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Abstract

Trials of new crop varieties usually have very low average replication.

Thus one possiblity is to have a single plot for each new variety and
several plots for a control variety, with the latter well spread out over
the field. A more recent proposal is to ignore the control, and instead
have two plots for each of a small proportion of the new varieties.

Variation in the field may be accounted for by a polynomial trend, by
spatial correlation, or by blocking. However, if the experiment has a
second phase, such as making bread from flour milled from the grain
produced in the first phase, then that second phase usually has blocks.

The optimality criterion used is usually the A criterion: the average
variance of the pairwise differences between the new varieties.

I shall compare designs under the A criterion when the average
replication is much less than two.
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Agricultural plant-breeding trials

In breeding trials of new varieties, typically there is very little seed of
each of the new varieties.

Example

There are 224 new varieties, with very little seed of each.

There are 280 plots available, in a 14×20 rectangle.
How do you design the experiment?

Assume that
number of varieties < number of plots << 2×number of varieties.
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Some notation

f (ω) = variety on plot ω.

Yω = response on plot ω.

τi = effect of variety i.

Assume that

Yω = τf (ω) + stuff depending on plots.

We want to minimize

∑
i

∑
j6=i

Var(τ̂i − τ̂j).
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Simplest model

Yω = τf (ω) + εω

where
E(εω = 0), Var(εω) = σ

2,

and Cov(εω ,εω ′) = 0 if ω 6= ω
′.

The A-optimal design has
2 plots for some varieties and 1 plot for all other varieties,
and is completely randomized.
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Simplest model: example

56 varieties have replication 2;

168 varieties have replication 1.

1
2

57

1

58

2
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A breeder says . . .

Unfair!

The single plot with my variety was in an infertile part of the field.
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Fixed spatial trend

Yω = τf (ω) +g(ω)+ εω

where

g(ω) is a two-dimensional low-degree polynomial in ω,

E(εω = 0), Var(εω) = σ
2,

and Cov(εω ,εω ′) = 0 if ω 6= ω
′.

Caliński, Mejza, . . . :
use one plot for each new variety
and several plots for a well-established but uninteresting “control”;
place the “control” plots in a grid;
use the “control” responses to estimate the polynomial trend;
estimate each variety effect by subtracting the trend value from its
response.
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Caliński, Mejza, . . . :
use one plot for each new variety
and several plots for a well-established but uninteresting “control”;

place the “control” plots in a grid;
use the “control” responses to estimate the polynomial trend;
estimate each variety effect by subtracting the trend value from its
response.

8/23



Fixed spatial trend

Yω = τf (ω) +g(ω)+ εω

where

g(ω) is a two-dimensional low-degree polynomial in ω,

E(εω = 0), Var(εω) = σ
2,

and Cov(εω ,εω ′) = 0 if ω 6= ω
′.
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Spatial trend: example

56 plots for “control”

224 new varieties have replication 1.

X X X X
X X 3 X X
X X X X
X X X X
X X X X

2 X X X X
X X X X
X X X X
X X X X
X X X 1 X
X X X X
X X X X
X X X X
X X X X
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Spatial correlation

Yω = τf (ω) + εω

where
E(εω = 0), Var(εω) = σ

2,
and

Cov(εω ,εω ′) depends on the spatial relationship between ω and ω ′.

Kempton, Talbot, Besag, Martin, Eccleston . . . :
use one plot for each new variety and several plots for “control”;
place the “control” plots in some kind of grid;
estimate variety effects by analysing the data with GLS or REML.

Cullis, Smith, Lim, Gilmour, Butler . . . :
use 2 plots for some varieties and 1 plot for all other varieties,
optimize the design by computer search,
estimate variety effects by analysing the data with GLS or REML.
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Blocks

The field is partitioned into homogeneous blocks.
(One block has all the stony plots; one block has all the plots near the
rabbit warren, . . . .)

Yω = τf (ω) +βh(ω) + εω

where
h(ω) = block containing ω,

E(εω = 0), Var(εω) = σ
2,

and Cov(εω ,εω ′) = 0 if ω 6= ω
′.
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Blocks: example

Rows are blocks, so there are 14 blocks, each with 20 plots.
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Blocks: example, continued

224 varieties in 14 blocks of size 20.

