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INTRODUCTION

Classical groups

The six families of classical finite simple groups are all
essentially matrix groups over finite fields:

I the projective special linear groups PSLn(q);
I the projective special unitary group PSUn(q);
I the projective symplectic groups PSp2n(q);
I three families of orthogonal groups

I PΩ2n+1(q);
I PΩ+

2n(q);
I PΩ−

2n(q).

Bilinear forms

A bilinear form on a vector space V is a map
B : V × V → F satisfying

B(λu + v , w) = λB(u, w) + B(v , w),
B(u, λv + w) = λB(u, v) + B(u, w)

It is
I symmetric if B(u, v) = B(v , u)

I skew-symmetric if B(u, v) = −B(v , u)

I alternating if B(v , v) = 0.

An alternating bilinear form is always skew-symmetric, but
the converse is true if and only if the characteristic is not
2. Why?



Quadratic forms

A quadratic form is a map Q : V → F satisfying

Q(λu + v) = λ2Q(u) + λB(u, v) + Q(v)

where B is the associated bilinear form.
The quadratic form can be recovered from the bilinear
form as Q(v) = 1

2B(v , v) if and only if the characteristic is
not 2.
In characteristic 2, the associated bilinear form is
alternating, since

0 = Q(v + v) = 2Q(v) + B(v , v) = B(v , v).

Conjugate-symmetric sesquilinear
forms

Let F be the field of order q2, and let denote the field
automorphism x 7→ xq.
B : V × V → F is conjugate-symmetric sesquilinear if

I B(λu + v , w) = λB(u, w) + B(v , w), and
I B(w , v) = B(v , w).
I Consequently B(u, λv + w) = λB(u, v) + B(u, w).

Properties of forms

I perpendicular vectors: u ⊥ v means B(u, v) = 0.
I S⊥ = {v ∈ V | x ⊥ v for all x ∈ S}.
I v is isotropic if B(v , v) = 0 (or Q(v) = 0).
I The radical rad(B) of B is V⊥.
I B is non-singular if rad(B) = 0, and singular

otherwise.
I Similarly the radical of Q is the subspace of isotropic

vectors in the radical of the associated B.
I A subspace is non-singular if the form restricted to

the subspace is non-singular.
I A subspace is totally isotropic if the form restricted to

the subspace is identically zero.

Isometries and similarities

An isometry of B is a linear map φ : V → V which
preserves the form, B(uφ, vφ) = B(u, v).
Similarly, an isometry of Q is a map φ which satisfies
Q(vφ) = Q(v).
A similarity allows changes of scale: that is

B(uφ, vφ) = λφB(u, v)

or

Q(vφ) = λφQ(v).



Classification of alternating bilinear
forms

If we can find vectors u, v such that B(u, v) = λ 6= 0, then
take our first two basis vectors to be u and λ−1v , so that
the form has matrix (

0 1
−1 0

)
.

Now restrict to {u, v}⊥ and continue.
When there are no such vectors left, the form is identically
zero.
Notice that the rank of B is always even.
Up to change of basis, there is a unique non-singular
form.

Classification of sesquilinear forms

If there is a vector v with B(v , v) = λ 6= 0, then λ = λ
which implies that there exists µ ∈ F with µµ = µq+1 = λ.
Therefore v ′ = µ−1v satisfies B(v ′, v ′) = 1.
Now restrict to v⊥ and continue.
If there is no such v , then we can easily show that the
form is identically zero.
Again, there is a unique non-singular form, up to change
of basis.

Classification of symmetric bilinear
forms

We can diagonalise the form as in the unitary case, but
adjusting the scalars requires more care.
Odd characteristic only
If B(v , v) = λ is a square, λ = µ2, then we can replace v
by v ′ = µ−1v and get B(v ′, v ′) = 1.
But if B(v , v) is not a square, the best we can do is adjust
it to be equal to our favourite non-square α, say.
Now we can replace two copies of α by two copies of 1,
by picking λ and µ such that λ2 + µ2 = α−1, and changing
basis via x ′ = λx + µy and y ′ = µx − λy .
In this case there are exactly two non-singular forms, up
to change of basis.

Classification of quadratic forms

This is only necessary in characteristic 2.
Again we find that there are exactly two non-singular
forms, up to change of basis.
The first one has matrix equal to the identity matrix, and is
called of plus type.

The second one has a 2× 2 block
(

1 1
0 µ

)
where

x2 + x + µ is irreducible over Fq, and is called of minus
type.



Witt’s Lemma

If (V , B) and (W , C) are isometric spaces, with B and C
non-singular, and either

I alternating bilinear, or
I conjugate-symmetric sesquilinear, or
I symmetric bilinear in odd characteristic

then any isometry between a subspace X of V and a
subspace Y of W extends to an isometry of V with W .

