
Chapter 1

The alternating groups

1.1 Introduction

The most familiar of the finite (non-abelian) simple groups are the alternating
groups An, which are subgroups of index 2 in the symmetric groups Sn. In this
chapter our main aims are to define these groups, and prove they are simple.

By way of introduction we bring in the basic concepts of permutation group
theory, such as k-transitivity and primitivity, before presenting one of the stan-
dard proofs of simplicity of An for n ≥ 5. Then we prove that Aut(An) ∼= Sn

for n ≥ 7, while for n = 6 there is an exceptional outer automorphism of S6.
The subgroup structure of An and Sn is described by the O’Nan–Scott theorem,
which we state and prove after giving a detailed description of the subgroups
which arise in that theorem.

1.2 Permutations

We first define the symmetric group Sym(Ω) on a set Ω as the group of all permu-
tations of that set. Here a permutation is simply a bijection from the set to itself.
If Ω has cardinality n, then we might as well take Ω = {1, . . . , n}. The resulting
symmetric group is denoted Sn, and called the symmetric group of degree n.

Since a permutation π of Ω is determined by the images π(1) (n choices), π(2)
(n − 1 choices, as it must be distinct from π(1)), π(3) (n − 2 choices), and so
on, we have that the number of permutations is n(n− 1)(n− 2) . . . 2.1 = n! and
therefore |Sn| = n!.

A permutation π may be written simply as a list of the images π(1), . . . , π(n)
of the points in order, or more explicitly, as a list of the points 1, . . . , n with their

images π(1), . . . , π(n) written underneath them. For example,
 

1 2 3 4 5
1 5 2 3 4

!
denotes the permutation fixing 1, and mapping 2 to 5, 3 to 2, 4 to 3, and 5
to 4. If we draw lines between equal numbers in the two rows, the lines cross
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over each other, and the crossings indicate which pairs of numbers have to be
interchanged in order to produce this permutation. In this example, the line
joining the 5s crosses the 4s, 3s and 2s in that order, indicating that we may
obtain this permutation by first swapping 5 and 4, then 5 and 3, and finally 5
and 2.

1.2.1 The alternating groups

A single interchange of two elements is called a transposition, so we have seen how
to write any permutation as a product of transpositions. However, there are many
different ways of doing this. But if we write the identity permutation as a product
of transpositions, and the line connecting the is crosses over the line connecting
the js, then they must cross back again: thus the number of crossings for the
identity element is even. If we follow one permutation by another, it is clear that
the number of transpositions required for the product is the sum of the number
of transpositions for the two original permutations. It follows that if π is written
in two different ways as a product of transpositions, then either the number of
transpositions is even in both cases, or it is odd in both cases. Therefore the
map φ from Sn onto the group {±1} of order 2 defined by φ(π) = 1 whenever
π is the product of an even number of transpositions, is a (well-defined) group
homomorphism. As φ is onto, its kernel is a normal subgroup of index 2, which
we call the alternating group of degree n. It has order 1

2
n!, and its elements are

called the even permutations. The other elements of Sn are the odd permutations.

The notation for permutations as functions (where πρ means ρ followed by
π) is unfortunately inconsistent with the normal convention for permutations
that πρ means π followed by ρ. Therefore we adopt a different notation, writing
aπ instead of π(a), to avoid this confusion. We then have aπρ = ρ(π(a)), and
permutations are read from left to right, rather than right to left as for functions.

1.2.2 Transitivity

Given a group H of permutations, i.e. a subgroup of a symmetric group Sn, we
are interested in which points can be mapped to which other points by elements
of the group H. If every point can be mapped to every other point, we say H
is transitive on the set Ω. In symbols, this is expressed by saying that for all a
and b in Ω, there exists π ∈ H with aπ = b. In any case, the set {aπ | π ∈ H}
of points reachable from a is called the orbit of H containing a. It is easy to see
that the orbits of H form a partition of the set Ω.

More generally, if we can simultaneously map k points wherever we like, the
group is called k-transitive. This means that for every list of k distinct points
a1, . . . , ak and every list of k distinct points b1, . . . , bk there exists an element
π ∈ H with aπ

i = bi for all i. In particular, 1-transitive is the same as transitive.
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For example, it is easy to see that the symmetric group Sn is k-transitive for
all k ≤ n, and that the alternating group An is k-transitive for all k ≤ n− 2.

