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Abstract

One of the most important ideas that R. A. Fisher introduced
into experimentation during his time at Rothamsted
Experimental Station was randomisation.

Most people agree with that.

However, it turns out that they disagree about what is meant
by randomisation: what it is, how you should do it, what its
purpose is, whether or not it is desirable, and so on.

I shall try to cover some of the different points of view.
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A lady tasting tea

“ A lady declares that by tasting a cup of tea made with milk
she can discriminate whether the milk or the tea infusion was
first added to the cup.” (Fisher, Design of Experiments, 1935)

An experiment to test her assertion has
I 8 experimental units—8 cups in order
I 2 treatments—milk first or milk second.

How should the 2 treatments (call them A and B for short)
be allocated to the 8 cups?
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Two possible methods of randomization

I Start with the systematic plan AAAABBBB
and then permute it by a permutation of 8 objects
chosen at random from the set of all 8! such permutations
—equivalently, choose at random from the 70 sequences of
4 As and 4 Bs.

I For each cup independently, toss a fair coin
and allocate A if it falls heads, B if it falls tails
—equivalently, choose at random from the 256 binary
sequences of length 8.

If she has no discrimination, what is the chance that she will
identify each cup correctly?

Does this depend on her knowing the method of
randomization?
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The lady tasting tea is a red herring

Most experiments are not like this.

Usually, we want to
I estimate the difference between A and B
I estimate the standard error of this difference
I perform a hypothesis test to see whether A and B differ.

. . . and there may be more than 2 treatments.
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Three examples: 5 treatments in 50 experimental units

1. I have 5 varieties of wheat to compare, using 50 plots in a
single field. I will plant them all at the same time, and I can
find out a lot of information about the plots beforehand. It
is possible (but not very likely) that I may lose some plots
to flooding or pests or mis-management.

2. I have 5 biological substances that I want to compare in the
lab. I have 10 samples of each. The 50 procedures must be
done one at a time, and it will take me a week to complete
them all.

3. I have 5 new therapies to compare, using 50 patients.
Patients will be recruited sequentially, each one allocated
to a therapy at recruitment. I do not know anything about
these patients in advance, apart from the recruitment
criteria. The trial may have to stop before 50 patients are
recruited.
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Some methods of randomization

I Randomly select the treatment for the next experimental
unit, one unit at a time:

I if these are all done independently, it is likely that
replications will be unequal;

I in sequential experiments, there are systems for biasing the
next allocation depending on the allocations so far.

I Create a systematic plan
and apply a permutation chosen at random from a suitable
group of permutations of the experimental units.

I Randomize the treatment labels:

I this is not usually effective unless combined with the
previous method;

I it is not appropriate if some contrasts are deliberately
intended to have higher precision that others.

I Choose at random from set of plans:

I all of the foregoing can be considered as special cases of
this;

I there are some sets of plans that cannot be obtained by the
previous methods.

7/36



Some methods of randomization

I Randomly select the treatment for the next experimental
unit, one unit at a time:

I if these are all done independently, it is likely that
replications will be unequal;

I in sequential experiments, there are systems for biasing the
next allocation depending on the allocations so far.

I Create a systematic plan
and apply a permutation chosen at random from a suitable
group of permutations of the experimental units.

I Randomize the treatment labels:

I this is not usually effective unless combined with the
previous method;

I it is not appropriate if some contrasts are deliberately
intended to have higher precision that others.

I Choose at random from set of plans:

I all of the foregoing can be considered as special cases of
this;

I there are some sets of plans that cannot be obtained by the
previous methods.

7/36



Some methods of randomization

I Randomly select the treatment for the next experimental
unit, one unit at a time:

I if these are all done independently, it is likely that
replications will be unequal;

I in sequential experiments, there are systems for biasing the
next allocation depending on the allocations so far.

I Create a systematic plan
and apply a permutation chosen at random from a suitable
group of permutations of the experimental units.

I Randomize the treatment labels:

I this is not usually effective unless combined with the
previous method;

I it is not appropriate if some contrasts are deliberately
intended to have higher precision that others.

