
Chapter 2

Linear groups

2.1 Finite fields

All the classical groups are defined in terms of groups of matrices over fields,
so before we can define the finite classical groups we need to know what the
finite fields are. A field is a set F with operations of addition, subtraction,
multiplication and division satisfying the usual rules. That is, F has an element
0 such that (F, +,−, 0) is an abelian group, and F \ {0} contains an element 1
such that (F \ {0}, ., /, 1) is an abelian group, and x(y + z) = xy + xz. It is an
easy exercise to show that the subfield F0 generated by the element 1 in a finite
field F is isomorphic to the integers modulo p, for some p, and therefore p is
prime (called the characteristic of the field). Moreover, F is a vector space over
F0, as the vector space axioms are special cases of the field axioms. As every
finite-dimensional vector space has a basis of n vectors, v1, . . . , vn, say, and every
vector has a unique expression

∑n
i=1 aivi with ai ∈ F0, it follows that the field F

has pn elements.

Conversely, for every prime p and every positive integer d there is a field of
order pd, which is unique up to isomorphism. [See below.]

The most important fact about finite fields which we need is that the multi-
plicative group of all non-zero elements is cyclic. For the polynomial ring F [x]
over any field F is a Euclidean domain and therefore a unique factorization do-
main. In particular a polynomial of degree n has at most n roots. If the multi-
plicative group F× of a field of order q has exponent e strictly less than q − 1,
then xe − 1 has q − 1 roots, which is a contradiction. Therefore the exponent
of F× is q − 1, so F× contains elements of order q − 1, since it is abelian, and
therefore it is cyclic.

Note also that all elements x of F satisfy xq = x, and so the polynomial xq−x
factorizes in F [x] as

∏
α∈F (x−α). Moreover, the number of solutions to xn = 1 in

F is the greatest common divisor (n, q− 1) of n and q− 1. A useful consequence
of this for the field of order q2 is that for every µ ∈ Fq there are exactly q + 1
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elements λ ∈ Fq2 satisfying λλ = λ1+q = µ, where λ = λq.
We now show that fields of order pd exist and are unique up to isomorphism.

Observe that if f is an irreducible polynomial of degree d over the field Fp
∼= Z/pZ

of order p, then Fp[x]/(f) is a field of order pd. Conversely, if F is a field of order
pd, let x be a generator for F×, so that the minimum polynomial for x over Fp

is an irreducible polynomial f of degree d, and F ∼= Fp[x]/(f). One way to see
that such a field exists is to observe that any field of order q = pd is a splitting
field for the polynomial xq − x. Splitting fields always exist, by adjoining roots
one at a time until the polynomial factorises into linear factors. But then the set
of roots of xq − x is closed under addition and multiplication, since if xq = x and
yq = y then (xy)q = xqyq = xy and (x + y)q = xq + yq = x + y. Hence this set of
roots is a subfield of order q, as required.

To show that the field of order q = pd does not depend on the particular
irreducible polynomial we choose, suppose that f1 and f2 are two such, and
Fi = Fp[x]/(fi). Since f2(t) divides tq − t, and tq − t factorizes into linear factors
over F1, it follows that F1 contains an element y with f2(y) = 0. Hence the map
x 7→ y extends to a field homomorphism from F2 to a subfield of F1. Moreover,
the kernel is trivial, since fields have no quotient fields, so this map is a field
isomorphism, since the fields are finite.

If also f1 = f2 then any automorphism of F = F1 = F2 has this form, so is
defined by the image of x, which must be one of the d roots of f1. Hence the
group of automorphisms of F has order d. On the other hand, the map y 7→ yp

(for all y ∈ F ) is an automorphism of F , and has order d. Hence Aut(F ) is cyclic
of order d.

2.2 General linear groups

Let V be a vector space of dimension n over the finite field Fq of order q. The
general linear group GL(V ) is the set of invertible linear maps from V to itself.
Without much loss of generality, we may take V as the vector space Fn

q of n-
tuples of elements of Fq, and identify GL(V ) with the group (denoted GLn(q)) of
invertible n× n matrices over Fq.

