (fields of characteristic 2 do not work: one difficulty is
that 1 = —1 in the field but 1 # —1 in the group). We obtain in this way
a 4-dimensional non-commutative algebra over the field F', and we extend the
definitions of g, Re (¢) and N(g) in the obvious way to this algebra.

The group of automorphisms of this algebra must fix the identity element 1,
and therefore fixes its orthogonal complement (the purely imaginary quaternions,
spanned by 4, 7, k). Therefore it is a subgroup of the orthogonal group Os(F),
and is in fact isomorphic to the group SO3(F) = PGLy(F). To prove this we
simply need to check that if z, y, z are any three mutually orthogonal purely
imaginary quaternions of norm 1, then xy = +z. (Exercise)

Indeed, the automorphism group of the quaternions consists entirely of inner
automorphisms «, : x — q 'zq for invertible ¢ € H. Since a_, = «, this gives
a 2-to-1 map from the group of quaternions of norm 1 to SO3(F'). Indeed, this
group of quaternions is a double cover of SO3(F') and is isomorphic to SLy(F).

4.2.2 Octonions

The (real) octonion algebra O (also known as the Cayley numbers, even though,
as Cayley himself admitted, they were first discovered by Graves) can be built
from the quaternions by taking 7 mutually orthogonal square roots of —1, labelled
ig, ..., ig (with subscripts understood modulo 7), subject to the condition that



4.2. OCTONIONS AND GROUPS OF TYPE G, 3

for each t, the elements 4, i;11, ;13 satisfy the same multiplication rules as i, 7,
k (respectively) in the quaternion algebra. It is easy to see that this defines all of
the multiplication, and that this multiplication is non-associative. For example,

(ioil)ig = igig = —i5 but 20(1122) = i0i4 = i5. [StI‘lCtly speaking, an algebra is
associative. We emphasise the generalisation by describing O as a non-associative
algebra.]

For reference, here is the multiplication table:

1| do  dp iy iz iy 45 g
G0 | —1 i3 4 —i1 d5 —is —io

iy | —is =1 iy iy —in  dg  —is

io | —ig —iy —1 ds iy —iz g (13
is | i —io —is —1 dg iy —iy '
iy | —is iy —ip —ig —1 dg s

is | iy —ig iy —iy —ip —1 i

io | iy d5  —ig iy —iz —i; —1

It is worth pausing for a moment to consider the symmetries of this table. By
definition it is invariant under the map i; — 4,41, and it is easy to check that it
is invariant under 7; — 19, extending the automorphism i — j +— k +— ¢ of the
quaternions (where i =iy, j =iy and k = i4). It is also invariant under the map

(10, ..,16) +— (ig,12,11,16, —ls, —1i5,13) (4.4)

which extends the automorphism ¢ < 7,k — —k of the quaternions. Ignoring
the signs for the moment, we may recognise the permutations (0, 1,2,3,4,5,6),
(1,2,4)(3,6,5) and (1,2)(3,6) generating GL3(2). Thus we have a homomor-
phism from the group of symmetries onto GL3(2). The kernel is a group of
order 23, since we may change sign independently on iy, 4; and s, and then the
other signs are determined. In fact, the resulting group 23GLs3(2) is a non-split
extension.

Now the set {£1, %y, ..., +ig} is closed under multiplication, but does not
form a group, since the associative law fails. In fact it is a Moufang loop, which
means that it is a loop (a set with a multiplication, such that left and right
multiplication by a are permutations of the set, and with an identity element)
which satisfies the Moufang laws

(zy)(zz) = (2(y2))z
z(y(zz)) = ((xy)x)z and

)
((zy)z)e = x(y(zz)). (4.5)

In the loop, these laws may be verified directly: the symmetries given above
reduce the work to checking the single case z = iy, y = 71, 2 = i5. Since this loop
has an identity element 1, the Moufang laws imply the alternative laws

(zy)z = z(yz)
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z(ry) = (zx)y and
(yr)z = ylzz). (4.6)

Indeed, the Moufang laws hold not just in the loop, but also in the algebra: this
is not obvious, however, since the laws are not linear in x. It is sufficient to take
Yy =19, 2 = 11, and check that the cross terms cancel out in the cases x = 15 + iy,
t =3,4,5,6. It follows from the alternative laws that any 2-generator subalgebra
is associative.