I Choose at random from set of plans:

I all of the foregoing can be considered as special cases of
this;

I there are some sets of plans that cannot be obtained by the
previous methods.

7/36



Some methods of randomization

I Randomly select the treatment for the next experimental
unit, one unit at a time:

I if these are all done independently, it is likely that
replications will be unequal;

I in sequential experiments, there are systems for biasing the
next allocation depending on the allocations so far.

I Create a systematic plan
and apply a permutation chosen at random from a suitable
group of permutations of the experimental units.

I Randomize the treatment labels:

I this is not usually effective unless combined with the
previous method;

I it is not appropriate if some contrasts are deliberately
intended to have higher precision that others.

I Choose at random from set of plans:

I all of the foregoing can be considered as special cases of
this;

I there are some sets of plans that cannot be obtained by the
previous methods.

7/36



Some methods of randomization

I Randomly select the treatment for the next experimental
unit, one unit at a time:

I if these are all done independently, it is likely that
replications will be unequal;

I in sequential experiments, there are systems for biasing the
next allocation depending on the allocations so far.

I Create a systematic plan
and apply a permutation chosen at random from a suitable
group of permutations of the experimental units.

I Randomize the treatment labels:

I this is not usually effective unless combined with the
previous method;

I it is not appropriate if some contrasts are deliberately
intended to have higher precision that others.

I Choose at random from set of plans:

I all of the foregoing can be considered as special cases of
this;

I there are some sets of plans that cannot be obtained by the
previous methods.

7/36



Some methods of randomization

I Randomly select the treatment for the next experimental
unit, one unit at a time:

I if these are all done independently, it is likely that
replications will be unequal;

I in sequential experiments, there are systems for biasing the
next allocation depending on the allocations so far.

I Create a systematic plan
and apply a permutation chosen at random from a suitable
group of permutations of the experimental units.

I Randomize the treatment labels:
I this is not usually effective unless combined with the

previous method;

I it is not appropriate if some contrasts are deliberately
intended to have higher precision that others.

I Choose at random from set of plans:

I all of the foregoing can be considered as special cases of
this;

I there are some sets of plans that cannot be obtained by the
previous methods.

7/36



Some methods of randomization

I Randomly select the treatment for the next experimental
unit, one unit at a time:

I if these are all done independently, it is likely that
replications will be unequal;

I in sequential experiments, there are systems for biasing the
next allocation depending on the allocations so far.

I Create a systematic plan
and apply a permutation chosen at random from a suitable
group of permutations of the experimental units.

I Randomize the treatment labels:
I this is not usually effective unless combined with the

previous method;
I it is not appropriate if some contrasts are deliberately

intended to have higher precision that others.

I Choose at random from set of plans:

I all of the foregoing can be considered as special cases of
this;

I there are some sets of plans that cannot be obtained by the
previous methods.

7/36



Some methods of randomization

I Randomly select the treatment for the next experimental
unit, one unit at a time:

I if these are all done independently, it is likely that
replications will be unequal;

I in sequential experiments, there are systems for biasing the
next allocation depending on the allocations so far.

I Create a systematic plan
and apply a permutation chosen at random from a suitable
group of permutations of the experimental units.

I Randomize the treatment labels:
I this is not usually effective unless combined with the

previous method;
I it is not appropriate if some contrasts are deliberately

intended to have higher precision that others.
I Choose at random from set of plans:

I all of the foregoing can be considered as special cases of
this;

I there are some sets of plans that cannot be obtained by the
previous methods.

7/36



Some methods of randomization

I Randomly select the treatment for the next experimental
unit, one unit at a time:

I if these are all done independently, it is likely that
replications will be unequal;

I in sequential experiments, there are systems for biasing the
next allocation depending on the allocations so far.

I Create a systematic plan
and apply a permutation chosen at random from a suitable
group of permutations of the experimental units.

I Randomize the treatment labels:
I this is not usually effective unless combined with the

previous method;
I it is not appropriate if some contrasts are deliberately

intended to have higher precision that others.
I Choose at random from set of plans:

I all of the foregoing can be considered as special cases of
this;

I there are some sets of plans that cannot be obtained by the
previous methods.