It is obvious that if H is k-transitive then H is (k − 1)-transitive, and is
therefore m-transitive for all m ≤ k. There is however a concept intermediate
between 1-transitivity and 2-transitivity which is of interest in its own right. This
is the concept of primitivity, which is best explained by defining what it is not.

1.2.3 Primitivity

A block system for a subgroup H of Sn is a partition of Ω preserved by H; we
call the elements of the partition blocks. In other words, if two points a and b
are in the same block of the partition, then for all elements π ∈ H, the points
aπ and bπ are also in the same block as each other. There are two block systems
which are always preserved by every group: one is the partition consisting of the
single block Ω; at the other extreme is the partition in which every block consists
of a single point. These are called the trivial block systems. A non-trivial block
system is often called a system of imprimitivity for the group H. If n ≥ 3 then
any group which has a system of imprimitivity is called imprimitive, and any
non-trivial group which is not imprimitive is called primitive. (It is usual also to
say that S2 is primitive, but that S1 is neither primitive nor imprimitive.)

It is obvious that

if H is primitive, then H is transitive. (1.1)

For, if H is not transitive, then the orbits of H form a system of imprimitivity
for H, so H is not primitive. On the other hand, there exist plenty of transitive
groups which are not primitive. For example, in S4, the subgroup H of order 4

generated by
 

1 2 3 4
2 1 4 3

!
and

 
1 2 3 4
3 4 1 2

!
is transitive, but preserves the

block system {{1, 2}, {3, 4}}. It also preserves the block systems {{1, 3}, {2, 4}}
and {{1, 4}, {2, 3}}.

Another important basic result about primitive groups is that

every 2-transitive group is primitive. (1.2)

For, if H is imprimitive, we can choose three distinct points a, b and c such that
a and b are in the same block, while c is in a different block. (This is possible
since the blocks have at least two points, and there are at least two blocks.) Then
there can be no element of H taking the pair (a, b) to the pair (a, c), so it is not
2-transitive.

1.2.4 Group actions

Suppose that G is a subgroup of Sn acting transitively on Ω. Let H be the
stabilizer of the point a ∈ Ω, that is, H = {g ∈ G : ag = a}. Then the points of
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Ω are in natural bijection with the (right) cosets Hg of H in G. This bijection is
given by Hx ↔ ax. It is left as an exercise for the reader to prove that this is a
bijection. In particular, |G : H| = n.

We can turn this construction around, so that given any subgroup H in G,
we can let G act on the right cosets of H according to the rule (Hx)g = Hxg.
Numbering the cosets of H from 1 to n, where n = |G : H|, we obtain a permu-
tation action of G on these n points, or in other words a group homomorphism
from G to Sn.

1.2.5 Maximal subgroups

This correspondence between transitive group actions on the one hand, and sub-
groups on the other, permits many useful translations between combinatorial
properties of Ω and properties of the group G. For example, a primitive group
action corresponds to a maximal subgroup, where a subgroup H of G is called
maximal if there is no subgroup K with H < K < G. More precisely:

Proposition 1. Suppose that the group G acts transitively on the set Ω, and let
H be the stabilizer of a ∈ Ω. Then G acts primitively on Ω if and only if H is a
maximal subgroup of G.

Proof. We prove both directions of this in the contrapositive form. First assume
that H is not maximal, and choose a subgroup K with H < K < G. Then
the points of Ω are in bijection with the (right) cosets of H in G. Now the
cosets of K in G are unions of H-cosets, so correspond to sets of points, each set
containing |K : H| points. But the action of G preserves the set of K-cosets, so
the corresponding sets of points form a system of imprimitivity for G on Ω.

Conversely, suppose that G acts imprimitively, and let Ω1 be the block con-
taining a in a system of imprimitivity. Since G is transitive, it follows that the
stabilizer of Ω1 acts transitively on Ω1, but not on Ω. Therefore this stabilizer
strictly contains H and is a proper subgroup of G, so H is not maximal. �

1.2.6 Wreath products

The concept of imprimitivity leads naturally to the idea of a wreath product of
two permutation groups. Recall the direct product

G×H = {(g, h) : g ∈ G, h ∈ H} (1.3)

with identity element 1G×H = (1G, 1H) and group operations

(g1, h1)(g2, h2) = (g1, g2, h1h2)
(g, h)−1 = (g−1, h−1). (1.4)
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Recall also the semidirect product G:H or G:φH, where φ : H → Aut(G) describes
an action of H on G. We define G:H = {(g, h) : g ∈ G, h ∈ H} with identity
element 1G:H = (1G, 1H) and group operations