Just as with the quaternions, an octonion algebra may be defined by the same
rules over any field F' of characteristic not 2. There is again a natural norm N,
under which {1,14,...,is} is an orthonormal basis, and N(z) = 2T, where ~ is
the linear map fixing 1 and negating g, ..., ig. Also we define the real part
Re (z) = (z +T), so that T = 2Re (z) — z. Since Ty = J.T, and T is expressible
as a linear combination of 1 and z, the alternative laws imply immediately that
N(zy) = N(z)N(y). The norm N is a quadratic form, and the associated bilinear
form is

f(z,y) = N(z+y)— N(z)— N(y) (4.7)

which is twice the usual inner product. The automorphisms of the algebra again
preserve the identity element 1, so live inside the orthogonal group O;(F') acting
on the purely imaginary octonions. This time, however, it is clearly a proper
subgroup of SO7(F'), since once we know the images of iy and i1, we know the
image of i3 = ig7;. Indeed, if we also know the image of 75, then we know the
images of all the basis vectors. This automorphism group is known as G5(F), or,
if F' is the field F, of ¢ elements, G5(q).

4.2.3 The order of Gy(q)

To calculate the order of Gy(q) in the case ¢ odd, we calculate the number of
images under Gs(q) of the list ig, i1, i3 of generators for the algebra. The crux of
the matter is to prove that the group is transitive on triples of elements satisfying
the obvious properties of the triple (ig,%1,45), namely that they are mutually
orthogonal purely imaginary octonions of norm 1, and that iy is orthogonal to
19t1. We do this by showing that the multiplication is completely determined by
these properties.

First, if ¢, j, £ = ij and [ are mutually orthogonal norm 1 pure imaginary
octonions, then i = —i.4i = —1; second, all terms in the expansion of ij an-
ticommute, except the terms in i,.i,, which commute and sum to 0 (since 7 is
orthogonal to j), so that ij = —7ji; and third, in the expansion of (ij)l, the
terms which are associative correspond to the real parts of 7, jl, il or kl, and
each of these sets of terms individually adds up to 0, so that (ij)l = —i(jl).
Since N(xy) = N(z)N(y), multiplication by an octonion of norm 1 preserves
norms, and therefore inner products. Thus we see that {1,14, j,47,1,l, jl, kl} is an
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orthonormal basis. The entire multiplication table is now determined by these
relations, and is visibly the same as given in Equation 4.3.

Now we count the number of such triples (i, j,[): first i can be any vector of
norm 1, and the number of such vectors is

1S07(9)|/1S05(q)] = ¢®+ed® =’ (¢* +¢) (4.8)

(where e = 41 satisfies ¢ = ¢ mod 4). Then j can be any vector of norm 1 in the
orthogonal space of type O%, of which there are ¢° — e¢* = ¢*(¢> — €). Finally,
[ can be any vector of norm 1 orthogonal to i, j and k = ij, i.e. lying in the
Oj -space spanned by [, il, jl, kl. There are ¢> — ¢ such vectors, so the order of
Ga(q) is ¢°(¢° +€).¢*(¢° — €).q(¢* — 1), that is

1G2(9)] = ¢°(¢° = 1)(¢" — 1). (4.9)

4.2.4 Another basis for the octonions

We change basis as follows. First pick elements a,b € F, such that a* + b* = —1
and b # 0 (this can be done for all odd ¢). Then our new basis is {xy,...,xs}
defined by

221 = 14 + aig + big 2xs = 14 — alg — big

2.7)2 = 7;2 + b’L3 + (Zi5 21’7 = ig — blg — ai5 (4 10)
2[E3 = il — bl@ + (li() 2]36 = 7:1 + blﬁ - CL?:O '
2m4:1+ai3—bi5 2x5:1—ai3+bi5

With respect to the norm N and the associated bilinear form f, the basis vectors
are isotropic and mutually perpendicular, except that f(x;,z9_;) = 1. With
respect to this new basis we find that all entries in the multiplication table are
integers, as follows (where blank entries are 0).

a1 o) T3 T4 T5 T Ty Ty
T Ty Ty —T3 —XTy4
T2 —T1 X2 —T5 Tg
T3 T T3 —Ts —X7
Ty I Ty Tg Ty (411)
Ts T2 T3 Ts Ts
Te | —T2 —Ty Tg Tg
T7 | Tz —T4 T7 —Xg
Tg | =5 —Teg Ty ITg