COFFEE BREAK

DEFINITIONS OF THE
CLASSICAL GROUPS

Symplectic groups

The symplectic group Sp2n(q) is the isometry group of a
non-singular alternating bilinear form on V = Fq

2n.
To calculate its order, count the number of ways of
choosing a standard basis.
Pick the first vector in q2n − 1 ways.
Of the q2n − q vectors which are linearly independent of
the first, q2n−1 − q are orthogonal to it, and q2n−1 have
each non-zero inner product. So there are q2n−1 choices
for the second vector.
By induction on n, the order of Sp2n(q) is

n∏
i=1

(q2i − 1)q2i−1 = qn2
n∏

i=1

(q2i − 1).



Structure of symplectic groups

I The only scalars in Sp2n(q) are ±1. Why?
I Every element in Sp2n(q) has determinant 1. (This is

unfortunately not obvious.)

I Sp2(q) ∼= SL2(q), by direct calculation:
(

a b
c d

)
preserves the standard symplectic form if and only if
B((a, b), (c, d)) = 1, that is ad − bc = 1.

I Sp4(2) ∼= S6.
I All other projective symplectic groups are simple.

(Proof using transvections and Iwasawa’s Lemma as
for PSLn(q).)

Unitary groups

The (general) unitary group (G)Un(q) is the isometry
group of a non-singular conjugate-symmetric sesquilinear
form on V of dimension n over Fq2.
It is not quite so easy to calculate the order this time.
Induction on n gives the number of vectors of norm 1 as

qn−1(qn − (−1)n).

Then another induction on n gives the order of the group
as

n∏
i=1

q i−1(q i − (−1)i) = qn(n−1)/2
n∏

i=1

(q i − (−1)i).

Structure of unitary groups

I M ∈ Un(q) iff MM
T

= In
I In particular, if det(M) = λ then λλ = 1, and there are

q + 1 possibilities for λ.
I the special unitary group SUn(q) is the subgroup of

matrices of determinant 1, and is a normal subgroup
of index q + 1.

I The scalars in GUn(q) are those satisfying λ.λ = 1,
so form a normal subgroup of order q + 1.

I The scalars in SUn(q) form a group of order
(n, q + 1).

Structure of unitary groups, II

I PSU2(q) ∼= PSL2(q)

I PSU3(2) has order 72 = 23.32 so is not simple (e.g.
by Burnside’s paqb-theorem)

I PSU3(2) ∼= 32:Q8 and PGU3(2) ∼= 32:SL2(3)

I All other PSUn(q) are simple.



Orthogonal groups, odd
characteristic

I The orthogonal groups are the isometry groups of
non-singular symmetric bilinear forms.

I Since there are two types of forms, there are two
types of groups.

I But in odd dimensions, the two types of forms are
scalar multiples of each other, so the two groups are
the same.

I In even dimensions, 2n say, the form has plus type if
there is a totally isotropic subspace of dimension n.

I This is not the same as having an orthonormal basis.
I The other forms have minus type, and their maximal

totally isotropic subspaces have dimension n − 1.

Structure of orthogonal groups, odd
characteristic

I Any element of any orthogonal group has
determinant ±1. Why?

I The subgroup of index 2 consisting of matrices of
determinant 1 is the special orthogonal group.

I The subgroup of scalars has order 2.
I The resulting projective special orthogonal group is

NOT simple in general.
I There is (usually) a further subgroup of index 2,

which is not so easy to describe.

The spinor norm
I (With some exceptions?) orthogonal groups are

generated by reflections:

rv : x 7→ x − 2
B(x , v)

B(v , v)
v .

I The reflections have determinant −1, so the special
orthogonal group is generated by even products of
reflections.

I The reflections are of two types: the reflecting vector
either has norm a square in F , or a non-square.

I The subgroup of even products which contain an
even number of each type has index 2 (this is NOT
obvious!), and is called Ωn(q).

I The projective version PΩn(q) is simple, provided
n ≥ 5.

Orthogonal groups, characteristic 2

I These are defined as the isometry groups of
non-degenerate quadratic forms. This means that the
associated bilinear form is non-singular, so the
dimension is even.

I The determinant is always 1.
I The only scalar in the orthogonal group is 1.
I Spinor norms have no meaning.
I But still the orthogonal groups are not simple.



The quasideterminant

I If Q(v) = 1, the orthogonal transvection in v is the
map

tv : x 7→ x + B(x , v)v .

I In fact, the orthogonal group is generated by these.
I There is a subgroup of index 2 consisting of the even

products of orthogonal transvections. (This is NOT
obvious.)

I This subgroup is simple provided n ≥ 6.

Small-dimensional orthogonal
groups

What about dimensions up to 4?
I In dimension 2, orthogonal groups are dihedral
I PSO3(q) ∼= PGL2(q)

I PSO+
4 (q) ∼= (PSL2(q)× PSL2(q)).2

I PSO−
4 (q) ∼= PSL2(q2).2

I Indeed, we can go further: PSO5(q) ∼= PSp4(q).2, an
extension by an automorphism which multiplies the
form by a non-square.

I PSO+
6 (q) ∼= PSL4(q).2, an extension by the ‘duality’

automorphism M 7→ (MT )−1

I PSO−
6 (q) ∼= PSU4(q).2, an extension by the field

automorphism x 7→ xq (applied to each matrix entry,
in the case of the standard unitary form).

THE END


