Optimal design of experiments with very low average replication

R. A. Bailey

r.a.bailey@qmul.ac.uk

Probastat: July 2011

Trials of new crop varieties usually have very low average replication.

Trials of new crop varieties usually have very low average replication. Thus one possiblity is to have a single plot for each new variety and several plots for a control variety, with the latter well spread out over the field.

Trials of new crop varieties usually have very low average replication. Thus one possiblity is to have a single plot for each new variety and several plots for a control variety, with the latter well spread out over the field. A more recent proposal is to ignore the control, and instead have two plots for each of a small proportion of the new varieties.

Trials of new crop varieties usually have very low average replication. Thus one possiblity is to have a single plot for each new variety and several plots for a control variety, with the latter well spread out over the field. A more recent proposal is to ignore the control, and instead have two plots for each of a small proportion of the new varieties.

Variation in the field may be accounted for by a polynomial trend, by spatial correlation, or by blocking.

Trials of new crop varieties usually have very low average replication. Thus one possiblity is to have a single plot for each new variety and several plots for a control variety, with the latter well spread out over the field. A more recent proposal is to ignore the control, and instead have two plots for each of a small proportion of the new varieties.

Variation in the field may be accounted for by a polynomial trend, by spatial correlation, or by blocking. However, if the experiment has a second phase, such as making bread from flour milled from the grain produced in the first phase, then that second phase usually has blocks.

Trials of new crop varieties usually have very low average replication. Thus one possiblity is to have a single plot for each new variety and several plots for a control variety, with the latter well spread out over the field. A more recent proposal is to ignore the control, and instead have two plots for each of a small proportion of the new varieties.

Variation in the field may be accounted for by a polynomial trend, by spatial correlation, or by blocking. However, if the experiment has a second phase, such as making bread from flour milled from the grain produced in the first phase, then that second phase usually has blocks.

The optimality criterion used is usually the A criterion: the average variance of the pairwise differences between the new varieties.

Trials of new crop varieties usually have very low average replication. Thus one possiblity is to have a single plot for each new variety and several plots for a control variety, with the latter well spread out over the field. A more recent proposal is to ignore the control, and instead have two plots for each of a small proportion of the new varieties.

Variation in the field may be accounted for by a polynomial trend, by spatial correlation, or by blocking. However, if the experiment has a second phase, such as making bread from flour milled from the grain produced in the first phase, then that second phase usually has blocks.

The optimality criterion used is usually the A criterion: the average variance of the pairwise differences between the new varieties.

I shall compare designs under the A criterion when the average replication is much less than two.

In breeding trials of new varieties, typically there is very little seed of each of the new varieties.

Example

There are 224 new varieties, with very little seed of each.

In breeding trials of new varieties, typically there is very little seed of each of the new varieties.

Example

There are 224 new varieties, with very little seed of each.

There are 280 plots available, in a 14×20 rectangle.

In breeding trials of new varieties, typically there is very little seed of each of the new varieties.

Example

There are 224 new varieties, with very little seed of each.

There are 280 plots available, in a 14×20 rectangle.

How do you design the experiment?

In breeding trials of new varieties, typically there is very little seed of each of the new varieties.

Example

There are 224 new varieties, with very little seed of each.

There are 280 plots available, in a 14×20 rectangle.

How do you design the experiment?

Assume that

number of varieties < number of plots $<< 2 \times$ number of varieties.

$$f(\omega)$$
 = variety on plot ω .

$$f(\omega)$$
 = variety on plot ω .

 Y_{ω} = response on plot ω .

$$f(\omega)$$
 = variety on plot ω .

 Y_{ω} = response on plot ω .

 τ_i = effect of variety i.

$$f(\omega)$$
 = variety on plot ω .

 Y_{ω} = response on plot ω .

 τ_i = effect of variety i.

Assume that

 $Y_{\omega} = \tau_{f(\omega)} + \text{stuff depending on plots.}$

$$f(\omega)$$
 = variety on plot ω .

 Y_{ω} = response on plot ω .

$$\tau_i$$
 = effect of variety i .