This multiplication can now be interpreted over any field whatsoever, for example
the real numbers, in which case the resulting algebra is called the split form
of the octonion algebra: this is not the same as the compact form defined in
Section 4.2.2, since there are no solutions to a? + > = —1 in R.
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With respect to the basis {z1,...,xs} more symmetries become apparent.
For example it is easy to check that the diagonal matrices which preserve the
multiplication are precisely those of shape

diag(A, g, A= L LA e ' AT (4.12)

for any non-zero A\, u € F,. These matrices form the (maximally split) torus T,
which is normalized by a group W = D5 generated by the maps

T (xla'--ax8> — (—1'1,—1'3,—1'2,$4,.T5,—.T7,—$6,—$8),
s:(xy,...,x8) — (—x9,—x1, —T¢,T5, Ty, —T3, —Tg, —T7). (4.13)

It is left as an Exercise to verify that these maps preserve the multiplication
table in (4.11). The product of these two maps is the coordinate permutation
(1,2,6,8,7,3)(4,5). Traditionally, the normalizer of a (maximally split) torus is
denoted N, and is the ‘N’ part of the ‘BN-pair’.

4.2.5 Simplicity of Gy(q)

In fact G3(q) is simple for all g except for ¢ = 2, when we have G5(2) = PSU3(3):2.
As usual, we can use Iwasawa’s Lemma to prove simplicity. There are a number
of primitive actions of the group which could be used. Probably the easiest
is the action on isotropic 1-spaces perpendicular to 1. In this case, there are
(¢® —1)/(q — 1) points, and the point stabilizer has the shape ¢?.q.¢>.GLy(q).
There is a normal subgroup of order ¢? consisting of so-called long root elements.

It can be shown that the subgroup generated by long root elements is transitive
on the isotropic vectors, and is therefore the whole of G5(¢). Then we calculate
the orbits of the point stabilizer ¢*.q.q*>.GLa(q) on the points. We find that
there are four orbits, of lengths 1, q(¢ + 1), ¢*(¢ + 1) and ¢° (represented by
(x1), (x9), (x7) and (xg) respectively). The only possibility for a block system
would be ¢® + 1 blocks of size ¢*> + g + 1. Some calculations rule this out. This
contradiction implies that the action is primitive. Clearly long root elements are
in the derived subgroup, so Gy(q) is perfect. Now apply Iwasawa’s Lemma.

4.3 Triality

The phenomenon known as triality plays an important role in many exceptional
groups, especially Fy(q), Fs(q) and 2Dy(q), but is ‘really’ a property of the or-
thogonal groups Og (¢). In this section we show how to derive triality from the
octonions. We work with an octonion algebra @, which may be the real octonion
algebra, or an octonion algebra over a finite field. Most of our arguments will ap-
ply equally to all cases, but sometimes there are extra difficulties in characteristic
2 (and occasionally in characteristic 3).
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To understand what triality is, it is useful first to explore what we mean
by duality of vector spaces. The word is used to describe a number of related
phenomena. Given a vector space V over a field F, an (external) dual space V*
may be defined as the space of linear maps from V' to F'. If the dimension of V' is
finite, then dim V* = dim V', so V and V* are isomorphic as vector spaces. Thus
the bilinear ‘evaluation’ map V* x V' — F defined by (f,v) — f(v) gives rise to
a bilinear ‘inner product’ V' x V — F'. This inner product can be regarded as an
‘internal’ version of duality. The natural action of GL(V') induces a ‘dual’ action
on V* which is different from its action on V.

Similarly, an internal version of triality is given by the product on the octonion
algebra, or more precisely by the trilinear form O x O x @ — F' defined by
(x,y,z) — Re (zyz). An ‘external’ version of triality has three related orthogonal
8-spaces, V', V', V" say, with the orthogonal group (or rather its double cover
the spin group) acting in three different ways on these three spaces. We shall
begin by describing this external manifestation of triality. We identify V', V' and
V" with O for convenience, but we are regarding them only as vector spaces, not
as algebras.

4.3.1 Isotopies

An isotopy of O is a map (a, 3,7) : O x O x O — O x O x O, where a, [3, v are
orthogonal transformations, and which preserves the set of triples (z,y, z) with
xyz = 1. (Here no brackets are needed as (zy)z = 1 implies that z is in the
quaternion subalgebra generated by x and y).

