Chapter 3

Classical groups

3.1 Bilinear, sesquilinear and quadratic forms

There are a number of useful inner products on real and complex vector spaces,
and these inner products give rise to various bilinear, sesquilinear and quadratic
forms. The situation is similar for vector spaces over finite fields, although the
classification of the forms is rather different. In characteristic 0, the three inter-
esting types of forms are (i) skew-symmetric bilinear, (ii) conjugate-symmetric
sesquilinear, and (iii) symmetric bilinear. Over finite fields of odd characteristic
we can use the same definitions, using a field automorphism of order 2 in place
of complex conjugation (thus the field order must be a square in this case). But
in characteristic 2, these definitions do not capture the interesting geometrical
(and group-theoretical) phenomena. To remedy this, we replace skew-symmetric
bilinear forms by alternating bilinear forms, and symmetric bilinear forms by
quadratic forms. In both cases, the two concepts are equivalent if the character-
istic of the field is not 2.

3.1.1 Definitions

First, a bilinear form on a vector space V over a field Fisamap f:V xV — F
satisfying the laws f(Au+v,w) = Af(u, w)+ f (v, w) and f(u, \v+w) = Af(u,v)+
f(u,w). Tt is

symmetric if  f(u,v) = f(v,u)
skew-symmetric or anti-symmetric if  f(u,v) = —f(v,u)
and alternating if f(v,v) =0. (3.1)

Now an alternating bilinear form is always skew-symmetric, since

0 = flu+v,u+v)
= f(uvu)+f(u7v)+f(vvu)+f(vvv)
= f(u,v) + f(v,u). (3.2)

1



2 CHAPTER 3. CLASSICAL GROUPS

And if the characteristic is not 2, then a skew-symmetric bilinear form is alter-
nating, since f(v,v) = —f(v,v). But if the characteristic is 2, then a bilinear
form can be skew-symmetric without being alternating.

A quadratic form is a map @ from V' to F satisfying

Qu+v) = NQu) + Af(u,v) + Q(v), (3.3)

where f is a symmetric bilinear form. Thus a quadratic form always determines
a symmetric bilinear form, called its associated bilinear form. And if the charac-
teristic is not 2, the quadratic form can be recovered from the symmetric bilinear
form as Q(v) = £ f(v,v). If the characteristic is 2, then the associated bilinear
form is actually alternating, since

0=Q2v)=Qw+v) = 2Q)+ f(v,v) = f(v,v). (3.4)

Next we consider conjugate-symmetric sesquilinear forms. For this to make
sense we need a field automorphism of order 2, to take the place of complex
conjugation for C. Thus we need a field of order ¢?, for some ¢ = p°, and we write
T = x? for every element x of the field. Then a conjugate-symmetric sesquilinear
form over a vector space V defined over ' = Fpisamap f: V xV — F
satisfying

fOu+v,w) = Af(u,w)+ f(v,w)

and f(w,v) = f(v,w). (3.5)

Note that this implies f(u, \v +w) = Af(u,v) + f(u,w).

Any of these forms f is determined by its values f(e;, ;) on a basis {es, ..., ey}
The matrix A whose (7, j)th entry is f(e;, e;) is called the matrix of f (with re-
spect to this ordered basis). It is easy to show that if g : f; — e; is a base-change

matrix then the matrix of the form with respect to the new basis { fi,..., fn} is
T
g Ag.

3.1.2 Vectors and subspaces

Many of the concepts, and much of the notation and nomenclature, are the same
whichever type of bilinear or sesquilinear form f we have, although the quadratic
forms are more complicated in characteristic 2. For example, we write v L v to
mean f(u,v) = 0 (which is equivalent to f(v,u) = 0 in each case), and say that
u and v are perpendicular or orthogonal (with respect to the form f). We write
St ={veV:vlsforall se€ S}, for any subset S of V (and abbreviate {v}+
to v1). In many contexts S+ is called the orthogonal complement of S, but I
prefer the term perpendicular space as being more accurate and less liable to be
misunderstood.
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A non-zero vector which is perpendicular to itself is called isotropic. More
generally f(v,v) is called the norm of v. (This is not the same as the usual defini-
tion over C, where we take the square root of f(v,v). Over finite fields, however,
there is no sensible analogue of this square root.) The radical of f, written rad f,
is V4, and f is non-singular if the radical is 0, and singular otherwise. We are
usually (but not always) only interested in forms which are non-singular. Simi-
larly, the radical of a quadratic form @ is the subset of vectors v with Q(v) =0
inside the radical of the associated bilinear form.

Given any subspace W of V| we can restrict the form f to W. In general this
restriction, written f|y, will be singular, and its radical is W N W=, If fly is
non-singular, we say that W is non-singular, while if f|y is zero, we say W is
totally isotropic. It is a straightforward exercise to show that if f is non-singular,
and U is a subspace of V, then (U+)* = U and dim(U) + dim(U*) = dim(V),
and hence if UNU+ =0then V =U ® U+,

3.1.3 Isometries and similarities

If f is a form on a vector space V, an isometry of f (or of V', if f is understood)
is a linear map g : V' — V which preserves the form, in the sense that f(u?, v9) =
f(u,v) for all u,v € V. Similarly, an isometry of a quadratic form @ is a linear
map ¢ such that Q(v9) = Q(v) for all v € V. We think of an isometry as
preserving inner products and norms, and therefore preserving ‘distances’ and
‘angles’. If we allow also changes of scale we obtain similarities, that is linear
maps g such that f(u?,v9) = A, f(u,v) for a scalar A\, which depends on g but
not on u or v. A similarity of a quadratic form () is a linear map ¢ such that
Q(v?) = A\,Q(v). Similarities preserve ‘angles’ but not necessarily ‘distances’.