(g1, h1)(g2, h2) = (g1g
φ(h−1

1 )
2 , h1h2)

(g, h)−1 = ((g−1)φ(h), h−1). (1.5)

Now suppose that H is a permutation group acting on Ω = {1, . . . , n}. Define
Gn = G×G× · · · ×G = {(g1, . . . , gn) : gi ∈ G}, the direct product of n copies of
G, and let H act on Gn by permuting the n subscripts. That is φ : H → Aut(Gn)
is defined by

φ(π) : (g1, . . . , gn) 7→ (g1π−1 , . . . , gnπ−1 ). (1.6)

Then the wreath product G oH is defined to be Gn:φH. For example, if H ∼= Sn

and G ∼= Sm then the wreath product Sm o Sn can be formed by taking n copies
of Sm, each acting on one of the sets Ω1, . . . , Ωn of size m, and then permuting
the subscripts 1, . . . , n by elements of H. This gives an imprimitive action of
Sm oSn on Ω =

⋃n
i=1 Ωi, preserving the partition of Ω into the Ωi. More generally,

any (transitive) imprimitive group can be embedded in a wreath product: if the
blocks of imprimitivity for G are Ω1, . . . , Ωk, then G is a subgroup of Sym(Ω1)oSk.

1.3 Simplicity

1.3.1 Cycle types

An alternative notation for a permutation π is obtained by considering the cycles
of π. These are obtained by taking an element a ∈ Ω, which maps under π
to aπ: this in turn maps to aπ2

, which maps to aπ3
and so on. Because Ω is

finite, eventually we get a repetition aπj
= aπk

and therefore aπj−k
= a. Thus

the first time we get a repetition is when we get back to the start of the cycle,
which can now be written (a, aπ, aπ2

, . . . , aπk−1
), where k is the length of the cycle.

Repeating this with a new element b not in this cycle, we get another cycle of π,
disjoint from the first. Eventually, we run out of elements of Ω, at which point π
is written as a product of disjoint cycles.

The cycle type of a permutation is simply a list of the lengths of the cycles,
usually abbreviated in some way. Thus the identity has cycle type (1n) and a
transposition has cycle type (2, 1n−2). Note, incidentally, that a cycle of even
length is an odd permutation, and vice versa. Thus a permutation is even if and
only if it has an even number of cycles of even length.

If ρ ∈ Sn is another permutation, then πρ = ρ−1πρ maps aρ via a and aπ to
aπρ. Therefore each cycle (a, aπ, aπ2

, . . . , aπk−1
) of π gives rise to a corresponding

cycle (aρ, aπρ, aπ2ρ, . . . , aπk−1ρ). So the cycle type of πρ is the same as the cycle
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type of π. Conversely, if π and π′ are two permutations with the same cycle type,
we can match up the cycles of the same length, say (a, aπ, aπ2

, . . . , aπk−1
) with

(b, bπ′ , bπ′2 , . . . , bπ′k−1
). Now define a permutation ρ by mapping aπj

to bπ′j for
each integer j, and similarly for all the other cycles, so that π′ = πρ. Thus two
permutations are conjugate in Sn if and only if they have the same cycle type.

By performing the same operation to conjugate a permutation π to itself,
we find the centralizer of π. Specifically, if π is an element of Sn of cycle type
(ck1

1 , ck2
2 , . . . , ckr

r ), then the centralizer of π in Sn is a direct product of r groups
Cci

o Ski
.

1.3.2 Conjugacy classes in the alternating groups

Next we determine the conjugacy classes in An. The crucial point is to determine
which elements of An are centralized by odd permutations. Given an element g of
An, and an odd permutation ρ, either gρ is conjugate to g by an element π of An or
it is not. In the former case, g is centralized by the odd permutation ρπ−1, while
in the latter case, every odd permutation maps g into the same An-conjugacy
class as gρ, and so no odd permutation centralizes g.

If g has a cycle of even length, it is centralized by that cycle, which is an
odd permutation. Similarly, if g has two odd cycles of the same length, it is
centralized by an element ρ which interchanges the two cycles: but then ρ is the
product of an odd number of transpositions, so is an odd permutation.

