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INTRODUCTION

Exceptional groups

The families we are looking at today are
I G2(q)

I F4(q)

I E6(q)

I E7(q)

I E8(q)

I 2E6(q)

I 3D4(q)

I 2B2(q)

I 2G2(q)

I 2F4(q)

Lie algebras

The ten families of exceptional finite simple groups of Lie
type are all derived in some way from Lie algebras.
A Lie algebra is a vector space with a product, usually
written [x , y ], satisfying [y , x ] = −[x , y ] and

[[x , y ], z] + [[y , z], x ] + [[z, x ], y ] = 0

the Jacobi identity.
The canonical example is the vector space of n × n
matrices of trace 0, with [x , y ] = xy − yx . This is called
sln, and corresponds to the group SLn of matrices of
determinant 1.
Similarly we can make Lie algebras corresponding to the
symplectic and orthogonal groups.



Simple Lie algebras

The simple Lie algebras over C are
I An, also known as sln+1

I Bn, also known as so2n+1

I Cn, also known as sp2n

I Dn, also known as so2n

I Five exceptional algebras, G2, F4, E6, E7, and E8.

G2 is the algebra of derivations of the octonion algebra
(Cayley numbers)
F4 is the algebra of derivations of the exceptional Jordan
algebra

Coxeter–Dynkin diagrams

An (n ≥ 1) s s s s. . .

Bn (n ≥ 2) s s s s@
�

. . .

Cn (n ≥ 3) s s s s�
@

. . .

Dn (n ≥ 4) s s s ss
. . .

E6 s s s s ss

E7 s s s s s ss

E8 s s s s s s ss
F4 s s s s@

�
G2 s s@

�

Chevalley groups

Corresponding to the exceptional Lie algebras are some
exceptional groups of Lie type:

I G2(q) constructed by L. E. Dickson around 1901,
fixing a cubic form on a 7-space.

I E6(q) constructed by L. E. Dickson around 1905,
fixing a cubic form on a 27-space.

I F4(q) constructed by C. Chevalley around 1955,
acting on a Lie algebra of dimension 52

I E7(q), acting on a Lie algebra of dimension 133
I E8(q), acting on a Lie algebra of dimension 248.

Twisted groups

I The An diagram has an automorphism reversing the
order of the nodes. This gives rise to the unitary
groups by a kind of twisting operation.

I The Dn diagram has an automorphism swapping the
two branches of length 1. This gives rise to the
orthogonal groups of minus type.

I The E6 diagram has an automorphism, giving rise to
groups called 2E6(q).

I The D4 diagram has an automorphism of order 3,
giving rise to groups called 3D4(q).



The Suzuki and Ree groups

Some of the diagrams have automorphisms only if we
ignore the arrows. For reasons we won’t go into, this
makes sense only if the characteristic of the field is equal
to the multiplicity of the edge.

I The Suzuki groups Sz(22n+1) = 2B2(22n+1)

I The small Ree groups R(32n+1) = 2G2(32n+1)

I The large Ree groups R(22n+1) = 2F4(22n+1)

These turn out to be simple if and only if n ≥ 1.
Sz(2) has order 20.
R(3)′ ∼= PSL2(8) has index 3 in R(3).
R(2)′ has index 2 in R(2) and is a simple group not
appearing elsewhere in the classification.

OCTONIONS AND G2

Quaternions

Hamilton’s quaternions

H = R[i , j , k ]

where
I i2 = j2 = k2 = −1
I ij = k = −ji , jk = i = −kj , ki = j = −ik

It has an involution

: a + bi + cj + dk 7→ a− bi − cj − dk

called quaternion conjugation, and a norm N(q) = qq
which satisfies N(xy) = N(x)N(y).

Octonions

I O = R[i0, i1, . . . , i6] with subscripts read modulo 7
I it , it+1, it+3 multiply like i , j , k in the quaternions
I (i0i1)i2 = i3i2 = −i5
I i0(i1i2) = i0i4 = i5
I So O is non-associative.
I It still has an involution

: a +
6∑

t=0

bt it 7→ a−
6∑

t=0

bt it

I and a norm N(x) = xx which satisfies
N(xy) = N(x)N(y).