There are certain obvious normal subgroups of G = GLn(q). For example, the
centre, Z say, consists of all the scalar matrices λIn, where 0 6= λ ∈ Fq and In is
the n×n identity matrix. Thus Z is a cyclic normal subgroup of order q−1. The
quotient G/Z is called the projective general linear group, and denoted PGLn(q).

Also, since det(AB) = det(A) det(B), the determinant map is a group homo-
morphism from GLn(q) onto the multiplicative group of the field, so its kernel
is a normal subgroup of index q − 1. This kernel is called the special linear
group SLn(q), and consists of all the matrices of determinant 1. Similarly, we can
quotient SLn(q) by the subgroup of scalars it contains, to obtain the projective
special linear group PSLn(q), sometimes abbreviated to Ln(q). [The alert reader
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will have noticed that as defined here, PSLn(q) is not a necessarily a subgroup
of PGLn(q). However, there is an obvious isomorphism between PSLn(q) and a
normal subgroup of PGLn(q), so we shall ignore the subtle distinction.]

2.3 The orders of the linear groups

Now an invertible matrix takes a basis to a basis, and is determined by the image
of an ordered basis. The only condition on this image is that the ith vector is
linearly independent of the previous ones—but these span a space of dimension
i− 1, which has qi−1 vectors in it, so the order of GLn(q) is

|GLn(q)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)
= qn(n−1)/2(q − 1)(q2 − 1) · · · (qn − 1). (2.1)

The orders of SLn(q) and PGLn(q) are equal, being |GLn(q)| divided by q −
1. To obtain the order of PSLn(q), we need to know which scalars λIn have
determinant 1. But det(λIn) = λn, and the number of solutions to xn = 1 in the
field Fq is the greatest common divisor (n, q − 1) of n and q − 1. Thus the order
of PSLn(q) is

|PSLn(q)| =
1

(n, q − 1)
qn(n−1)/2

n∏
i=2

(qi − 1). (2.2)

The groups PSLn(q) are all simple except for the small cases PSL2(2) ∼= S3

and PSL2(3) ∼= A4. We shall prove the simplicity of these groups below. First
we note that these exceptions are genuine. For PSL2(2) ∼= GL2(2), and GL2(2)
permutes the three non-zero vectors of F2

2; moreover, any two of these vectors
form a basis for the space, so the action of GL2(2) is 2-transitive, and faithful, so
GL2(2) ∼= S3.

Similarly, GL2(3) permutes the four 1-dimensional subspaces of F2
3, spanned

by the vectors (1, 0), (0, 1), (1, 1) and (1,−1). The action is 2-transitive since
the group acts transitively on ordered bases. Moreover, fixing the standard basis,

up to scalars, the matrix

(
1 0
0 −1

)
interchanges the other two 1-spaces, so the

action of GL2(3) is S4. The kernel of the action is just the group of scalar matrices,
and the matrices of determinant 1 act as even permutations, so PSL2(3) ∼= A4.

We use the term linear group loosely to refer to any of the groups GLn(q),
SLn(q), PGLn(q) or PSLn(q).

2.4 Simplicity of PSLn(q)

The key to proving simplicity of the finite classical groups is Iwasawa’s Lemma:
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Theorem 1. If G is a finite perfect group, acting faithfully and primitively on
a set Ω, such that the point stabilizer H has a normal abelian subgroup A whose
conjugates generate G, then G is simple.

Proof. For otherwise, there is a normal subgroup K with 1 < K < G, which does
not fix all the points of Ω, so we may choose a point stabilizer H with K 6≤ H,
and therefore G = HK since H is a maximal subgroup of G. So any g ∈ G can
be written g = hk with h ∈ H and k ∈ K, and therefore every conjugate of A
is of the form g−1Ag = k−1h−1Ahk = k−1Ak ≤ AK. Therefore G = AK and
G/K = AK/K ∼= A/A ∩ K is abelian, contradicting the assumption that G is
perfect. �

For n ≥ 2 we let SLn(q) act on the set Ω of 1-dimensional subspaces of Fn
q ,

so that the kernel of the action is just the set of scalar matrices, and we obtain
an action of PSLn(q) on Ω. Moreover, this action is 2-transitive, and therefore
primitive.