Assume that

$$Y_{\omega} = \tau_{f(\omega)} + \text{stuff depending on plots.}$$

We want to minimize

$$\sum_{i} \sum_{j \neq i} \operatorname{Var}(\hat{\tau}_i - \hat{\tau}_j).$$

Simplest model

$$Y_{\omega} = \tau_{f(\omega)} + \varepsilon_{\omega}$$

where

$$E(\varepsilon_{\omega}=0), \qquad \mathrm{Var}(\varepsilon_{\omega})=\sigma^2,$$
 and $\mathrm{Cov}(\varepsilon_{\omega},\varepsilon_{\omega'})=0$ if $\omega\neq\omega'.$

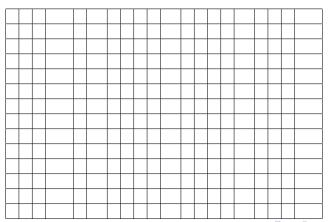
Simplest model

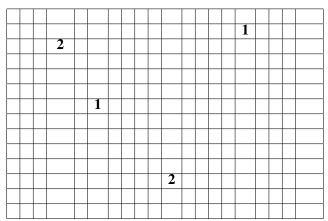
$$Y_{\boldsymbol{\omega}} = \tau_{f(\boldsymbol{\omega})} + \varepsilon_{\boldsymbol{\omega}}$$

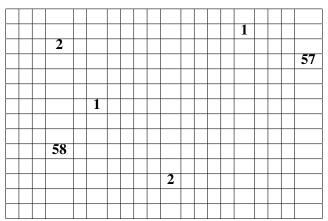
where

$$E(\varepsilon_{\omega}=0), \qquad \operatorname{Var}(\varepsilon_{\omega})=\sigma^{2},$$
 and $\operatorname{Cov}(\varepsilon_{\omega},\varepsilon_{\omega'})=0$ if $\omega\neq\omega'.$

The A-optimal design has 2 plots for some varieties and 1 plot for all other varieties, and is completely randomized.







A breeder says . . .

Unfair!

The single plot with my variety was in an infertile part of the field.

$$Y_{\omega} = \tau_{f(\omega)} + g(\omega) + \varepsilon_{\omega}$$

where

 $g(\omega)$ is a two-dimensional low-degree polynomial in ω ,

$$E(\varepsilon_{\omega}=0), \quad \operatorname{Var}(\varepsilon_{\omega})=\sigma^{2},$$

and $Cov(\varepsilon_{\omega}, \varepsilon_{\omega'}) = 0$ if $\omega \neq \omega'$.

$$Y_{\omega} = \tau_{f(\omega)} + g(\omega) + \varepsilon_{\omega}$$

where

 $g(\omega)$ is a two-dimensional low-degree polynomial in ω ,

$$E(\varepsilon_{\omega}=0), \quad \operatorname{Var}(\varepsilon_{\omega})=\sigma^{2},$$

$$\text{and}\quad \text{Cov}(\varepsilon_{\omega},\varepsilon_{\omega'})=0 \text{ if } \omega\neq\omega'.$$

Caliński, Mejza, . . . :

$$Y_{\omega} = \tau_{f(\omega)} + g(\omega) + \varepsilon_{\omega}$$

where

 $g(\omega)$ is a two-dimensional low-degree polynomial in ω ,

$$E(\varepsilon_{\omega} = 0), \quad \operatorname{Var}(\varepsilon_{\omega}) = \sigma^{2},$$

and $\operatorname{Cov}(\varepsilon_{\omega}, \varepsilon_{\omega'}) = 0 \text{ if } \omega \neq \omega'.$

Caliński, Mejza, ...: use one plot for each new variety

$$Y_{\omega} = \tau_{f(\omega)} + g(\omega) + \varepsilon_{\omega}$$

where

 $g(\omega)$ is a two-dimensional low-degree polynomial in ω ,

$$E(\varepsilon_{\omega} = 0), \quad \operatorname{Var}(\varepsilon_{\omega}) = \sigma^{2},$$

and $\operatorname{Cov}(\varepsilon_{\omega}, \varepsilon_{\omega'}) = 0 \text{ if } \omega \neq \omega'.$

Caliński, Mejza, ...:
use one plot for each new variety
and several plots for a well-established but uninteresting "control";

$$Y_{\omega} = \tau_{f(\omega)} + g(\omega) + \varepsilon_{\omega}$$

where

 $g(\omega)$ is a two-dimensional low-degree polynomial in ω ,

$$E(\varepsilon_{\omega} = 0), \quad \operatorname{Var}(\varepsilon_{\omega}) = \sigma^{2},$$

and $\operatorname{Cov}(\varepsilon_{\omega}, \varepsilon_{\omega'}) = 0 \text{ if } \omega \neq \omega'.$

Caliński, Mejza, ...: use one plot for each new variety and several plots for a well-established but uninteresting "control"; place the "control" plots in a grid;

$$Y_{\omega} = \tau_{f(\omega)} + g(\omega) + \varepsilon_{\omega}$$

where

 $g(\omega)$ is a two-dimensional low-degree polynomial in ω ,

$$E(\varepsilon_{\omega} = 0), \quad \operatorname{Var}(\varepsilon_{\omega}) = \sigma^{2},$$

and $\operatorname{Cov}(\varepsilon_{\omega}, \varepsilon_{\omega'}) = 0 \text{ if } \omega \neq \omega'.$