Let L, : x — wux denote left multiplication by u, let R, : x — zu denote
right multiplication by u, and B, : x* — uxu denote bimultiplication by u. If
u € O has norm 1 (i.e. vz = 1) then (L,, R,, B,) is an isotopy. For if zyz =1
then the subalgebra generated by w and xy = 27! is associative (all 2-generator
subalgebras are associative), so by the Moufang identity

((uz)(yu))(@=u) = (u(zy)u)(uzu)
= u(zxy)uuzu
= u(zy)zu =uu = 1. (4.14)

In fact, the maps (L,, Ry, B,) generate the full group of isotopies. To see
this, first note that if the characteristic is not 2 and u is purely imaginary (u =
—u), then B, negates 1 and u, and fixes the orthogonal complement. Thus in
O7(q) these maps are reflections, and in fact generate a group 2 x ;(q) on the
purely imaginary octonions. Similarly, in characteristic 2, the map B, acts on
1+ as an orthogonal transvection, and these generate Q7(q) = Spg(q). Also, if
$(=1 4o+ iy +143) then B, moves the identity element to w so extends the
group to QF (q).

Next we need to look at the group homomorphism (o, 3,v) +— 7 from the
group of isotopies to the orthogonal group, and show that its kernel is the group

w =
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of order 2 (or 1 if the field has characteristic 2) generated by (—1,—1,1) =
(L_1,R_1,B_1). In other words, given an isotopy («,3,1) we must show that
a=[0==xl.

Suppose the characteristic is not 2, and that 1* = a, necessarily of norm
1. Applying the definition of isotopy to the triple (z,y,2) = (1,1,1) we have
1 =1%1°1 = alP so 1° = @. Next, taking (z,1,27!) we have

1 =2%1%27" = 2%z~

so #* = za and so a = R,. Similarly, taking (1,y,y ') we have

1=1%%y"" = ay’y™
so y? = ay and so B = L.

We wish to show that a is real, and therefore a = +1. First define the nucleus
of O to be the set of elements a € O such that (za)w = z(aw) for all z,w € O.
Clearly the nucleus is a subspace and is invariant under the automorphism group.
Equally clearly, it contains 1 but not 5. Hence the nucleus is exactly the subspace
(1).

Therefore if a is not real, we may find x and w such that (za)w # z(aw).
There exists y such that ay = w, so

ry = a((a@)y)
— w(a(ay))
+ (va)(ay) (4.15)

In other words we have found z, y, z with zyz = 1 but (za)(ay)z # 1, which
contradicts the assumption that (R,, Lg, 1) is an isotopy.

4.3.2 The triality automorphism of PQJ (¢)

It follows that the group of all isotopies is a double cover (except in characteristic
2) of Qf (¢), namely the spin group. It may be extended to the full spin group
2:SO¢ (¢) (or Of (¢) in characteristic 2) by adjoining the duality automorphism
(x,y,2) — (¥,7,2).

There is another obvious automorphism, called triality, which maps (x,y, z)
to (z,z,y). [Clearly zyz = 1 implies z = (zy)~! and so zzy = 1, since inverses
are 2-sided.] This extends the spin group to a group of shape 22-PQy (q):S3
(or QF (¢):S3 in characteristic 2). The centralizer of the triality automorphism
consists of all isotopies of the form (a, «, ). This means that if 2! = zy then
(271)® = 2%y*: in other words, o is an automorphism of the octonion algebra.
Thus this centralizer is exactly Ga(q).

Moreover, the set of isotopies preserving the subset

{(1,y,57") | y € O invertible}
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is the spin group 2'Q7(q) (or just Q7(g) in characteristic 2). The stabilizer in this
group of the triple (1,1, 1) consists of isotopies («, (3, ) which simultaneously map
(1,y,971) to (1,97, (y~1)7) (so that 8 =) and map (z,27%,1) to (2%, (z71)%, 1)
(so that v = [3), so is again equal to Gi5(q). This leads to an alternative description
of G5(q) as the stabilizer of a non-isotropic vector in the 8-dimensional spin
representation of 2°Q27(q) (or Q7(q) in characteristic 2).

4.4 Albert algebras and groups of type F}

4.4.1 Jordan algebras

The algebra of n x n matrices has the well-known matrix product, which is
associative but non-commutative. We can derive a commutative product from
it, by defining Ao B = %(AB + BA). This is called the Jordan product, and is
easily shown to be non-associative. It does however satisfy the so-called Jordan
identity

((AocA)oB)oA = (AoA)o(BoA). (4.16)

(Exercise) The natural inner product on the vector space of matrices can be
expressed as Tr(A o B).