To study the stabiliser of a point, we might as well take this point to be
the 1-space 〈(1, 0, . . . , 0)〉. The stabiliser then consists of all matrices whose first
row is (λ, 0, . . . , 0). It is easy to check that the subgroup of matrices of the

shape

(
1 0n−1

vn−1 In−1

)
, where vn−1 is an arbitrary column vector of length n− 1,

is a normal abelian subgroup A. Moreover, all non-trivial elements of A are
transvections, that is, matrices (or linear maps) t such that t − In has rank 1
and (t − In)2 = 0. By suitable choice of basis (but remember that the base
change matrix must have determinant 1) it is easy to see that every transvection
is contained in some conjugate of A.

We have two more things to verify: first, that SLn(q) is generated by transvec-
tions, and second, that SLn(q) is perfect, except for the cases SL2(2) and SL2(3).
The first fact is a restatement of the elementary result that every matrix of deter-
minant 1 can be reduced to the identity matrix by a finite sequence of elementary
row operations of the form ri 7→ ri +λrj. To prove the second it suffices to verify
that every transvection is a commutator of elements of SLn(q). An easy calcula-
tion shows that the commutator 1 0 0

1 1 0
0 0 1

 ,

 1 0 0
0 1 0
0 x 1

 =

 1 0 0
0 1 0
−x 0 1

 , (2.3)

so by suitable choice of basis we see that if n > 2 then every transvection is a
commutator in SLn(q). If n = 2 and q > 3, then Fq contains a non-zero element
x with x2 6= 1, and then the commutator[(

1 0
y 1

)
,

(
x 0
0 x−1

)]
=

(
1 0

y(x2 − 1) 1

)
, (2.4)
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which is an arbitrary element of A.

We can now apply Iwasawa’s Lemma, and deduce that PSLn(q) is simple
provided n > 2 or q > 3.

2.5 Some subgroups of the linear groups

Here we introduce some of the more important subgroups of the linear groups,
including the subgroups B, N , T and W , and the parabolic subgroups. We use
this notation and terminology since it is standard in the theory of groups of Lie
type. A fuller discussion of the subgroup structure, incorporating Aschbacher’s
theorem on maximal subgroups, will be found later, in Section 2.7. We work
in GLn(q) for simplicity, but it is easy to modify the constructions for SLn(q),
PGLn(q) and PSLn(q).

The subgroup B of GLn(q) consisting of all lower-triangular matrices is the
Borel subgroup, and N is the subgroup of all monomial matrices, i.e. matrices
with exactly one non-zero entry in each row and column. Then T = B ∩ N ,
called the maximal split torus, consists of the diagonal matrices, which form a
normal subgroup of N . (Indeed, N is the normalizer of T , except when q = 2,
in which case T is trivial.) The quotient group W = N/T is called the Weyl
group. It is clear that the torus T is isomorphic to the direct product of n copies
of the cyclic group Cq−1 (or n− 1 copies in SLn(q)), and that the Weyl group is
isomorphic to the symmetric group Sn of all coordinate permutations.

The subgroup U of all lower unitriangular matrices (i.e. matrices having all
diagonal entries 1, and all above-diagonal entries 0) is easily seen to be a group of
order qn(n−1)/2, so it is a Sylow p-subgroup of GLn(q), where p is the characteristic
of Fq. Moreover, B is the semidirect product of U with T , the group of diagonal
matrices, so B has order qn(n−1)/2(q − 1)n. This group B may also be defined as
the stabilizer of the chain of subspaces

0 = V0 < V1 < V2 < · · · < Vn = V (2.5)

defined by Vi = {(x1, . . . , xi, 0, . . . , 0)}, so that dim(Vi) = i. A chain of subspaces
ordered by inclusion is called a flag, and if such a chain has a subspace of each
possible dimension it is called a maximal flag. Thus B is the stabilizer of a
maximal flag.