Caliński, Mejza, ...:
use one plot for each new variety
and several plots for a well-established but uninteresting "control";
place the "control" plots in a grid;
use the "control" responses to estimate the polynomial trend;

$$Y_{\omega} = \tau_{f(\omega)} + g(\omega) + \varepsilon_{\omega}$$

where

 $g(\omega)$ is a two-dimensional low-degree polynomial in ω ,

$$E(\varepsilon_{\omega} = 0), \quad \operatorname{Var}(\varepsilon_{\omega}) = \sigma^{2},$$

and $\operatorname{Cov}(\varepsilon_{\omega}, \varepsilon_{\omega'}) = 0 \text{ if } \omega \neq \omega'.$

Caliński, Mejza, ...:

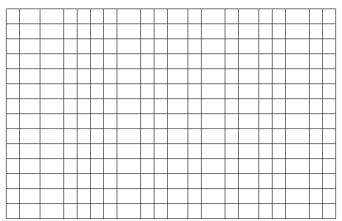
use one plot for each new variety and several plots for a well-establi

and several plots for a well-established but uninteresting "control"; place the "control" plots in a grid;

use the "control" responses to estimate the polynomial trend; estimate each variety effect by subtracting the trend value from its response.

56 plots for "control" 224 new varieties have replication 1.

56 plots for "control" 224 new varieties have replication 1.



56 plots for "control" 224 new varieties have replication 1.

	X	X	X
X	X	X	X
X	X	X	X
X	X	X	X
X	X	X	X
X	X	X	X
X	X	X	X
X	X	X	X
X	X	X	X
X	X	X	X
X	X	X	X
X	X	X	X
X	X	X	X
X	X	X	X

56 plots for "control" 224 new varieties have replication 1.

	X		X		X
X	X	3	X		X
X	X		X		X
X	X		X		X
X	X		X		X
2 X	X		X		X
X	X		X		X
X	X		X		X
X	X		X		X
X	X		X	1	X
X	X		X		X
X	X		X		X
X	X		X		X
X	X		X		X

Spatial correlation

$$Y_{\boldsymbol{\omega}} = \tau_{f(\boldsymbol{\omega})} + \varepsilon_{\boldsymbol{\omega}}$$

where

$$E(\varepsilon_{\omega}=0), \qquad \operatorname{Var}(\varepsilon_{\omega})=\sigma^{2},$$

and

 $\text{Cov}(\epsilon_{\omega},\epsilon_{\omega'})$ depends on the spatial relationship between ω and $\omega'.$

$$Y_{\boldsymbol{\omega}} = \tau_{f(\boldsymbol{\omega})} + \varepsilon_{\boldsymbol{\omega}}$$

where

$$E(\varepsilon_{\omega}=0), \qquad \operatorname{Var}(\varepsilon_{\omega})=\sigma^{2},$$

and

 $\text{Cov}(\varepsilon_{\omega}, \varepsilon_{\omega'})$ depends on the spatial relationship between ω and ω' .

Kempton, Talbot, Besag, Martin, Eccleston . . . :

$$Y_{\boldsymbol{\omega}} = \tau_{f(\boldsymbol{\omega})} + \varepsilon_{\boldsymbol{\omega}}$$

where

$$E(\varepsilon_{\omega}=0), \qquad \operatorname{Var}(\varepsilon_{\omega})=\sigma^{2},$$

and

 $\mathrm{Cov}(\varepsilon_\omega,\varepsilon_{\omega'})$ depends on the spatial relationship between ω and ω' .

Kempton, Talbot, Besag, Martin, Eccleston . . . : use one plot for each new variety and several plots for "control";

$$Y_{\boldsymbol{\omega}} = \tau_{f(\boldsymbol{\omega})} + \varepsilon_{\boldsymbol{\omega}}$$

where

$$E(\varepsilon_{\omega}=0), \qquad \operatorname{Var}(\varepsilon_{\omega})=\sigma^{2},$$

and

 $\text{Cov}(\varepsilon_{\omega}, \varepsilon_{\omega'})$ depends on the spatial relationship between ω and ω' .

Kempton, Talbot, Besag, Martin, Eccleston . . .: use one plot for each new variety and several plots for "control"; place the "control" plots in some kind of grid;

$$Y_{\boldsymbol{\omega}} = \tau_{f(\boldsymbol{\omega})} + \varepsilon_{\boldsymbol{\omega}}$$

where

$$E(\varepsilon_{\omega}=0), \qquad \operatorname{Var}(\varepsilon_{\omega})=\sigma^{2},$$

and

 $\text{Cov}(\varepsilon_{\omega}, \varepsilon_{\omega'})$ depends on the spatial relationship between ω and ω' .