A Jordan algebra over a field of characteristic not 2 is defined abstractly to
be a (non-associative) algebra with a (bilinear) commutative Jordan product o,
which satisfies the Jordan identity.

Simple Jordan algebras over finite or algebraically closed fields are completely
classified (at least if the characteristic is not 2 or 3), and it turns out that apart
from those which arise from associative algebras in the manner just described,
there is just one other Jordan algebra. It is called the exceptional Jordan algebra,
or Albert algebra and has dimension 27. It may be constructed as the algebra of
3 x 3 Hermitian matrices over the octonions. For brevity let us define

a C B
(a,b,c| A,B,C) = cC b A, (4.17)
B A ¢

where a, b, ¢ are real, and  denotes the linear map fixing 1 and negating 4,, for
all n.

The Jordan product is defined in the same way as before, and it can be readily
checked that the 27-dimensional space just defined is closed under multiplication.
The identity matrix acts as an identity element in this algebra, and its orthogonal
complement is the 26-dimensional subspace of matrices of trace 0.
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4.4.2 A symmetric trilinear form

The Jordan product gives rise to three invariant forms on the Jordan algebra:
a linear form [(z) = Tr(z), a bilinear form b(z,y) = Tr(z o y), and a trilinear
form t(z,y,z) = Tr((x oy) o z). It is clear that the bilinear form is symmetric,
i.e. b(x,y) = b(y,x). It is also clear that the trilinear form satisfies t(z,y, z) =
t(y, z, z). What is much less obvious, but crucial, is that t(z,y, z) = t(y, 2, x), so
that ¢ is a symmetric trilinear form.

To prove this, note first that if u, v, w are three octonions, then Re (uv) =
Re (vu) and Re ((uv)w) = Re (u(vw)), where Re (v) denotes the real part of v,
i.e. Re(v) = 3(v+70). This is because Re ((uv)w) and Re (u(vw)) are trilinear in
u, v and w, and both are zero on the basis 1, i, ..., 2 unless u, v, w lie in a
quaternion subalgebra, which is associative. Thus we have

wv + v = 2Re (uv) = 2Re (vu) = vu + v

and

(uwv)w + (uwv)w = 2Re ((uv)w) = 2Re (u(vw)) = u(vw) + u(vw)

as required. Note also that Re (u(vw)) = Re ((vw)u) so
Re (vvw) = Re (vwu) = Re (wuw). (4.18)

[On the other hand, beware that Re (uvw) is not in general equal to Re (wvu),
even in the quaternions: for example, Re (ijk) = —1 but Re (kji) = 1.]

Now we calculate the trilinear form at the three matrices (a,b,c | A, B,C),
(p,q,7 | P,Q,R) and (z,y,z | X,Y,Z) to be

apr + bqy + crz

zRe (CR + BQ) + yRe (AP + CR) 4 zRe (BQ + AP)

pRe (ZC +YB) + qRe (XA + ZC) +rRe (Y B + X A)

aRe (RZ + QY) + bRe (PX + RZ) + cRe (QY + PX)
Re(ZPB+YRA+ XQC + AQZ + CPY + BRX) (4.19)

++ + +

and observe that this is unchanged under permutations of the three matrices.

This enables us to replace the trilinear form by a cubic form c¢(z) = t(z, z, x)
in the same way that we replace the bilinear form b(x,y) by the quadratic form
q(z) = b(x,z). We recover the original forms by

ab(r,y) = gz +y) —qlz—y)
2Ut(r,y,2) = clw+y+2)+e(z—y—2)
te(—zx+y—2)+c(—r—y+2) (4.20)

for example.
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4.4.3 The automorphism groups of the Albert algebras

An analogous construction can be performed using the octonions over any finite
field F,. In characteristic 2 or 3 we need to be more careful in the definitions
of the quadratic and cubic forms, however. [We shall not do this here.] Thus
we assume the characteristic is odd, and where necessary, not 3. We obtain in
this way a finite Jordan algebra, whose automorphism group we call Fy(q). This
group in fact acts irreducibly on the 26-dimensional space of trace 0 matrices,
except when the field has characteristic 3, in which case the identity matrix has
trace 0, and Fjy(q) acts irreducibly on the 25-space of trace 0 matrices modulo
the identity:.