The parabolic subgroups are the stabilizers of flags, and the maximal parabolic
subgroups are the stabilizers of minimal flags 0 < W < V , i.e. the stabilizers of
subspaces W . If W has dimension k, say, we may choose a basis {e1, . . . , ek} for
W and extend it to a basis {e1, . . . , en} for V . Then the matrices for elements

of the subspace stabilizer have the shape

(
A 0
C D

)
, where A and D are non-

singular k × k and (n− k)× (n− k) matrices and C is an arbitrary k × (n− k)



6 CHAPTER 2. LINEAR GROUPS

matrix. The subset U of matrices of the shape

(
Ik 0
C In−k

)
is easily checked to

be an elementary abelian normal subgroup of order qk(n−k). (An abelian group
is called elementary if it is a direct product of cyclic groups of order p, for some

fixed prime p.) The subset L of matrices of the shape

(
A 0
0 D

)
is a subgroup

isomorphic to GLk(q) × GLn−k(q). Moreover, L ∩ U = 1 and LU is the full
stabilizer of W , so this has the structure of a semidirect product U :L. In the
language of Lie theory, U is the unipotent radical and L is a Levi complement
. We leave it as an exercise to show that the maximal parabolic subgroups are
indeed maximal subgroups.

2.6 Some more subgroups

For each family of classical groups we aim eventually to prove a theorem analogous
to the O’Nan–Scott theorem for the alternating and symmetric groups. Just as in
that case we had to construct various subgroups as stabilizers of certain structures
on the underlying set, so here we have various structures on the underlying vector
space V .

We have already seen the stabilizers in GLn(q) of subspaces (also known as
the maximal parabolic subgroups): if the subspace has dimension k, then the
stabilizer is a group of shape qkm:(GLk(q)×GLm(q)), where k +m = n = dim V .
These are analogous to the intransitive subgroups of Sn.

Corresponding to the imprimitive subgroups of Sn we have the stabilizers of
direct sum decompositions of the space. Thus if V = V1 ⊕ V2 ⊕ · · · ⊕ Vm, with
dim Vi = k, then we have a group GLk(q) o Sm stabilizing this decomposition.
These groups are also called imprimitive linear groups.

There are a number of other types of subgroups which we shall construct
later, namely tensor product subgroups (somewhat analogous to the primitive
wreath products), subgroups of extraspecial type (somewhat analogous to the
affine groups), and various types of almost simple subgroups. See Section 2.7.

2.7 Maximal subgroups of linear groups

We wish to classify maximal subgroups of classical groups along the lines of
the O’Nan–Scott theorem for symmetric and alternating groups. For classical
groups over C, such a result was obtained by Dynkin in 1952. The first part
of his argument works also for finite fields, and a more detailed version of the
theorem in the finite case was published by Aschbacher in 1984. Nevertheless,
Aschbacher’s Theorem falls far short of the degree of explicitness of the O’Nan–
Scott Theorem. It was not until 1990 that Kleidman and Liebeck provided (for
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all classical groups) the level of detail which is required to write doen explicit
lists of maximal subgroups in particular cases.

First we describe the types of subgroups which arise in this classification.
The maximal reducible subgroups are obviously the stabilizers of subspaces, and
if there is a form on the space we may assume the subspace is either non-singular
or totally isotropic. Any imprimitive subgroup preserves a decomposition of the
space as a direct sum of subspaces of the same dimension. If there is a form
then either the subspaces are non-singular or there are precisely two of them.
The other groups either arise from tensor products or extraspecial groups, or are
almost simple (modulo scalars).