7/36



Some methods of randomization

I Randomly select the treatment for the next experimental
unit, one unit at a time:

I if these are all done independently, it is likely that
replications will be unequal;

I in sequential experiments, there are systems for biasing the
next allocation depending on the allocations so far.

I Create a systematic plan
and apply a permutation chosen at random from a suitable
group of permutations of the experimental units.

I Randomize the treatment labels:
I this is not usually effective unless combined with the

previous method;
I it is not appropriate if some contrasts are deliberately

intended to have higher precision that others.
I Choose at random from set of plans:

I all of the foregoing can be considered as special cases of
this;

I there are some sets of plans that cannot be obtained by the
previous methods.

7/36



Randomization to avoid bias

One purpose of randomization is to avoid
I systematic bias

(for example, doing all the tests on treatment A in January
then all the tests on treatment B in March)

I selection bias
(for example, choosing the most healthy patients for the
treatment that you are trying to prove is best)

I accidental bias
(for example, using the first rats that the animal handler
takes out of the cage for one treatment and the last rats for
the other)

I cheating by the experimenter or other people involved.

This must be done in a publicly convincing way (Cox, 2009).
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Lanarkshire milk experiment: an example of cheating

Treatments: extra milk rations or not.
These should have been randomized to the children within
each school.
The teachers decided to give the extra milk rations to those
children who were most undernourished.
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Doctor knows best: an example of selection bias

A consultant organized a trial of 3 treatments to cure a serious
disease: the current standard drug X, which was a very strong
antibiotic, and 2 new drugs. Several GPs agreed to participate.
They were sent the trial protocol, and asked to phone the
consultant’s secretary when they had a suitable patient. The
secretary had the randomization list, showing which drug to
allocate to which patient in order as they entered the trial.

One day, a GP phoned and said that he had a suitable patient.
The secretary asked questions about age, weight etc., to check
whether the patient was eligible and, if so, to determine the
correct dose of the allocated drug. The secretary accepted the
patient, allocated the next drug on the randomization list,
which was X, worked out the dose and told the GP that the
patient should be given that dose of X. The GP said “My
patient cannot take X, because it harms her.” The secretary
asked the consultant what to do. “Allocate the next drug on the
list that is not X.”
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Random choice from exactly two plans

Two biologists investigated the effect of 2 different
environments for female flour beetles in the 30 minutes after
mating: what difference did this make to fertilization?
They used 74 female flour beetles. They tossed a coin to choose
the first treatment, and then alternated them.

An educational psychologist compared 2 different methods of
presenting information. Her experimental units were 30
undergraduates, who volunteered sequentially by arriving at
her office. She tossed a coin to choose the first treatment, and
then alternated them.

In both cases, the experimenter(s) knew the next treatment. Did
this subconsciously affect their choice of next beetle or student?

In the educational experiment, the students would have been
able to spot the simple pattern. Did they deliberately volunteer
in an order to get their chosen method?
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Randomization to elicit more of the truth

1. Statistician and scientist discuss the planned experiment
. . .

2. . . . and agree on a design.
3. Statistician randomizes the design to produce a field plan.
4. Scientist says “Oh, I can’t possibly do it that way because

. . . ”
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Better ways to remove bias: Diffusion of proteins

A post-doc added from 0 to 4 extra green fluorescent proteins
to cells of Escherichia coli, adding 0 to 10 cells, 1 to 10 further
cells, and so on. Then she measured the rate of diffusion of
proteins in each of the 50 cells.

This is what she did.

Monday Tuesday Wednesday Thursday Friday
0000000000 1111111111 2222222222 3333333333 4444444444

Are the perceived differences caused by differences in size?

Did she get better at preparing the samples as the week wore
on?

Were there environmental changes in the lab that could have
contributed to the differences?
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Diffusion of proteins: continued

What she did.

Monday Tuesday Wednesday Thursday Friday
0000000000 1111111111 2222222222 3333333333 4444444444

Better to regard each day as a block.

Monday Tuesday Wednesday Thursday Friday
0011223344 0011223344 0011223344 0011223344 0011223344

There may still be systematic differences within each day,
so better still, randomize within each day.