Now if « is any element of G(q), i.e. automorphism of the octonions, then
it induces a map (a,b,c | A, B,C) — (a,b,c | A%, B, C®) on the Albert algebra
over [F,, and it is easy to see that this map is an automorphism. It follows that
G(q) is a subgroup of Fy(q).

Indeed, we can see the double cover of Qf (¢), i.e. the spin group 2-Qf (¢) =
22:PQO¢ (q), generated by the maps (a,b,c | A, B,C) — (a,b,c | uA, Bu,uCqu)
where w is an octonion of norm 1. It is a straightforward, if rather tedious,
calculation to show directly that this map preserves the Jordan multiplication.
However, as we saw in Section 4.3.1 these maps generate the group of isotopies

(o, B,7) : (a,b,c] A, B,C) (a,b,c| Aa,B’B,C’7), (4.21)

which have the property that ABC = 1 implies A*B?C" = 1. It is easy to see
that these maps preserve the bilinear form, so (unless the characteristic is 2 or
3) to verify that they preserve the Jordan algebra structure, it suffices to verify
that they preseve the cubic form

a® + b+ ¢ +3a(BB + CC) + 3b(AA + CC) + 3¢(AA + BB) + 6Re (ABC).

But «,  and v are orthogonal transformations, so AA, BB and CC are fixed.
Also we can write C' = C} + C5 such that (AB)C is real and (AB)Cs is purely
imaginary, and therefore (A®B°)C] = (AB)C; = Re((AB)C). Moreover, left
octonion multiplication by A®B¥ is an orthogonal transformation, so (A®B?)C)
is purely imaginary, and Re ((A*B”)C7) = Re ((AB)C) as required.

This group of isotopies is normalized by the triality automorphism

(a,b,c| A,B,C) — (bc,a|B,C,A), (4.22)
as well as the duality automorphism
(a,b,c| A,B,C) +— (a,c,b| A C,B). (4.23)

All these elements preserve the 2-dimensional space of diagonal matrices of trace
0, and generate its stabilizer, of shape 22-PQJ (¢):S55.
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4.4.4 Primitive idempotents

To calculate the order of Fy(q), consider the primitive idempotents in the Jordan
algebra, that is elements x with z o x = = and z.z = 1. (Here z.x denotes the
norm of z, that is, z.x = Tr(x o ) = Tr(x).) First we determine how many
such elements there are. Straightforward calculation shows that the primitive
idempotents are precisely the elements (a,b,c | A, B, C') which satisfy

at+b+c =
a’+BB+CC =
(a+b)C +BA =

Qs =

, (4.24)

and the equations derived from these by cycling a,b,c and A, B,C. The last
equation can be re-written as BA = ¢C'. Eliminating BB and C'C' from the three
images of the middle equation gives

2AA = (c— )+ (b—b*) — (a — a*) = 2bc,

(by substituting a = 1—b—c) so since the characteristic is not 2 we have AA = bc,
BB = ac and CC = ab. We now divide into three cases according as one, two or
three of a, b, ¢ are non-zero. The number of possibilities for (a, b, ¢) in these three
cases is 3, 3(¢ — 2) and ¢* — 3q + 3 respectively.

In each case, without loss of generality ¢ # 0, so that C' is determined by A, B
and the equation ¢cC' = BA. Therefore we only need to determine the number of
possibilities for A and B. Note that because the norm on the octonions induces
a quadratic form of plus type, there are ¢7 + ¢* — ¢® octonions of norm 0, and
q" — ¢® of any other norm.

In the first case, c =1 and a = b =0, so A and B have norm 0, and there are
(¢"+q*—¢*)? possibilities. In the second case, without loss of generality b # 0 and
a =0, so that AA = bc # 0 and B has norm 0, and there are (¢" —¢°)(¢" +¢* —¢%)
possibilities. In the last case, both A and B have fixed non-zero norm, so there
are (¢" — ¢*)? possibilities. Therefore the total number of primitive idempotents
is

3" +4¢" — )+ 3¢ -2 — )" +q" =) + (¢ = 3¢ +3)(d" — ¢*)*,
which simplifies to
(¢ +q" +1).
It can be shown that, if e is a primitive idempotent, then the map

te @ z—x+4(vele—4zoe (4.25)

is an automorphism of the algebra, where z.e denotes the inner product, that is
x.e = Tr(x o e). For example, if e = (1,0,0,| 0,0,0) then

te : (a,b,c| A B,C)w— (a,b,c| A —B,-C). (4.26)
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It is straightforward to deduce that the maps t. generate a group which acts
transitively on the set of primitive idempotents. Moreover, the stabilizer of a
primitive idempotent is now seen to be the spin group 2:Q(q).