We obtain the finite classical groups from the groups of isometries of non-
singular forms. In order to classify these groups, we need to classify the forms,
which we do by choosing a basis for the space in such a way that the matrix
of the form takes one of a small number of possible shapes. We consider the
different types separately. In each case, we say two forms on V' are equivalent if
they become equal after a change of basis.

3.1.4 Classification of alternating bilinear forms

Given an alternating bilinear form on a space V', we want to find a basis of V'
such that this form looks as nice as possible. Our argument in this section applies
to arbitrary fields, finite or infinite, of any characteristic. If there are any vectors
w and v with f(u,v) = X # 0, then choose u and v" = A™'v as the first two basis
vectors e; and f1, say. Then with respect to the basis {ey, f1} the form f satisfies

fler,er) = f(f1, 1) = 0,
fler, i) = =f(fi,en) = 1. (3.6)
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Now restrict the form to {u,v}*, and continue. Eventually we have chosen basis
vectors ey, ...,e, and fi, ..., fi, such that f(u,v) = 0 for all basis vectors u, v
except f(e;, fi) = —f(fi,e;) = 1. Either we have a basis for the whole space, in
which case f is non-singular and dim(V) = 2m is even, or else f(u,v) = 0 for
all u,v € {e1,..., fu}t # 0, in which case f is singular, and we can complete
to a basis in any way we choose. Notice that in the latter case we have that
f(u,v) =0 for any u € {ey,..., fm}*, and any v € V. Usually (but not always)
we shall be considering non-singular forms, in which case we have decomposed V'
as a perpendicular direct sum of m non-singular subspaces (e;, f;) of dimension
2, called hyperbolic planes. The basis {eq, ..., fi} is called a symplectic basis.

3.1.5 Classification of sesquilinear forms

To classify conjugate-symmetric sesquilinear forms, we find a canonical basis for
the space with the form. Recall that the underlying field is F,. which has an
automorphism x — T = x? of order 2. If there is a vector v with f(v,v) # 0, then
f(v,v) = f(v,v) so f(v,v) is in the fixed field F, of the field automorphism z —
29, Since the multiplicative group of the field is cyclic order ¢ —1 = (¢+1)(¢—1)
there is a scalar A € F2 with A\ = A+ = f(v,v), so that v’ = A~lv satisfies
f(v';v") = 1. Now restrict f to v'*, and carry on. If we find that f(v,v) = 0 for
all vectors v in the space remaining, then

0 = fv+ Aw, v + A\w) -
— i(v,v)+)\f(v,w)+)\f(w,v)+)\)\f(w,w)
= M(v,w)+ Af(w,v). (3.7)

Now we can choose two values of A, say Ay = 1 and Ay # A2, and solve the simul-
taneous equations to get f(v,w) = f(w,v) = 0, so that the form is identically
0. In particular, if the form is non-singular, then we have found an orthonormal
basis for V', i.e. a basis of mutually perpendicular vectors each of norm 1.

3.1.6 Classification of symmetric bilinear forms

Suppose f is a symmetric bilinear form on a vector space V over a field F of
odd characteristic p. We first try to find a nice basis of V. If there are any
vectors u,v € V with f(u,v) # 0 then there is a vector x (either u, or v or u+v)
with f(z,z) # 0. If f(x,z) = A\, then writing 2’ = \~'z we have f(z/,2') = 1.
Otherwise, we can choose our favourite non-square « in the field and scale so
that f(2/,2’) = a. (Here we use the finiteness of the field in an essential way.)
Restricting the form now to 2’+ we continue until we find a perpendicular basis
x1,...,2, such that for each ¢, f(z;,x;) =0,1 or a.

But if we have say f(z1,21) = f(x2,22) = «, and f(x1,22) = 0, then since
the squares do not form a field we can choose A and p such that A2 + p? is a
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non-square, and by scaling appropriately we can choose A\? + p? = a~!. Then
we find that ) = A\x; + pxy and 2, = pxy — Axg form an orthonormal basis of
the 2-space spanned by x; and x5. In this way, we can ensure that our basis is
either orthonormal, or the matrix of the form is diagonal with all entries except
one being 1.

Thus we have shown that there are exactly two equivalence classes of non-
singular symmetric bilinear forms under the action of the general linear group,
in the case when F'is a finite field of odd characteristic. Note that the finiteness
of the field is essential: for example, over QQ there are infinitely many equivalence
classes of quadratic forms, even in dimension 1.

3.1.7 Classification of quadratic forms in characteristic 2

First we need to extend some of our earlier definitions. Suppose that @) is a
quadratic form on V' over a field F' = F, of characteristic 2, and that f is the
associated bilinear form. The radical of (), written rad (), is the subset of vectors
v € rad f such that @Q(v) = 0. This is a subspace since rad f is a subspace and
if v,w € rad@ then Qv + Aw) = Q(v) + A\f(v,w) + A2Q(w) = 0. Indeed, if
v,w € rad f then Q(v+Aw) = Q(v) +A?Q(w), so @ is a semilinear map on rad f,
so rad () has codimension 0 or 1 in rad f.