2.8 Tensor products

We first need to define the concept of a tensor product of vector spaces. If U
is a vector space with basis {u1, . . . , uk} and W is a vector space with basis
{w1, . . . , wm}, over the same field F , we define the tensor product space V =
U ⊗ W to be the vector space of dimension n = km with basis {v1, . . . , vkm},
where we write vi+kj = ui ⊗ wj to exhibit the connection with U and W . If A is
a k× k matrix acting on U , and B is an m×m matrix acting on W , then we get
an action on U ⊗W by sending ui ⊗ wj to uiA⊗ wjB, interpreted as

uiA⊗ wjB =
k∑

r=1

m∑
s=1

airbjs(ur ⊗ ws).

The corresponding n× n matrix with entries airbjs (with rows indexed by i + kj
and columns indexed by r + ks) is called the Kronecker product of A and B, and
written A⊗B.

If we take all possibilities for A and B, we get an action of GLk(q)×GLm(q)
on U ⊗W . However, this is not a faithful action. For the scalar matrices in both
GLk(q) and GLm(q) act as scalars on U⊗W (more precisely, (λIk)⊗Im = λIkm =
Ik ⊗ (λIm)), so that the kernel of the action consists of the elements (λIk, λ

−1Im)
of GLk(q) × GLm(q). The quotient of GLk(q) × GLm(q) by this kernel of order
q−1 is an example of a central product. In general a central product G◦H of two
groups G and H is a quotient of G×H by a subgroup of the centre. Usually the
subgroup we quotient by is, as in this case, a diagonal subgroup of Z(G)×Z(H).

Thus we have GLk(q) ◦ GLm(q) as a subgroup of GLkm(q). In this case it
is clearer to work modulo scalars, in the sense that PGLk(q) × PGLm(q) <
PGLkm(q). This subgroup is usually maximal, unless k = m in which case we
can identify U with W , and there is a map taking ui ⊗ uj to uj ⊗ ui which acts
on U ⊗ U and extends the group to PGLk(q) o S2.

Since we can take the tensor product of two spaces, we can take the tensor
product of several, say V = V1 ⊗ V2 ⊗ · · · ⊗ Vm. If all the Vi are isomorphic, say



8 CHAPTER 2. LINEAR GROUPS

dim V = k, then n = dim V = km, and we have an embedding of PGLk(q) o Sm

in PGLn(q). These groups correspond to the primitive wreath products in the
symmetric groups.

2.9 Extraspecial groups

A p-group G is called special if Z(G) = G′ = Φ(G), and is called extraspecial if
also |Z(G)| = p. For any group G, the commutator map from G/Z(G)×G/Z(G)
to G′ satisfies [h, g] = [g, h]−1, and if G is special then G/Z(G) = G/Φ(G) is a
vector space over Fp. Moreover, in this case [g, hk] = [g, k][g, h]k = [g, h][g, k], so
if G is extraspecial then this commutator map is a skew-symmetric bilinear form
(written multiplicatively). Indeed, it is alternating since [g, g] = 1. Moreover, by
the assumption Z(G) = Φ(G), no non-zero vector in G/Φ(G) is central, so for
every g 6∈ Φ(G) there is an h ∈ G with [g, h] 6= 1, so this alternating bilinear form
is non-singular.

For every g in an extraspecial p-group G, we have that gp ∈ Z(G), and
therefore

(gh)p = gp[h−1, g−1]g
p−1

[h−2, g−1]g
p−2 · · · [h−p+1, g−1]hp

= gphp[g, h]−1 · · · [g, h]−p+1

= gphp[h, g]p(p−1)/2. (2.6)

Now if p = 2 this reduces to (gh)2 = g2h2[h, g], which is just the multiplicative
version of the definition of a quadratic form, so the squaring map G/Z(G) →
Z(G) is a quadratic form. On the other hand if p is odd it reduces to (gh)p =
gphp, so either all elements have order p, or the elements of order 1 or p form a
characteristic subgroup of index p.