Taking for example the primitive idempotent e = (1,0,0,| 0,0,0) it is easy
to see that it determines the 9-space {(0,b,—b | A,0,0)} of elements y of trace
0 with e oy = 0, and the 16-space {(0,0,0 | 0, B,C)} of elements z of trace
0 with eo z = %z (these are just the eigenspaces of the action of e on the
algebra by Jordan multiplication). In fact the orthogonal group €g(gq) acts on
this 9-space, and its double cover acts as the spin group on the 16-space. To
see that the stabilizer of e is no bigger, it suffices to check that the pointwise
stabilizer of the 9-space consists only of the group of order 2 generated by the
element (a,b,c | A,B,C) — (a,b,c | A,—B,—C). Hence the order of Fy(q) is
¢*(¢® +¢" + 1)¢"°(¢® = 1)(¢° — 1)(¢" — 1)(¢* — 1), that is

IFi(q)l = (¢ — 1)(¢® — 1)(¢° = 1)(¢* — 1). (4.27)

4.4.5 Simplicity of Fj(q)

To prove simplicity of Fy(q) we can use Iwasawa’s Lemma in the usual way. It
is straightforward to show that Fj(q) acts primitively on the set of primitive
idempotents. The stabilizer of a primitive idempotent is the subgroup 2-€Qq(q),
which is generated by Fj(q)-conjugates of the central involution t. (since it con-
tains 22-PQd (¢) which has normalizer 22 PQg (¢):S3). Now 2:Q(q) is maximal
(because the action on primitive idempotents is primitive), and does not contain
every conjugate of t., so Fy(q) is generated by these elements. It follows that
Fy(q) is perfect, and all the conditions of Iwasawa’s Lemma are satisfied. We
deduce that Fy(q) is simple (for ¢ odd).

4.5 Trilinear forms and groups of type Fj

4.5.1 The determinant

The exceptional Jordan algebra (or Albert algebra) described in Section 4.4.1
can be used also to construct the groups of type Eg. These groups no longer
preserve the algebra structure, or the inner product, but they do preserve a cubic
form which is a type of determinant map. Of course, it is not obvious how to
define a determinant even for matrices over a non-commutative ring, let alone a
non-associative ring. However, for 3 x 3 Hermitian matrices over octonions there
is a notion of determinant which makes sense, namely

det(a,b,c| A, B,C) = abc—aAA—bBB — cCC
+Re (ABC) + Re (CBA). (4.28)
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The values of this determinant belong to the ground field F,, but beware that
identities you are used to like det(xy) = det(z) det(y) may not necessarily hold.
There is even a notion of rank for these matrices: clearly we want

tk(z) =3 <= det(z) #0
tk(z) =0 < z2=0 (4.29)

so all other matrices should have rank 1 or 2. The rank 1 matrices are (essentially)
those whose rows are (left-octonion-)scalar multiples of each other. That is, if
say a # 0, then the second row is (C,b, A) = a~'(Ca, CC,CB) and the third row
is (B, A,c) = a~Y(Ba, BC, BB). (A slightly different definition is required if the
diagonal of the matrix is zero.) In some of the literature the vectors of rank 1, 2
and 3 are called ‘white’, ‘grey’” and ‘black’ respectively.

It is possible to show (by direct, though tedious, calculation) that the numbers
of white, grey and black vectors are respectively (¢° — 1)(¢® +¢* + 1), ¢*(¢° —
D(¢®+q*+ 1)(¢° — 1) and ¢'%*(¢° — 1)(¢° — 1)(¢ — 1). The last case includes
q — 1 possibilities for the determinant, so the number of vectors of determinant
1is ¢*2(¢° — 1)(¢° — 1). One of these is the identity matrix (1,1,1] 0,0,0), and
if we fix this then we recover the Albert algebra. For the determinant gives rise
to a trilinear form, and by substituting the identity matrix for one or two of the
variables we obtain a bilinear and a linear form, and these three forms together
define the algebra. (Details are left as an exercise.)