Q is called non-singular if rad Q = 0, and non-degenerate if rad f = 0. Thus
if @ is degenerate but non-singular then rad f has dimension 1, and V/rad f
supports an alternating bilinear form induced by f. On the other hand, if vy €
rad f has Q(vy) = 1, then Q(v + Avg) = Q(v) + A2Q(vy), so every coset v + ()
contains one vector of each possible norm.

It is not hard to show that every isometry of V/rad f can be lifted to a unique
isometry of V', so the isometry groups of V' (with the form @) and V/rad f (with
the form induced by f) are isomorphic. If we are only interested in the group
theory rather than the geometry, therefore, we may, and do, restrict to the cases
where rad f = 0, so dim V' is even.

We pick a basis for the space in the same way as for alternating bilinear forms,
with the additional condition that we choose our basis vectors to be isotropic
(i.e. Q(v) = 0) whenever possible. If Q(e;) = 0, then Q(f; + Xe;) = Q(f;) + A, so
replacing f; by fi+Q(f;)e; we may assume Q(f;) = 0. Moreover, if the dimension
is at least 3 then there is always a pair of perpendicular vectors u, v say, and
if u is not isotropic then set A = (Q(v)Q(u)™1)%? so that A2 = Q(v)Q(u)~!
and therefore Q(v + Au) = 0, so there is always a non-zero isotropic vector. To
complete our basis, therefore, we only need to consider separately the case when
the dimension is 2.

In this case, we may choose basis vectors v, w with Q(v) = f(v,w) = 1, and
then for all A we have f(v,w + Av) =1 and Q(w + M) = Q(w) + A\* + X\. Now
for each u the equation A> + A\ = p has at most two solutions, so there are at
least ¢/2 distinct values for A* + X\ as A ranges over F,. So replacing w by w+ Av
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we see that there are at most two possible quadratic forms, up to equivalence.
Indeed, the equation A2 + X\ = 0 has two solutions A = 0, 1, so there are exactly
two possible quadratic forms, up to equivalence. This argument also shows that
there is a value of u such that 22 + 2 + u = 0 has no solutions, so 2% + z +
is an irreducible polynomial. Moreover, the two types of quadratic forms are
represented by Q(x,y) = xy and Q(z,y) = x> + xy + py? where 22 + z + p is
irreducible.

The first of these is called of plus type, as there are isotropic vectors, while
the second is of minus type as there are not. More generally, in 2m dimensions,
there is one form (called the plus type) which has isotropic m-spaces, and another
(called the minus type) which does not.

3.1.8 Witt’s Lemma

A key result which plays an important role in the study of the geometry of
these spaces, and hence in the study of the subgroups of the classical groups, is
Witt’s Lemma (also known as Witt’s Theorem). Essentially this says that the
isometry groups of nonsingular forms are transitive on subspaces of any given
isometry type. We prove here the cases where the forms are alternating bilinear,
or conjugate-symmetric sesquilinear, or symmetric bilinear in odd characteristic.
More formally:

THEOREM 1. If (V) f) and (W, g) are isometric spaces, with f and g non-singular,
and either alternating bilinear, or conjugate-symmetric sesquilinear, or symmet-
ric bilinear in odd characteristic, then any isometry a between subspaces X of V
andY of W extends to an isometry of V with W.

Proof. Suppose for a contradiction that Witt’s Lemma is false, and pick a coun-
terexample such that dim V' is minimal, and X is as large as possible in V. We
divide into two cases, according as X contains a non-trivial non-singular subspace
U, or X is totally isotropic. In the first case V = U @ U*, and the classifica-
tion of non-singular forms in the previous sections shows that U+ and (U®)* are
isometric. Therefore, by induction, the restriction of & to U+ N X extends to
an isometry from U~ to (U%)+. Combining this with o on U gives the required
isometry between V' and W, extending a.

In the second case, pick 0 # x € X and a complement Z to (x) in X, so
that X = (z) ® Z, and pick x; € Z+ \ X*. Scaling z; if necessary, we may
assume f(z,z7) = 1, and then replacing z; by x; + Az for suitable A we may
assume 1z is isotropic. Similarly, Y = (x{) @ Z and we pick an isotropic vector
y1 € (Z%)\ Y+ with g(y,y;) = 1. Then we extend « to an isometry from (X, z1)
to (Y, y1) by mapping z; to y;. By induction, this map extends to an isometry
from V to W, as required. O
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Witt’s Lemma for orthogonal groups in characteristic 2 states that if (V, Q)
and (W, R) are isometric spaces, where () and R are non-degenerate quadratic
forms, then any isometry between subspaces X of V' and Y of W extends to an
isometry of V' and W. We leave the proof as an exercise.

3.2 Symplectic groups

The symplectic group Sp,,,(q) is the isometry group of a non-singular alternating
bilinear form f on V' = F2™ ie. the subgroup of GLay(¢) consisting of those
elements g such that f(u9,v9) = f(u,v) for all u,v € V. Recall from Section 3.1.4
that V has a symplectic basis {e1,...,€m, f1, ..., fm} such that all basis vectors
are perpendicular to each other except that f(e;, f;) = 1. To calculate the order
of the symplectic group, we simply need to count the number of ways of choosing
an (ordered) symplectic basis ey, ..., f,. Now e; can be any non-zero vector, so
can be chosen in ¢*™ — 1 ways. Then e; has dimension 2m — 1, so contains ¢?™~!
vectors. Thus there are ¢*™ — ¢*™ 1 = (¢ — 1)¢®™! vectors v with f(u,v) # 0.
These come in sets of ¢ — 1 scalar multiples, one with each possible value of
f(u,v), so there are just ¢*"~! choices for f;. Hence by induction the order of