On the other hand, if g does not contain an even cycle or two odd cycles of
the same length, then it is the product of disjoint cycles of distinct odd lengths,
and every element ρ centralizing g must map each of these cycles to itself. The
first point in each cycle can be mapped to an arbitrary point in that cycle, but
then the images of the remaining points are determined. Thus we obtain all such
elements ρ as products of powers of the cycles of g. In particular ρ is an even
permutation.

This proves that g is centralized by no odd permutation if and only if g is
a product of disjoint cycles of distinct odd lengths. It follows immediately that
the conjugacy classes of An correspond to cycle types if there is a cycle of even
length or there are two cycles of equal length, whereas a cycle type consisting of
distinct odd lengths corresponds to two conjugacy classes in An.

For example, in A5, the cycle types of even permutations are (15), (3, 12),
(22, 1), and (5). Of these, only (5) consists of disjoint cycles of distinct odd
lengths. Therefore there are just five conjugacy classes in A5.

1.3.3 The alternating groups are simple

A subgroup H of G is called normal if it is a union of whole conjugacy classes
in G. The group G is simple if it has precisely two normal subgroups, namely 1
and G. Every non-abelian simple group G is perfect, i.e. G′ = G.
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The numbers of elements in the five conjugacy classes in A5 are 1, 20, 15,
12 and 12 respectively. Since no proper sub-sum of these numbers including 1
divides 60, there can be no subgroup which is a union of conjugacy classes, and
therefore A5 is a simple group.

We now prove by induction that An is simple for all n ≥ 5. The induction
starts when n = 5, so we may assume n > 5. Suppose that N is a non-trivial
normal subgroup of An, and consider N ∩ An−1. This is normal in An−1, so
by induction is either 1 or An−1. In the second case, N ≥ An−1, so contains
all the elements of cycle type (3, 1n−3) and (22, 1n−4) (since it is normal). But
it is easily seen that every even permutation is a product of such elements, so
N = An. Therefore we can assume that N ∩ An−1 = 1, which means that every
non-identity element of N is fixed-point-free (i.e. fixes no points), and |N | ≤ n.

But N must contain a non-trivial conjugacy class of elements of An, and it
is not hard to show that if n ≥ 5 then there is no such class with fewer than
n elements. We leave this verification as an exercise. This contradiction proves
that N does not exist, and so An is simple.

1.4 Subgroups of Sn

There are a number of more or less obvious subgroups of the symmetric groups.
In order to simplify the discussion it is usual to (partly) classify the maximal
subgroups first, and to study arbitrary subgroups by looking at them as subgroups
of the maximal subgroups. In this section we describe some important classes of
(often maximal) subgroups, and prove maximality in a few cases. The converse
problem, of showing that any maximal subgroup is in one of these classes, is
addressed in Section 1.5.

1.4.1 Intransitive subgroups

If H is an intransitive subgroup of Sn, then it has two or more orbits on the
underlying set of n points. If these orbits have lengths n1, . . . , nr, then H is a
subgroup of the subgroup Sn1 × · · · × Snr consisting of all permutations which
permute the points in each orbit, but do not mix up the orbits. If r > 2, then
we can mix up all the orbits except the first one, to get a group Sn1 × Sn2+···+nr

which lies between H and Sn. Therefore, in this case H cannot be maximal.

On the other hand, if r = 2, we have the subgroup H = Sk × Sn−k of Sn, and
it is quite easy to show this is a maximal subgroup, as long as k 6= n−k. For, we
may as well assume k < n− k, and that the factor Sk acts on Ω1 = {1, 2, . . . , k},
while the factor Sn−k acts on Ω2 = {k + 1, . . . , n}. If g is any permutation not
in H, let K be the subgroup generated by H and g. Our aim is to show that K
contains all the transpositions of Sn, and therefore is Sn.



8 CHAPTER 1. THE ALTERNATING GROUPS

Now g must move some point in Ω2 to a point in Ω1, but cannot do this
to all points in Ω2, since |Ω2| > |Ω1|. Therefore we can choose i, j ∈ Ω2 with
ig ∈ Ω1 and jg ∈ Ω2. Then (i, j) ∈ H so (ig, jg) ∈ Hg ≤ K. Conjugating this
transposition by elements of H we obtain all the transpositions of Sn (except
those which are already in H), and therefore K = Sn. This implies that H is
a maximal subgroup of Sn. Note that we have now completely classified the
intransitive maximal subgroups of Sn, so any other maximal subgroup must be
transitive. For example, the intransitive maximal subgroups of S6 are S5 and
S4 × S2.