In other words, the stabilizer of a black vector is Fy(q), and provided we can

prove transitivity of our group on vectors of determinant 1, we deduce that its
order is ¢*?(q° — 1)(¢° — 1)|F4(q)|, that is

(¢ = 1)(¢" = 1)(¢® = 1)(¢° = 1)(¢" — 1)(¢* = 1). (4.30)

Now this group in general is not simple, as it may contain non-trivial scalars—
this is so if and only if F, contains a cube root w of 1, for det(wz) = w? det(z)
which equals det(z) if and only if w® = 1. We define E4(g) to be the (simple!)
group obtained by factoring out the scalars of order 3, when ¢ = 1 mod 3.

By analogy with the linear groups, let SEg(q) denote the original matrix
group, so that SEg(q) = 3 Fg(q) if ¢ = 1 mod 3 and SFEs(q) = Fe(q) otherwise.
Similarly, let G Eg(q) denote the group of matrices which multiply the determinant
by a scalar, so that GFEs(q) = 3.(C(g-1)/3 X Es(q)).3 if ¢ = 1 mod 3, and let
PGEFEg(q) denote the quotient of GEg(q) by scalars. Thus PGFg(q) = Eg(q).3 if
g = 1mod 3, and PGFEg(q) = Es(q) otherwise.

4.5.2 Dickson’s construction

It is not well-known that the simple groups Eg(q), and their triple covers when
they exist, were first constructed by L. E. Dickson around 1901. He constructed
the 27-dimensional representation with respect to a basis which is essentially the
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same as the one we use, and wrote down a large number of elements generating
the group. He calculated the group order, as well as constructing the permutation
representation of the simple group Eg(q) on (¢° — 1)(¢® + ¢* +1)/(q — 1) points,
although he did not prove simplicity of the group.

Dickson’s construction is more elementary than ours, but more or less equiv-
alent. He takes 27 coordinates labelled z;, y; and z;; = —z;; where ¢ and j are
distinct elements of the set {1,2,3,4,5,6}, and defines his group as the stabilizer
of a cubic form with 45 terms:

Z TiYjZi; + Z Zij 2kl Zmn (4.31)

i)

where (ij | kl | mn) ranges over the 15 partitions of {1,2,3,4,5,6} into three
pairs, ordered so that 1 2 3.4 56
7 k-l m

It is a straightforward exercise to show that this is the same cubic form as
the determinant defined above, for example by taking 1, ..., x¢ to correspond
to wy, wi, W, we, wh, wh and yi, ..., ys to correspond to wr, ..., wy (in that
order).

An alternative description of the cubic form may be obtained by defining the
27-space as the space of triples (x,y, z) of 3 x 3 matrices over F,, with the cubic
form

is an even permutation.

det z + det y + det z — Tr(zyz). (4.32)

Again, this is easily seen to be a cubic form with 45 terms in 27 variables, and it
is a straightforward exercise to show it is essentially the same cubic form.

4.6 Twisted groups of type *D,

Recall that the unitary groups may be defined by identifying the duality (or
inverse-transpose) automorphism z +— (2717 of the general linear groups GL,(¢?)
with the field automorphism = +— T = 29 of order 2, so that the group consists
of the matrices x satisfying =! = 7. We may apply the same principle to the
groups PQy (¢3), identifying the triality automorphism with the field automor-
phism x +— 29 of order 3.

In other words, we consider those isotopies (a, 3,7) on the octonion algebra
over F,s which commute with the map (z,y, z) — (y9, 29, 2%). The group of such
isotopies is denoted 2Dy(q), because the triality automorphism can be thought of
as an automorphism of order 3 of the Dynkin diagram Dy.

A more concrete way to look at this group is to ‘twist’ the octonion algebra
(see Section 4.2.2) over Fys by the field automorphism z — 29 of order 3. That is,
replace the ordinary octonion product by a new product * which takes the same
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values on our standard basis (either {1,4,...,is} or {x1,...,2s}), but instead
of the bilinearity condition (Aa)(ub) = (Au)(ab) we now have

(Aa) * (uh) = (ATu")(a x ) (4.33)

for all \,;u € Fys and all a,b in the algebra. Notice that the twisted algebra has
no identity element, since 1 * x = = would imply 1 % (Az) = pXar % Ax. Indeed,
we shall see that the automorphism group of the twisted algebra acts irreducibly
on it. It is immediate from this construction that 3D,(q) contains Ga(q).

The algebra still has a norm and inner product defined over F . The norm
is still a quadratic form but now it satisifies

N(axb) = N(a)IN(b)" (4.34)

instead of N(ab) = N(a)N(b).