Sp2m (q) is

m m

SPom(@) = [ =1 =™ [J(¢* - 1) (3.8)

i=1 i=1

3.2.1 Symplectic transvections

Notice that Sp,(¢) = SLa(q). For if we write elements of Sp,(q) with respect to a

") € Spa(q) if and only if f((a,b). (c.d)) = 1, that is

ad—be = 1. In particular, every element of Sp,(¢q) has determinant 1, and Sp,(q) is

generated by transvections, which are maps of the form T,(\) : z +— z+\f(x,v)v.
More generally, a symplectic transvection is a linear map

symplectic basis, then

T,(A) : zw—ax+ \f(z,v)v, (3.9)

where f is a fixed alternating bilinear form on the space V', and v # 0 and A\ # 0.
We aim to show that the group S generated by symplectic transvections is the
whole of Sp,,,(¢). As well as feeding in to Iwasawa’s Lemma, to prove simplicity
of PSp,,,(q), this implies that every element of Sp,,,(¢) has determinant 1, so
that Sp,,,(¢) < SLan(g). Our method is to prove that S acts transitively on
the set of ordered symplectic bases. Since the stabilizer of an ordered basis is
(obviously!) trivial, it will then follow immediately that S = Sp,,,(q).

So let v, w be two distinct non-zero vectors. If f(v,w) = A # 0, then
Ty—w(A™Y) s v +— w. Otherwise, pick z such that f(v,z) # 0 # f(w,x): such an
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x exists because if not then by non-singularity there exist y and z with f(v,y) =
f(w,z) =0and f(v,z) # 0and f(w,y) # 0, whence a suitable linear combination
of y and z has the required properties. Now we can map v to x and x to w, and
deduce that S is transitive on non-zero vectors.

Similarly, suppose u is a fixed vector, and f(u,v) = f(u,w) = 1. If f(v,w) =
A # 0, then T,,_,(A™!) : v — w and fixes u. Otherwise, let © = u + v, so that
f(u,z) = 1 and f(v,z) = f(w,z) = —1, so we can map v to x and x to w
while fixing u. Thus by induction S'is transitive on ordered symplectic bases, as
required.

Observe that the only scalars in Sp,,,(q) are £1, since f(Au, \v) = A2 f(u,v),
which equals f(u,v) only if A = £1. The group PSp,,,(¢) is defined to be the
quotient of Sp,,,(¢) by the subgroup (of order 1 or 2) of scalar matrices. It is
usually simple, as we are about to see.

3.2.2 Simplicity of PSp,,,(q)

We usually disregard the case m = 1, because Spy(q) = SLa(q), as we saw
in Section 3.2.1. The only other non-simple case is Sp,(2) = Sg. To see this
isomorphism, let Sg act on the 6-space FS over Fy by permuting the coordinates.
The subspace U = ((1,1,1,1,1,1)) of dimension 1 is fixed by Sg, as is the subspace
W of dimension 5 consisting of vectors x = (x1,...,xg) satisfying Z?:l x; = 0.
There is a natural alternating bilinear form on W given by f(z,y) = Z?:l Tilis
under which U is the radical of f.

Since U < W we obtain (as in Section 3.1.7) an induced alternating bilinear
form on the 4-space W/U and an induced action of Sg on W/U preserving this
form. Therefore there is a homomorphism from Sg to Sp,(2), and the image is
certainly bigger than Cs, so the kernel of the homomorphism is trivial, and since
the two groups have the same order they are isomorphic.

To prove simplicity of the symplectic groups PSp,,,(q), for all m > 2, or
m = 2 and ¢ > 2, we just need to verify the hypotheses of Iwasawa’s Lemma.
We have already seen in Section 3.2.1 that the group Sp,,,(q) is generated by its
symplectic tranvections. In the action of Sp,,,(¢) on 1-dimensional subspaces, we
proved that the stabilizer of a point is transitive on the ¢>™~! points which are
not orthogonal to the fixed point. It is also transitive on the (¢*"'—1)/(¢g—1)—1
points which are orthogonal but not equal to it: for if v and w are both orthogonal
to u, then either f(v,w) = X # 0, in which case T, _,,(A™") : v — w while fixing
u, or there exists a vector x with f(v,z) # 0 # f(w,z) and we can map v via x
to w while fixing u. Therefore the action is primitive, since the only possibilities
for block sizes are now 1+ ¢*™~ 1 and 1 + (¢! —1)/(q — 1), neither of which
divides number of points, (¢*™ —1)/(q¢ — 1).

It is obvious that the symplectic transvections T, (\) for a fixed vector v form
a normal abelian subgroup of stabiliser of the point (v), so the only remaining
thing to check is that Sp,,,(q) is perfect. It is enough to check that the symplectic
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transvections are commutators. If ¢ > 3, this is already true in Sp,(q) = SLa(q),
so we only need to check the two cases Sp,(3) and Spg(2). This is left as an
exercise.

3.2.3 Subgroups of symplectic groups

To construct groups B, N, T, U and W by analogy with the general linear
groups, we take B to be the stabilizer of a maximal flag of the shape 0 < W, <
Wy < oo < Wy = Wi)t < (W)t < - < (W)t < V. We may as well
take Wy = (eq, ..., ex), for simplicity, and order the basis eq,...,em, fin, -, f1
to show the structure of the flag. For all < j < m and all A € F,, define the
maps ;;(A) and y;;(\) to fix all basis vectors e, and fj except

zi;( A fi fi+ S
ej > e — \e;
and y;;(A) : fi— fi+ Xe;

We then see that the unitriangular subgroup U is generated by the maps x;;(\)
and y;;(\), together with the symplectic transvections T¢,(—\) : fi — fi + Ae;, so
that U has order me and is a Sylow p-subgroup.