(280−224 = 56 and 224−56 = 168,
so at least 168 varieties must have single replication.)

14 blocks



8 plots 12 plots

...
...

56 varieties 168 varieties
all single replication

whole design ∆

Subdesign Γ has 56 varieties
in 14 blocks of size 8.
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A general block design with average replication less than 2

b blocks



k plots n plots

...
...

v varieties bn varieties
all single replication

whole design ∆

Whole design ∆ has v+bn varieties in b blocks of size k +n;
the subdesign Γ has v core varieties in b blocks of size k;
call the remaining varieties orphans.
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Pairwise variance: two orphans in the same block

b blocks



k plots n plots
i j

...
...

v core varieties bn orphan varieties
subdesign Γ all single replication

whole design ∆

Var∆(τ̂i − τ̂j) = 2σ
2.
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Pairwise variance: two orphans in different blocks

b blocks



k plots n plots
i

...
...

j
v core varieties bn orphan varieties

subdesign Γ all single replication

whole design ∆

Var∆(τ̂i − τ̂j) = 2σ
2 +VarΓ(β̂i − β̂j).
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Pairwise variance: two core varieties

b blocks
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Pairwise variance: one core variety and one orphan

b blocks



k plots n plots
i
...

...
j (block m)

v core varieties bn orphan varieties
subdesign Γ all single replication

whole design ∆

Var∆(τ̂i − τ̂j) = σ
2 +VarΓ(τ̂i + β̂m).
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Sum of the pairwise variances

Theorem (cf Herzberg and Jarrett, 2007)

The sum of the variances of treatment differences in ∆

= constant+V1 +nV3 +n2V2,

where

V1 = the sum of the variances of treatment differences in Γ

V2 = the sum of the variances of block differences in Γ

V3 = the sum of the variances of sums of
one treatment and one block in Γ.

(If Γ is equi-replicate then V2 and V3 are increasing functions of V1.)

Consequence

For a given choice of k, make Γ as efficient as possible.
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A less obvious consequence

Consequence

If n or b is large,
it may be best to make Γ a complete block design for k′ controls,
even if there is no interest in comparisons between new treatments
and controls, or between controls.
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5n+10 treatments in 5 blocks of size 4+n

1 2 3 4 A1 · · · An

3 4 5 6 B1 · · · Bn

5 6 7 8 C1 · · · Cn

7 8 9 0 D1 · · · Dn

9 0 1 2 E1 · · · En

Youden and Connor (1953):
“experiments in physics do not
need much replication because
results are not very variable” —
chain block design

1 2 3 4 A1 · · · An

1 5 6 7 B1 · · · Bn

2 5 8 9 C1 · · · Cn

3 6 8 0 D1 · · · Dn

4 7 9 0 E1 · · · En

subdesign is dual of BIBD
(Herzberg and Andrews, 1978)
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is better for large n if b 6= 5
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K1 K2 1 2 A1 · · · An

K1 K2 3 4 B1 · · · Bn

K1 K2 5 6 C1 · · · Cn

K1 K2 7 8 D1 · · · Dn

K1 K2 9 0 E1 · · · En

better for large n if b > 13
even if there is no interest in
controls

23/23



5n+10 treatments in 5 blocks of size 4+n

1 2 3 6 A1 · · · An

2 3 4 7 B1 · · · Bn

3 4 5 8 C1 · · · Cn

4 5 1 9 D1 · · · Dn

5 1 2 0 E1 · · · En

best subdesign for k = 3
is better for large n if b 6= 5

K1 K2 1 2 A1 · · · An

K1 K2 3 4 B1 · · · Bn

K1 K2 5 6 C1 · · · Cn

K1 K2 7 8 D1 · · · Dn

K1 K2 9 0 E1 · · · En

better for large n if b > 13
even if there is no interest in
controls

23/23


	simplest
	spatial trend
	spatial correlation
	blocks
	chain