Our classification of non-singular (quadratic or alternating bilinear) forms in
the next lecture implies that there are exactly two isomorphism types of extraspe-
cial p-groups of each order. We write 21+2m

ε for the extraspecial group of order
21+2m whose associated quadratic form is of type ε. For p odd we write p1+2m

+ for
the extraspecial group of exponent p, and p1+2m

− for the one of exponent p2.
It is easy to see that D8

∼= 21+2
+ and Q8

∼= 21+2
− . Taking central products

of these in such a way that all the central involutions are identified gives us
constructions of 21+2m

+ = D8 ◦ · · · ◦ D8 and 21+2m
− = D8 ◦ · · · ◦ D8 ◦ Q8. The

2-dimensional representations of D8 and Q8 (which exist over any field of odd
characteristic) can therefore be tensored together to get representations of 21+2m

ε

of dimension 2m.
Similarly for p odd we obtain a p-dimensional representation of p1+2

+ by taking
an element cycling the p coordinates, and a diagonal element diag(1, α, . . . , αp−1),
where α is an element of order p in the field. (This can be modified for p1+2

− by
multiplying the diagonal element by a pth root of α, if one exists, but we shall
not be using this case.) A representation of degree pm of p1+2m

+ is then obtained
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by tensoring together m copies of these matrices. (Note that in this case we need
elements of order p in the field, since there are scalars of order p. In other words,
the order of the field is congruent to 1 modulo p.)

What has all this got to do with maximal subgroups of classical groups? A
faithful representation of G of degree n over F is nothing more than an embedding
of G into GLn(F ). Thus we have constructed subgroups of GLn(F ) isomorphic to
p1+2m

ε , where n = pm. The subgroups we are after are the normalisers in GLn(F )
(or in other classical groups) of these extraspecial groups. In the rest of this
section we consider in more detail the structure of these normalisers.

These representations extend to representations of 21+2m
ε Oε

2m(2) for p = 2,
or p1+2m

+ :Sp2m(p) for p odd. To see this we need a little representation theory,
specifically the fact that the extraspecial group G has a unique representation
of degree pm such that a given generator for its centre acts as a given scalar. It
follows that any automorphism of G ∼= p1+2m which centralizes the centre Z(G)
can be realised inside the general linear group in dimension pm over any field
of order q ≡ 1 mod p. But every isometry of the form on G/Z(G) lifts to p2m

automorphisms of G, so we obtain in this way an extension of G by the isometry
group of the form. If p is odd this extension splits since the involution centralizer
is Cp × Sp2m(p), while if p = 2 it is almost always non-split. (A split extension
A:B is the same thing as a semidirect product.) Thus it is a group G with a
normal subgroup A and a subgroup B such that G = AB and A ∩ B = 1. A
non-split extension A.B is a group G with a normal subgroup A and G/A ∼= B,
but with no subgroup B satisfying G = AB and A∩B = 1.) Similarly, if our field
F contains 4th roots of 1, i.e. square roots of −1, then there is a representation of
4◦21+2m in 2m dimensions, and working modulo {±1} we get a quadratic form on
a space of dimension 2m + 1 over F2, with isometry group O2m+1(2) ∼= Sp2m(2).
Thus we get a representation of 4 ◦ 21+2mSp2m(2) in 2m dimensions over F .

All these groups of extraspecial type are in SLpm(r), where r is a prime con-
gruent to 1 modulo p (or modulo 4, in the last case). In some cases, they also
fix forms and so are in smaller classical groups. Thus D8 fixes a quadratic form
(of + type if and only if r ≡ 1 mod 4) and Q8 fixes a symplectic form, so 21+2m

+

fixes a quadratic form and 21+2m
− fixes a symplectic form. Therefore, for r odd

and n ≥ 2, 21+2m
+ Ω+

2m(2) < SO+
2m(r) and 21+2m

− Ω−
2m(2) < Sp2m(r). Similarly, p1+2

+

fixes a unitary form over Fr2 if and only if p divides r + 1, and so the same is
true of p1+2m

+ . This gives p1+2m
+ :Sp2m(p) < SUpm(r) provided p|(r + 1). Similarly,

the groups 4 ◦ 21+2m are unitary whenever 4|(r + 1).