The torus T is generated by diagonal elements f; — Af;,e; — A7 le;, so is a
direct product of m cyclic groups of order ¢ — 1, and B = UT as before. The
normalizer N of this torus is generated modulo the torus by permutations of the
subscripts 1, ..., m, together with the element e; — f; — —eq, and therefore the
Weyl group N/T is isomorphic to the wreath product CyS,,. As before, N is
represented by monomial matrices, and the Weyl group is the quotient group of
‘allowable’ permutations of the coordinate 1-spaces (e;) and (f;).

3.2.4 Subspaces of a symplectic space

Since the stabilizer of any subspace W of V must stabilize W+ and W N W+, we
are generally only interested in the cases where W N W+ =0or WNW+ =W,
so either W is a non-singular subspace, or W is totally isotropic.

The stabilizer of a non-singular subspace of dimension 2k preserves the de-
composition V = W & W, so is just Spy,(q) X Sps,,_ox(q). This is usually a
maximal subgroup of Sp,,,(¢), unless m = 2k, in which case there is an element
exchanging W and W+, and extending the group to Spy(q) 1 Ss.

More generally, if m = kl there is a subgroup Sp,,(¢) 1.S; preserving a decom-
position of V' as a direct sum of mutually prependicular non-singular spaces of
dimension 2k.

The stabilizer of an isotropic subspace W of dimension k preserves the flag
0 < W < Wt < V, and there is an induced non-singular form on W+ /W.
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By Witt’s lemma, we may choose our symplectic basis so that W is spanned
by e1,...,er, and W is spanned by e, ..., €m; fiti,-- -5 fm. We therefore see
a basis of W+ /W consisting of the images of exi1, ..., €m, frtls -, fm, and a
quotient group Sps,,_ox(q) acting on W= /W. We also see a group GLy(q) acting
on W (and inducing the dual action on V/W=), and a p-group of lower triangular
matrices generated by elements

zii(N)  fi fiE S

ej > e — \e;

and y;;(A) : fi—= fi+ Xej
fi = fi + e (3.11)

for all : < k < j < m. It can be shown that these elements generate a non-
abelian group @, such that Z(Q) = ®(Q) = Q' is an elementary abelian group
of order ¢***1/2 and Q/Q’ is an elementary abelian group of order ¢?*(m=%),
(Here ®(G) denotes the Frattini subgroup, i.e. the intersection of all the max-
imal subgroups of G. A p-group with the property that the centre, derived
group and Frattini subgroup are equal is called a special group. We shall have
more to say about them later.) The full stabilizer is therefore a group of shape
qF kD)2 g2k(m=k).(Sp, - ,.(q) x GLi(q)). In the case when k = m, the corre-
sponding group has shape ¢™(™*1/2:GL,,(¢). These stabilizers are the mazimal
parabolic subgroups.

Given a maximal isotropic subspace W = W+, of dimension m, we can choose
a complement U which is also totally isotropic. For example, if W = (e1,...,en)
we may take U = (f1,..., fm). The stabilizer of the direct sum decomposition
V =W aU is GL,,(q).2, in which the elements swapping W and U induce the

duality automorphism on GL,,(q).

3.3 Unitary groups

We obtain the unitary groups in much the same way, starting from a non-singular
conjugate-symmetric sesquilinear form instead of a non-singular alternating bilin-
ear form. The unitary group U, (q) (sometimes called the general unitary group
and, as here, written GU,(q), to distinguish it from the special unitary group
defined below) is defined as the isometry group of a non-singular conjugate-
symmetric sesquilinear form f, i.e. the subgroup of GL,(¢?) consisting of the
elements g which preserve the form, in the sense that f(u?,v?) = f(u,v) for all
u,v € V. To calculate its order, we need to count the number of vectors of norm
1, and use induction. Let z, denote the number of vectors of norm 0, and vy,
denote the number of vectors of norm 1. Then the total number of vectors in
the space is ¢*" = 1 + z, + (¢ — 1)y,, and we calculate 2,41 = 2, + (¢> — 1)y, so
Zny1 = (¢* —1)(¢+1) — qz,. Since zy = z; = 0 we may solve the recurrence rela-
tion to get 2, = (¢" — (=1)")(¢" ' +(—1)"), and therefore y,, = ¢" ! (¢" — (—1)").
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Now an arbitrary element of GU,,(¢) may be specified by picking an orthonor-
mal basis one vector at a time, so the order of GU,(q) is

n

IGU.(g)] = []a (@ - (-1))

i=1
n

— 2T - (-1)). (3.12)

=1

Writing elements M of GU, (¢q) with respect to an orthononormal basis, we
have that the rows of M are orthonormal vectors, which can be expressed by the
equation MM' =1, In particular if det(M) = X then AX = A\%*! = 1. Now as
A is in a cyclic group of order ¢> — 1 = (g + 1)(q — 1) this equation says that A
is in the unique subgroup of order ¢ + 1. In particular, GU,(¢) has a subgroup
SU,,(¢) of index ¢+ 1 consisting of all the elements with determinant 1.