Monday Tuesday Wednesday Thursday Friday
1040223134 2230110443 1421324030 4420013312 3204320411
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Blocking

Partition the experimental units into blocks in such a way that
units within a block are more alike than units in different
blocks.

Choose how to allocate treatments to units: in simple cases, all
treatments appear equally often in each block. This should
remove known sources of bias.

Randomize by
I randomizing the labels of the blocks (this has no effect if

they all have the same treatments);
I within each block independently, randomizing the order of

the units.
This should remove unknown sources of bias.

Allow for the blocks in the data analysis. If you do not do this,
you over-estimate the error variance.
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Additivity

Assume that the responses on the experimental units are
measured on such a scale that, if unit ω is allocated treatment i
then the response Yω satifies

Yω = Xω + τi,

where we cannot know Xω but we want to know τi.
(Kempthorne, Why randomize?, 1977)

Too many parameters and variables!

Does it matter whether we consider Xω to be a constant or a
random variable? If constant, do we need to add another
(random) term for measurement error?
(Kempthorne, 1955; Bailey, 1991; Caliński and Kageyama, 2000).
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16/36



One approach: randomization tests

If the treatment parameters τi are all equal, then any test
statistic which is orthogonal to the all-1 vector is a function of
the underlying unit values Xω.

Calculate this test statistic for all possible plans that can be
produced by your method of randomization.
The more extreme is the original value within this distribution,
the less likely it is that the treatment parameters τi are all equal.

This approach views randomization as giving a basis for exact
tests of significance without (many) model assumptions.

(Edgington, Randomization Tests, 1987; Good, Permutation Tests,
1994)
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Another approach: randomization justifies the model

Randomize by applying a randomly chosen permutation g
from a suitable group G of permutations of the experimental
units that preserves any structure such as blocking.

Replace Xω by the random variable Zω, where

Prob
(

Zω = Xg(ω) for all ω
)
=

1
|G|

If G is transitive in the sense that, given any two units, there is
at least one g in G taking one to the other,
then E(Zω) does not depend on ω,
and so may be absorbed into all the treatment parameters,
and Var(Zω) does not depend on ω: put Var(Zω) = σ2 for all ω.

Cov(Zα,Zβ) = Cov(Zg(α),Zg(β))

for all units α and β, and all g in G.
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Randomized blocks

If all blocks have the same size, and we randomize by using all
permutations which preserve the partition into blocks, then our
model becomes:
if unit ω is allocated treatment i, then

E(Yω) = τi,

and

Cov(Yα,Yβ) =


σ2 if α = β
ρ1σ2 if α 6= β in the same block
ρ2σ2 otherwise.

The eigenspaces of the covariance matrix are the usual strata:
grand mean, between blocks, and within-blocks.
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More complicated block structures

(3 blocks)/((4 rows)× (6 columns))

Randomization:
I randomize the order of the blocks;
I within each block independently, randomize the order of

the rows;
I within each block independently, randomize the order of

the columns, independently of the order of the rows.
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Simple orthogonal block structures

The crossing and nesting operators give rise to simple
orthogonal block structures (Nelder, 1965), which have been
generalized to poset block structures (Bailey, 2004).

These are essentially the same as the complete balanced
response structures of Kempthorne, Zyskind, Addelman,
Throckmorton and White (1961), but this needs some proof,
and their definition does not lend itself to the necessary
algorithms.

Some non-trivial group theory shows that the randomization
model for such structures gives a covariance matrix whose
eigenspaces are precisely the strata usually used in the analysis
of variance.
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Another simple orthogonal block structure

0 160 240 160 80 0

160 80 80 0 160 80

80 0 160 240 0 240

240 240 0 80 240 160

↑ ↑ ↑ ↑ ↑ ↑
Cropper Melba Melle Melba Cropper Melle

experimental unit = plot
treatment = combination of cultivar and amount of fertilizer
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Structure on the experimental units

(2 fields)/(3 strips)/(4 plots)

Randomize fields; randomize strips within fields;
randomize plots within strips.

stratum dim
overall mean 1

Fields 1
Strips[Fields] 4
Plots[Strips] 18

Some North Americans call this restricted randomization.
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Statistical collaboration

1. Statistician and scientist discuss the planned experiment
. . .

2. . . . and agree on a design.
3. Statistician randomizes the design to produce a field plan.
4. Scientist says “Oh, I can’t possibly do it that way because

. . . ”

Do you

I Go back to step 3,
rerandomize and hope that the next field plan will be OK?
(but maybe you will reject a large proportion of plans)

I Learn pertinent new information about constraints on the
design, and so go back to step 1?