1.4.2 Transitive imprimitive subgroups

In the case when k = n − k, this proof breaks down, and in fact the subgroup
Sk×Sk is not maximal in S2k. This is because there is an element h in S2k which
interchanges the two orbits of size k, and normalizes the subgroup Sk × Sk. For
example we may take h = (1, k + 1)(2, k + 2) · · · (k, 2k). Indeed, what we have
here is the wreath product of Sk with S2. This can be shown to be a maximal
subgroup of S2k by a similar method to that used above.

More generally, if we partition the set of n points into m subsets of the same
size k (so that n = km), then the wreath product Sk oSm can act on this partition:
the base group Sk × · · · × Sk consists of permutations of each of the m subsets
separately, while the wreathing action of Sm acts by permuting the m orbits of
the base group. It turns out that this subgroup is maximal in Sn also. Thus we
obtain a list of all the transitive imprimitive maximal subgroups of Sn. These
are the groups Sk o Sm where k > 1, m > 1 and n = km. All the remaining
maximal subgroups of Sn must therefore be primitive. For example, the transitive
imprimitive maximal subgroups of S6 are S2 oS3 (preserving a set of three blocks
of size 2, for example generated by the three permutations (1, 2), (1, 3, 5)(2, 4, 6)
and (3, 5)(4, 6)) and S3 o S2 (preserving a set of two blocks of size 3, for example
generated by the three permutations (1, 2, 3), (1, 2) and (1, 4)(2, 5)(3, 6)).

1.4.3 Primitive wreath products

As an example of a primitive subgroup of Sn, consider the case when n = k2,
and arrange the n points in a k × k array. We let one copy of Sk act on this
array by permuting the columns around, leaving each row fixed as a set. Then
let another copy of Sk act by permuting the rows around, leaving each column
fixed as a set. These two copies of Sk commute with each other, so generate
a group H ∼= Sk × Sk. Now H is imprimitive, as the rows form one system of
imprimitivity, and the columns form another. But if we adjoin the permutation
which reflects in the main diagonal, so mapping rows to columns and vice versa,
then we get a group Sk o S2 which turns out to be primitive. For example, we
obtain a primitive subgroup S3 o S2 in S9, which however turns out not to be
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maximal. In fact the smallest case which is maximal is the subgroup S5 o S2 in
S25.

Generalizing this construction to an m-dimensional array in the case when
n = km, with k > 1 and m > 1, we obtain a primitive action of the group Sk oSm

on km points. To make this more explicit, we identify Ω with the Cartesian
product Ω1

m of m copies of a set Ω1 of size k, and let an element (π1, . . . , πm) of
the base group Sk

m act by

(a1, . . . , am) 7→ (a1
π1 , . . . , am

πm) (1.7)

for all ai ∈ Ω1. The wreathing action of ρ ∈ Sm is then given by the natural
action permuting the coordinates, thus:

(a1, . . . , am) 7→ (a1ρ−1 , . . . , amρ−1 ) (1.8)

This action of the wreath product is sometimes called the product action, to
distinguish it from the imprimitive action on km points described in Section 1.4.2
above. We shall not prove maximality of these subgroups in Sn or An, although
they are in fact maximal in An if k ≥ 5 and km−1 is divisible by 4, and maximal
in Sn if k ≥ 5 and km−1 is not divisible by 4.

There are three other types of maximal primitive subgroups of Sn which are
‘obvious’ to the experts, which are generally labelled the affine, diagonal, and
almost simple types. Again, we shall not prove that any of these are maximal,
and indeed sometimes they are not.

1.4.4 Affine subgroups

The affine groups are essentially the symmetry groups of vector spaces. Let
Fp = Z/pZ denote the field of order p, and let V be the vector space of k-tuples
of elements of Fp. Then V has pk elements, and has a symmetry group which
is the semidirect product of the group of translations ta : v 7→ v + a, by the
general linear group GLk(p) consisting of all invertible k × k matrices over Fp.
This group, sometimes denoted AGLk(p), and called the affine general linear
group acts as permutations of the vectors, so is a subgroup of Sn where n = pk.
The translations form a normal subgroup isomorphic to the additive group of the
vector space, which is isomorphic to a direct product of k copies of the cyclic
group Cp. In other words it is an elementary abelian group of order pk, which we
denote Epk , or simply pk. With this notation, AGLk(p) ∼= pk:GLk(p).