Similarly, the scalars in GU,,(g) are those A for which AX = A9+ = 1. There
are exactly ¢+ 1 such A in F2. In particular, GU,(¢) has a central subgroup Z of
order ¢ + 1. The quotient PGU,,(¢) = GU,(q)/Z is called the projective unitary
group. .

The scalars of determinant 1 are those A for which both A" = 1 and \™! = 1.
The number of such scalars is precisely the greatest common divisor d = (n, g+1).
The quotient PSU,,(q) of SU,(q) by the scalars it contains is usually a simple
group. The exceptions are those explained by the isomorphisms PSUy(q) =
PSLs(q), together with the group PSU3(2), which is a soluble group of order 72.

To see that SUs(q) = SLa(q) we take the natural module for SUs(g) over
F2, and find a 2-dimensional F,-subspace which is invariant under the action
of the group. We first pick an element p € Fp with pg = p't = -1 € F,
and then take all vectors of the form (), uA) where A € F2. This is clearly a
2-dimensional [ -subspace, and we can check it is invariant under an arbitrary
element ( aB g) of SUs(q). [For this matrix maps (A, zA) to (X — B, B+
pa) and p(al — pBA) = paX — piBA = B + pa since pfi = —1.] The kernel
of this action is obviously trivial, and |[SUs(q)| = |SLa(q)|, so the groups are
isomorphic.

3.4 Orthogonal groups in odd characteristic

Recall from Section 3.1.6 that, up to equivalence, there are exactly two non-
singular symmetric bilinear forms f on a vector space V over a finite field F
of odd order. The orthogonal group O(V, f) is defined as the group of linear
maps g satisfying f(u?,v9) = f(u,v) for all u,v € V. If n is odd, and o € F
is a non-square, then f and «f are in different classes, but the groups O(V, f)
and O(V, af) are obviously equal, so there is only one orthogonal group (up to
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isomorphism) in this case, and we write it as O,(¢) without ambiguity. If n is
even, however, we have two thoroughly different orthogonal groups (they do not
even have the same order, as we shall see).

For example, if n = 2, the two forms may be taken as f; and fy given with
respect to an orthogonal basis {z,y} by fi(z,z) = fi(y,y) = 1, and fo(z,z) =
1L, fo(y,y) = a &€ F2% Now, if —1 is a square in F, say —1 = 4%, then fi(z +
iy, +iy) = 0, while fo(z + Ay, x + \y) = 1+ A\%a, which cannot be 0 (otherwise
a = —A~2, which is a contradiction). On the other hand, if —1 is not a square,
then —a = A72 for some \, so fo(x + Ay, z + A\y) = 0, while fi(x + Ay, z + \y)
can never be 0. Thus there is a non-zero isotropic vector for f; if and only
if ¢ = 1 mod 4, and there is a non-zero isotropic vector for fy if and only if
g = 3 mod 4. We prefer the geometric distinction to the number-theoretic one,
so we say the form is of plus type if there is an isotropic vector, and of minus type
if there is not. Thus f; is of plus type and f5 is of minus type if ¢ = 1 mod 4,
and vice versa if ¢ = 3 mod 4.

More generally, a form in 2m dimensions is of plus type if there is a totally
isotropic subspace of dimension m, and of minus type otherwise. The form which
has an orthonormal basis is of minus type just if ¢ = 3 mod 4 and m is odd. If f
is of plus type we write OF, (q) for O(V, f), while if f is of minus type we write
05,,(¢). The maximal dimension of a totally isotropic subspace is often called
the Witt index of the form. Thus the forms of plus type have Witt index m while
those of minus type have Witt index m — 1.

3.4.1 Determinants and spinor norms

Now in any of these orthogonal groups G the elements have determinant =+1.
For if M is the matrix of the form, and g € G, then gMg? = M so det(g) =
det(M(g")'M~1) = (det g) L.

The elements of determinant 1 form a subgroup of index 2, called the special
orthogonal group SO, (q). The only scalars in the orthogonal groups are =+1,
and —1 is in the special orthogonal group if and only if the dimension is even.
The corresponding quotient groups are the projective orthogonal groups PO,,(q)
and projective special orthogonal groups PSO,(q). In contrast to the other three
families of classical groups, however, these groups are not in general simple. There
is in most cases (the exceptions are the groups PSO3,, (¢) where ¢ +¢ = 0 mod 4,
as we show at the end of this section) a further subgroup of index 2, defined as
the kernel of another invariant, called the spinor norm.

This invariant works in much the same way as the concept of even and odd
permutations. We first write our arbitrary element of the special orthogonal group
as a product of reflections. Since a reflection may be defined by the property that
it negates a certain 1-space (v) and fixes all vectors orthogonal to v, it may be
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defined by the formula

fa0),
f(v,0)

Since reflections have determinant —1, this product contains an even number of
reflections. Now there are two types of reflections: those which negate a vector
of norm 1, and those which negate a vector of norm a non-square . So there is
a subgroup of the special orthogonal group (of index 1 or 2) consisting of those
elements which are a product of a set of reflections, consisting of an even number
of each type (these are called the elements of spinor norm 1). To show that this
subgroup has index 2, it suffices to show that there is an element which cannot
be written in this way (these are called the elements of spinor norm —1), or to
show that the identity element cannot be written as such a product, with an odd
number of reflections of each type. This is surprisingly difficult to prove..

The kernel of the spinor norm map is denoted Q(V, f) or (¢) as appropriate,
and the quotients Q(V, f)/{%1} by PQ(V, f) etc. The groups PQE(q) for ¢ odd
are always simple if n > 5.