I Go back to step 2,
and agree on a scheme of restricted randomization?
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A problem in field trials

An agricultural experiment to compare n treatments.
The experimental area has r rows and n columns.

n︷ ︸︸ ︷

r


Use a randomized complete-block design with rows as blocks.
(In each row independently,
choose one of the n! orders with equal probability.)

What should we do if the randomization produces a plan with
one treatment always at one side of the rectangle?
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Example

Federer (1955 book): guayule trees

B D G A F C E

A G C D F B E

G E D F B C A

B A C F G E D

G B F C D A E
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Restricted randomization

Choose a special subset of permutations or of plans
which avoid certain bad patterns
while still giving unbiased estimators of treatment differences
and unbiased estimators of variance,
when averaged over all possible plans.

Yates (1948); Grundy and Healy (1950); Bailey (1983).

L. Moulton: talk on Challenges in the design and analysis of a
randomized, phased implementation (stepped-wedge) study in Brazil
at the Isaac Newton Institute in 2011, is using the criterion of
validity proposed by this approach.
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Super-valid restricted randomization

If you are willing to assume a little more about the underlying
variables, it is possible to find schemes of restricted
randomization for which the estimator of variance is unbiased
when averaged over all comparisons in this one experiment.

Bailey (2012)
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Differences in approach: Latin squares

Here are some possible ways of randomizing a 5× 5 Latin
square. All give unbiased estimators of treatment differences
and of variances.

Choose from all 5× 5 Latin squares 161280
Start with a non-cyclic square; randomize rows,
columns and letters

144000

Start with a cyclic square; randomize rows, columns
and letters

17280

Start with a non-cyclic square; randomize rows and
columns

2880

Start with a cyclic square; randomize rows and
columns

2880

Choose one square at random from a complete set
of 4 mutually orthogonal Latin squares; randomize
letters

480

Fisher insisted that only the first way is correct, but there may
be an advantage in using a square that has an orthogonal mate.
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Patients arriving sequentially

Efron’s biased coin designs (1971)

Minimization: sequential balancing over many covariates (may
have undesired side effects) (Pocock and Simon, 1975)

Biased coin with covariates (Atkinson, 1999)

Restricted randomization in random permuted blocks (Bailey
and Nelson, 2003)

Other forms of restricted randomization (Plamadeala and
Rosenberger, 2012)

Changing the randomization of later patients in the light of
responses so far (Hu and Rosenberger, 2006; Coad, 2008)
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Not in favour of randomization

W. S. Gosset (‘Student’) argued with Fisher in letters from 1915
to 1934.
Gosset claimed that ‘balanced’ designs, typically his ABBA
designs, had smaller bias than completely randomized designs.

The counter-argument was put eloquently by Fisher (1926) and
Yates (1939): if there are patterns of variation in the field, and if
treatments are allocated in such a way that these patterns have
minimal effect on the estimate of treatment differences, then
those patterns will inflate the estimates of standard errors of
differences unless those patterns are allowed for in the data
analysis.

Ziliak (2011) supports Gosset’s argument,
but he confuses ‘plots’ and ‘blocks’,
seems unaware of the possibilities for blocking in design and
analysis,
and advocates false replication.
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Randomization does not mean ignoring differences that
you know about!

I Remove known sources of bias by using blocking or
covariates. Design appropriately.

I Remove unknown sources of bias by randomizing
appropriately.

I Allow for both of the above in the data analysis, so that
estimates of treatment differences and their variances are
unbiased.

I Do not overdo it: non-orthogonal designs give estimators
with higher variance, and reduction in degrees of freedom
reduces power.
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