An example of an affine group is the group AGL3(2) ∼= 23:GL3(2), which acts
as a permutation group on the 8 vectors of F3

2, and so embeds in S8. Indeed,
it is easy to check that all its elements are even permutations, so it embeds in
A8. Another example is AGL1(7) ∼= 7:6 which is a maximal subgroup of S7.
Note however that its intersection with A7 is a group 7:3 which is not maximal
in A7. These groups 7:6 and 7:3 are examples of Frobenius groups, which are
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by definition transitive non-regular permutation groups in which the stabilizer of
two points is trivial.

1.4.5 Subgroups of diagonal type

The diagonal type groups are built from a non-abelian simple group T , and have
the shape T k.(Out(T )×Sk) ∼= (T oSk).Out(T ). Here we have a normal subgroup
T o Sk, extended by a group of outer automorphisms which acts in the same way
on all the k copies of T . In here we have a subgroup Aut(T ) × Sk consisting
of a diagonal copy of T (i.e. the subgroup of all elements (t, . . . , t) with t ∈ T ),
extended by its outer automorphism group and the permutation group. This
subgroup has index |T |k−1, so if we take the permutation action of the group on
the cosets of this subgroup, we obtain an embedding of the whole group in Sn,
where n = |T |k−1.

The smallest example of such a group is (A5 × A5):(C2 × C2) acting on the
cosets of a subgroup S5 × C2. This group is the semidirect product of A5 ×
A5 = {(g, h) : g, h ∈ A5} by the group C2 × C2 of automorphisms generated by
α : (g, h) 7→ (gπ, hπ), where π is the transposition (1, 2), and β : (g, h) 7→ (h, g).
The point stabilizer is the centralizer of β, generated by α, β and {(g, g) : g ∈
A5}. Therefore an alternative way to describe the action of our group on 60
points is as the action by conjugation on the 60 conjugates of β. We can then
show by direct calculation that α and β act as even permutations, so our group
(A5 × A5):(C2 × C2) embeds in A60. In fact, it is a maximal subgroup.

1.4.6 Almost simple groups

Finally, we have the almost simple primitive groups. A group G is called almost
simple if it satisfies T ≤ G ≤ Aut(T ) for some simple group T . Thus it consists of
a simple group, possibly extended by adjoining some or all of the outer automor-
phism group. If M is any maximal subgroup of G, then the permutation action
of G on the cosets of M is primitive, so G embeds as a subgroup of Sn, where
n = |G : M |. The class of almost simple maximal subgroups of Sn is chaotic in
general, and to describe them completely would require complete knowledge of
the maximal subgroups of all almost simple groups—a classic case of reducing
one problem to a harder one!

However, a result of Liebeck, Praeger and Saxl states that (subject to cer-
tain technical conditions) every such embedding of G in Sn is maximal unless it
appears in their explicit list of exceptions. It is also known that as n tends to
infinity, for almost all values of n there are no almost simple maximal subgroups
of Sn or An.
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1.5 The O’Nan–Scott Theorem

The O’Nan–Scott theorem gives us a classification of the maximal subgroups of
the alternating and symmetric groups. Roughly speaking, it tells us that every
maximal subgroup of Sn or An is of one of the types described in the previous
section. It does not tell us exactly what the maximal subgroups are—that is too
much to ask, rather like asking what are all the prime numbers. It does however
provide a first step towards writing down the list of maximal subgroups of An or
Sn for any particular reasonable value of n.

Theorem 1. If H is any proper subgroup of Sn other than An, then H is a
subgroup of one or more of the following subgroups:

1. An intransitive group Sk × Sm, where n = k + m;

2. An imprimitive group Sk o Sm, where n = km;

3. A primitive wreath product, Sk o Sm, where n = km;

4. An affine group AGLd(p) ∼= pd:GLd(p), where n = pd;

5. A group of shape Tm.(Out(T )×Sm), where T is a non-abelian simple group,
acting on the cosets of the ‘diagonal’ subgroup Aut(T ) × Sm, where n =
|T |m−1;

6. An almost simple group acting on the cosets of a maximal subgroup.

Note that the theorem does not assert that all these subgroups are maximal
in Sn, or in An. This is a rather subtle question. As we noted in Section 1.4.6, the
last category of subgroups also requires us to know all the maximal subgroups
of all the finite simple groups, or at least those of index n. In practice, this
means that we can only ever hope to get a recursive description of the maximal
subgroups of An and Sn.