Note that in even dimensions —1 has spinor norm 1 if and only if there is an
orthonormal basis, that is if and only if ¢ = € mod 4, where the orthogonal group
is 05,,(¢). In particular, if this condition does not hold then SOS, . (¢) = 2xQ5, (q)
and PSO3,,(¢q) = PQ5,,(q).

Ty, : T T —2

(3.13)

3.4.2 Orders of orthogonal groups

To calculate the orders of these groups we first prove (by induction) a formula
for the number of isotropic vectors in an orthogonal space. Then we show that
the stabilizer of an isotropic vector in O (q) is ¢"2:0%_,(q). Thus we obtain (by
induction again) a formula for the order of the orthogonal group.

The inductive argument does not depend on the characteristic of the field,
though the base case is slightly different in characteristic 2. For the base case
we need to know the orders of the 1- and 2-dimensional orthogonal groups. Now
SO;(q) is the trivial group for all ¢. For ¢ odd and n = 2 we can choose an
orthogonal basis such that the quadratic form is 22 + \y?, with either A = 1 or \
a fixed non-square. For the + type, there are just two solutions of (z/y)?>+ X = 0,
so (up to multiplication by scalars) just two isotropic vectors. In both + type and
— type the stabilizer in O5(g) of a non-isotropic vector v has order 2 (consisting
of the reflection in v1), and therefore (since by Witt’s Lemma the orthogonal
group acts transitively on the vectors of any given norm) the number of vectors
of norm 1 is equal to the number of vectors of norm « (a fixed non-square). In
particular, there are up to sign just %(q + 1) vectors of norm 1 in O; (¢), and
1(g — 1) in O3 (¢). Therefore |05 (q)| = 2(¢ — 1) and |05 (q)] = 2(¢ + 1). In
fact these are dihedral groups, since they may be generated by two reflections,
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in vectors with suitable norms and inner product. The special orthogonal groups
SO5(q) are cyclic of order ¢ — ¢, and Q5(q) is cyclic of order (¢ — €)/2.

Now we are ready for the first induction, which is really three separate induc-
tions. Let z,, denote the number of (non-zero) isotropic vectors in an orthogonal
space of dimension 2m or 2m+1 . Our inductive hypothesis is that z,, = ¢*™ —1
in dimension 2m + 1, 2z, = (¢™ — 1)(¢™ ' + 1) for a space of plus type in 2m
dimensions, and z,, = (¢™ + 1)(¢™ ! — 1) for a space of minus type in 2m di-
mensions. Note that these formulae give zy = 0 for a 1-space, z; = 2(¢ — 1) for a
plus-type 2-space, and z; = 0 for a minus-type 2-space, so the induction starts.

For the inductive step, we split the (n+2)-space V as V = U@ W, where U is
a 2-space of plus type, and W is an orthogonal space of dimension n, of the same
type as the original space V. Now every isotropic vector is of the form u + w,
where u € U and w € W. Either u and w both have norm 0 (but are not both
the zero vector), or u has norm A # 0 and w has norm —\. Since U contains
2q — 1 vectors of norm 0 (including the zero vector), and ¢ — 1 vectors of every
non-zero norm, we count z,.1 = (2¢ —1)(1+z,)+ (¢—1)(¢" — 1 — z,,) — 1. This
simplifies to z,1+1 = qzm + (¢ — 1)(¢" + 1), and it is a simple matter to complete
the proof by induction in each of the three cases.

Next we determine the stabilizer of an isotropic vector vy. Certainly this is
contained in the stabilizer of the flag 0 < (vy) < vy < V. Fixing v, implies that
the quotient V/vg is also fixed. The possible actions on vy /{vg) form a group
SO,_2(q). By choosing a basis {vg, w1, ..., w,_2,v1} such that w; L vy, we see
that the maps f; defined by f; : w; — w; + vo,v1 — v1 — w;, w; — w; generate
the kernel of this action. Hence the stabilizer of vy has order ¢"2|SO,,_2(q)|.

Moreover, we can choose v orthogonal to wy, ..., w,_s, so that V is the orthog-
onal direct sum of (vg,v;) and (wy,...,w,_2). Therefore if n is even then the
orthogonal space (wy,...,w, o) has the same type (+ or —) as V.

Finally, since SO4(q) is trivial we have
1SO2m+1(a)| = [[ (¢ = D)™ ") = ¢ (¢ = D(g" = 1)+ (¢"™ — 1).
k=1

Similarly, since SO (¢) has order ¢ — 1 we have

s

S03,.(@)| = (=D ][((¢" =D +1)¢*?)

(R (g = 1) (@ D — 1), (314)

and also SO; (¢q) has order ¢+ 1 so

SO5, ()] = ¢™ ™ (@® = 1)(¢* = 1) -+ (@™ = 1)(¢™ + 1).
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3.5 Orthogonal groups in characteristic 2

In characteristic 2, everything is different. The quadratic form has a different
definition, the canonical forms are different, there are no reflections, the deter-
minant tells us nothing, and there is no spinor norm. Nevertheless, the formulae
for the group orders still hold, and (in even dimensions) there is still a mysteri-
ous subgroup of index 2, although to define it we need a new invariant, which is
called the quasideterminant or pseudodeterminant (it is analogous to the deter-
minant, rather than the spinor norm). Indeed, the structure of the orthogonal
groups in characteristic 2 is simpler than in odd characteristic, since the deter-
minants are all 1 and there are no non-trivial scalars in the orthogonal group (for
if QW) = Q(v) # 0 then \> =1 so A = 1). Recall from Section 3.1.7 that in
characteristic 2 we have Og,,41(¢) = Sps,,(¢) and therefore we do not need to
consider the odd-dimensional case.