2.10 The Aschbacher–Dynkin theorem

It is relatively easy to show that every subgroup of PGLn(q) which does not con-
tain PSLn(q) is either contained in a maximal subgroup of one of the types we
have seen above (namely the stabilizers of subspaces, the imprimitive groups, the
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groups constructed from tensor product decompositions of the underlying vector
space, and the groups of extraspecial type) or is of almost simple type, which
means that its intersection with PSLn(q) is almost simple (i.e. a group G with
S ≤ G ≤ AutS for some non-abelian simple group G). This is a special case of
Aschbacher’s theorem, but the proof we sketch is essentially due to Dynkin. The
proof requires a little (modular) representation theory but is otherwise elemen-
tary.

Theorem 2. Any subgroup of GLn(q) not containing SLn(q) is contained in one
of the following subgroups:

1. a reducible group qkm:(GLk(q)×GLm(q)), the stabilizer of a k-space, where
k + m = n;

2. an imprimitive group GLk(q) oSm, the stabilizer of a direct sum decomposi-
tion, where km = n;

3. a simple tensor product GLk(q) ◦GLm(q), the stabilizer of a tensor product
decomposition F k ⊗ Fm, where km = n and F = Fq;

4. a wreathed tensor product, the preimage of PGLk(q) o Sm, the stabilizer of
a tensor product decomposition F k ⊗ · · · ⊗ F k, where km = n;

5. the preimage of p2k:Sp2k(p), where n = pk (or 22k.Oε
2k(2) if p = 2);

6. the preimage of an almost simple group, acting irreducibly.

Proof. Given any subgroup H of G = PGLn(q) not containing PSLn(q), let H̃
denote its preimage in G̃ = GLn(q). The socle of H, written soc H, is the product
of all the minimal normal subgroups of H. Writing N = soc H, we are interested
in the representation ρ of Ñ on the underlying n-dimensional vector space V . If
ρ is not completely reducible (a representation is completely reducible if it is a
direct sum of irreducibles), then there is a unique largest subspace W of V such
that ρ|W is completely reducible. Therefore H̃ fixes W (case 1).

If ρ is completely reducible but not homogeneous (a representation is homo-
geneous if it is a direct sum of isomorphic irreducibles) then H̃ preserves the
decomposition of V as a direct sum of its homogeneous components, so H̃ is
either reducible (case 1 again) or imprimitive (case 2).

If ρ is completely reducible and homogeneous, but not irreducible, then Ñ ◦
CG̃(Ñ) acts as a tensor product (case 3). Similarly, if H has more than one
minimal normal subgroup, then Ñ acts as a tensor product (case 3 again).

So we have reduced to the case that N is the unique minimal normal subgroup
of H. This may be either abelian, in which case it lifts to an extraspecial group
(case 5), or non-abelian simple (case 6), or non-abelian non-simple, in which case
the representation of Ñ is again a tensor product (case 4). This completes the
proof of this easy version of the Aschbacher–Dynkin Theorem. �
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It is possible then to look more closely at the subgroups of almost simple
type. Some are ‘really’ written over a smaller field, so are contained in a subgroup
PGLn(q0) of PGLn(q), where q = qe

0 and e is prime. Some are ‘really’ of smaller
dimension over some extension field, so are contained in a subgroup PΓLn/k(q

k)
for some prime k. Some are other classical groups in their natural representations.
And the more one knows about the representations of the quasisimple groups,
the more one can extend or refine this list.

Aschbacher’s 1984 version of the list of maximal subgroups comprises nine
types, as follows:

1. subspace stabilizers,

2. imprimitive wreath products,

3. simple tensors,

4. wreathed tensors,

5. extraspecial type,

6. subfield groups,

7. extension field groups,

8. classical type,

9. other almost simple groups.

There is a version of this theorem for each of the classical groups, in which case
more details can be given of many of these subgroups.