G2(q), for q odd
I A corresponding octonion algebra exists with

coefficients in any finite field of odd characteristic.
I G2(q) is the group of linear maps which preserve the

norm and the multiplication.
I In particular, it is inside the orthogonal group O+

8 (q),
and fixes 1, so is inside O7(q).

I By counting generating sets equivalent to (i0, i1, i2) we
can show that

|G2(q)| = q6(q6 − 1)(q2 − 1).

I The contruction is more complicated in characteristic
2.

I G2(q) is simple for all q > 2.
I G2(2) ∼= PSU3(3).2, where the automorphism is the

field automorphism of F9.

EXCEPTIONAL JORDAN
ALGEBRAS AND F4

The Moufang identity
I The octonions satisfy the Moufang identity

(xy)(zx) = (x(yz))x

which substitutes for the associative law in some
ways.

I In particular, if xyz = 1 and u satisfies uu = 1 then

((ux)(yu))(uzu) = (u(xy)u)(uzu)
= u(xy)uuzu
= u(xy)zu = 1

I Therefore the triple of maps

(Lu, Bu, Ru) : (x , y , z) 7→ (ux , yu, uzu)

preserves the property that xyz = 1.

Triality

I Such a triple (α, β, γ) of maps is called an isotopy.
I There are exactly two isotopies for each α ∈ Ω+

8 (q),
so the isotopies generate a double cover of the
orthogonal group, called the spin group.

I If (α, β, γ) is an isotopy, then (β, γ, α) is an isotopy.
I This is know as the triality automorphism of PΩ+

8 (q).
I The centralizer of the triality automorphism is the set

of isotopies of the form (α, α, α).
I This is none other the automorphism group of the

octonions, that is G2(q).



Jordan algebras

I Jordan algebras were introduced to axiomatise the
matrix product A ◦ B = (1

2)(AB + BA), in an attempt to
find a suitable model for quantum mechanics.

I The essential axiom is the Jordan identity

((A ◦ A) ◦ B) ◦ A = (A ◦ A) ◦ (B ◦ A).

I It turned out that there was only one new algebra, of
dimension 27.

I So it was useless for quantum mechanics, but very
interesting for group theory.

The exceptional Jordan algebra

I Take 3× 3 Hermitian matrices over the octonions,
that is matrices of the forma C B

C b A
B A c


where a, b, c are real and A, B, C are octonions.

I The Jordan product of two such matrices is still
Hermitian.

I There is a corresponding exceptional Jordan algebra
with coefficients in any field of characteristic not 2 or
3.

I The construction is more complicated in
characteristics 2 and 3.

F4(q) in characteristic not 2 or 3

I F4(q) is defined as the automorphism group of the
exceptional Jordan algebra over Fq.

I To calculate its order, we count the primitive
idempotents, which are defined as elements e with
e ◦ e = e and having trace 1.

I There are q8(q8 + q4 + 1) of them, and
I the stabiliser of one of them is a double cover of

SO9(q).
I Hence

|F4(q)| = q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1).

E6(q) in characteristic not 2 or 3

I Surpisingly, the determinant of the Hermitian
octonion matrices makes sense!

I

det

a C B
C b A
B A c

 = abc − aAA− bBB − cCC

+<(ABC) + <(CBA)

I The group of linear maps which preserve this cubic
form is (modulo scalars) E6(q).



The order of E6(q)

I The notion of rank of Hermitian octonion matrices
also makes sense, though needs care to define.

I It can be shown that E6(q) acts transitively on the
matrices of determinant 1.

I One of these is the identity matrix, whose stabilizer is
F4(q). Why?

I Hence we get the order of E6(q) (modulo scalars of
order (3, q − 1)):

q36(q12−1)(q9−1)(q8−1)(q6−1)(q5−1)(q2−1)/(3, q−1).

THE END