3.5.1 The quasideterminant and the structure of the groups

The elements which in characteristic 2 play the role played by the reflections in
odd characteristic are the orthogonal transvections (some people even call them
reflections). For each vector v of norm 1 define the corresponding orthogonal
transvection t, by ¢, : w — w + f(w,v)v. Clearly this is a linear map, and it
preserves the quadratic form since

Q(w + f(w,v)v) = Q(w) + f(w,v)* + f(w,v)*Q(v) = Q(w).

Now the orthogonal group can be generated by these transvections (we leave
the proof as an exercise) and the quasideterminant of an element x is defined to be
1 or —1 according as x can be written as a product of an even or an odd number
of orthogonal transvections. In order to prove that this is well-defined we show
that the transvections act as odd permutationsof the set of maximal isotropic
subspaces (in the case O3 (g)). T am grateful to Bill Kantor for supplying this
elegant argument.

First consider the case O5 (q). Here we have just two isotropic 1-spaces, since
if x is isotropic and y is scaled so that f(z,y) = 1, then Q(\x +y) = Q(y) + A
so is zero for exactly one value of A\. Choosing y to be isotropic, then, ¢,, swaps
() and (y), as does every other orthogonal transvection (they are all of the form
tx-l—)\y)-

More generally, we need to look at maximal isotropic subspaces in the 2m-
space for OF (q). Suppose we have a maximal isotropic subspace U, and a vector
v of norm 1. Note that v+ has codimension 1, and does not contain U since
v & U = Ut. Therefore v N U has codimension 1 in U, and we may choose a
basis uy, . .., Uy, for U so that uy,...,u,_1 span v- N U and f(u,,,v) = 1. Then
t, fixes ui, ..., Up_1 and maps u,, to u,, +v &€ U, so t, does not fix U. Hence
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the transvections act fixed-point-freely on the set of totally isotropic subspaces
of dimension m.

Now we count the number of such subspaces. Just as in the odd characteristic
case, we see that the number of isotropic vectors is (¢™ — 1)(¢™ * + 1). Since
03,.(¢) acts transitively on the isotropic vectors (this follows from our classifica-
tion of the quadratic forms, as the form looks the same whichever isotropic vector
we take as e1), we may choose the first isotropic vector to be e;. Then we see that
the stabilizer of e; has the shape ¢*™"2:04,, 2(q). By induction, the number of
m-dimensional totally isotropic subspaces is [/~ (¢ + 1) which is twice an odd
number. Therefore ¢, acts as an odd permutation on the set of m-dimensional
totally isotropic subspaces. We can therefore define the quasideterminant of an
element of O3 (q) to be the sign of the permutation describing its action on this
set. The kernel of the quasideterminant map is the subgroup € (g) of index
2 in OF (q). (This subgroup is sometimes denoted SO3 (q), but this can be
confusing.)

For O,,,(q) this argument does not go through directly, since the maximal
isotropic subspaces have dimension m — 1 and it is possible that U < v*. How-
ever, if we extend the field to F,2, we obtain maximal isotropic subspaces of
dimension m, and can apply the preceding argument. (Incidentally, this shows
that O,,,(¢) < O3,,(¢%).) In fact it is possible to extend this argument to show
that the transvections in O3 (q) interchange two families of maximal isotropic
subspaces: two such subspaces U and W are in the same family if and only if
U N W has even codimension in each of them. Another useful fact is that an
element x in O3, (¢) is in 5, if and only if the rank of 1 + z (as a 2m x 2m
matrix) is even.

3.6 Maximal subgroups of classical groups

In order to understand how the nine types of subgroups of the linear groups
behave in the presence of forms of various types, we need to look at the behaviour
of the forms under the operations of tensor products, and restriction and extension
of fields. (In Section 3.2.4 we looked at the subspaces in the case of the symplectic
groups, and saw that we can restrict attention to non-singular subspaces and
totally isotropic subspaces. It is clear that the same applies in the case of unitary
and orthogonal groups.) Without going into too much detail at this stage, we
can incorporate the forms into the Aschbacher-Dynkin theorem as follows. In
this version, the natural classical groups are denoted G, and the corresponding

projective groups by G. Thus for example we might have G = Spsy,(q) and

THEOREM 2. If Gq is a finite simple classical group, Go < G < Aut(G), and G
does not involve the triality automorphism of PQg (q) or the graph automorphism
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of PSpy(2%), and M is a mazimal subgroup of G, not containing Gy, then either
M stabilizes one of the following structures on the natural module for G:

~

8.

a non-singular subspace;

a totally isotropic subspace;

a partition into isometric non-singular subspaces;
a partition into two totally isotropic subspaces;

a partition into non-singular subspaces defined over an extension field of
prime degree;

a decomposition as a tensor product of two non-isometric spaces;
a decomposition as a tensor product of isometric spaces;

a proper subfield, of prime degree;

or one of the following holds:

9.

10.

11.

M is a classical group of the same dimension and with the same field of
definition as G;

M is an automorphism group of a simple group S, the representation ofg
being irreducible and not writable over any proper subfield, where S is the
preimage of S in G;

M is an automorphism group of an extraspecial group r'+t?™ with r dividing

d, where d is the order of the generic part of the Schur multiplier of Gy;
or of Cy 0 212™ when the generic part of the Schur multiplier has Cy as a
quotient.