Kempton, Talbot, Besag, Martin, Eccleston . . . : use one plot for each new variety and several plots for "control"; place the "control" plots in some kind of grid; estimate variety effects by analysing the data with GLS or REML.

$$Y_{\boldsymbol{\omega}} = \tau_{f(\boldsymbol{\omega})} + \varepsilon_{\boldsymbol{\omega}}$$

where

$$E(\varepsilon_{\omega}=0), \qquad \operatorname{Var}(\varepsilon_{\omega})=\sigma^{2},$$

and

 $\mathrm{Cov}(arepsilon_\omega, arepsilon_{\omega'})$ depends on the spatial relationship between ω and ω' .

Kempton, Talbot, Besag, Martin, Eccleston ...: use one plot for each new variety and several plots for "control"; place the "control" plots in some kind of grid; estimate variety effects by analysing the data with GLS or REML.

Cullis, Smith, Lim, Gilmour, Butler . . . :

$$Y_{\boldsymbol{\omega}} = \tau_{f(\boldsymbol{\omega})} + \varepsilon_{\boldsymbol{\omega}}$$

where

$$E(\varepsilon_{\omega}=0), \qquad \operatorname{Var}(\varepsilon_{\omega})=\sigma^{2},$$

and

 $\mathrm{Cov}(\varepsilon_{\omega}, \varepsilon_{\omega'})$ depends on the spatial relationship between ω and ω' .

Kempton, Talbot, Besag, Martin, Eccleston . . . : use one plot for each new variety and several plots for "control"; place the "control" plots in some kind of grid; estimate variety effects by analysing the data with GLS or REML.

Cullis, Smith, Lim, Gilmour, Butler . . . : use 2 plots for some varieties and 1 plot for all other varieties,

$$Y_{\boldsymbol{\omega}} = \tau_{f(\boldsymbol{\omega})} + \varepsilon_{\boldsymbol{\omega}}$$

where

$$E(\varepsilon_{\omega}=0), \qquad \operatorname{Var}(\varepsilon_{\omega})=\sigma^{2},$$

and

 $\mathrm{Cov}(\varepsilon_{\omega}, \varepsilon_{\omega'})$ depends on the spatial relationship between ω and ω' .

Kempton, Talbot, Besag, Martin, Eccleston . . . : use one plot for each new variety and several plots for "control"; place the "control" plots in some kind of grid; estimate variety effects by analysing the data with GLS or REML.

Cullis, Smith, Lim, Gilmour, Butler . . . : use 2 plots for some varieties and 1 plot for all other varieties, optimize the design by computer search,

$$Y_{\boldsymbol{\omega}} = \tau_{f(\boldsymbol{\omega})} + \varepsilon_{\boldsymbol{\omega}}$$

where

$$E(\varepsilon_{\omega}=0), \quad \operatorname{Var}(\varepsilon_{\omega})=\sigma^{2},$$

and

 $\mathrm{Cov}(\varepsilon_{\omega}, \varepsilon_{\omega'})$ depends on the spatial relationship between ω and ω' .

Kempton, Talbot, Besag, Martin, Eccleston . . . : use one plot for each new variety and several plots for "control"; place the "control" plots in some kind of grid; estimate variety effects by analysing the data with GLS or REML.

Cullis, Smith, Lim, Gilmour, Butler ...: use 2 plots for some varieties and 1 plot for all other varieties, optimize the design by computer search, estimate variety effects by analysing the data with GLS or REML.

Blocks

The field is partitioned into homogeneous blocks. (One block has all the stony plots; one block has all the plots near the rabbit warren,)

Blocks

The field is partitioned into homogeneous blocks. (One block has all the stony plots; one block has all the plots near the rabbit warren,)

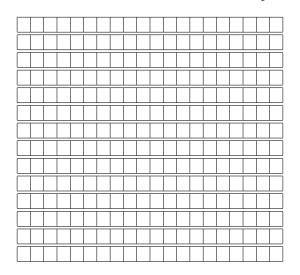
$$Y_{\omega} = \tau_{f(\omega)} + \beta_{h(\omega)} + \varepsilon_{\omega}$$

where

$$h(\omega)= ext{block containing } \omega,$$
 $E(\varepsilon_{\omega}=0), \qquad ext{Var}(\varepsilon_{\omega})=\sigma^2,$ and $ext{Cov}(\varepsilon_{\omega}, \varepsilon_{\omega'})=0 ext{ if } \omega
eq \omega'.$

Blocks: example

Rows are blocks, so there are 14 blocks, each with 20 plots.



Blocks: example, continued

224 varieties in 14 blocks of size 20.

Blocks: example, continued

224 varieties in 14 blocks of size 20. (280-224=56 and 224-56=168, so at least 168 varieties must have single replication.)

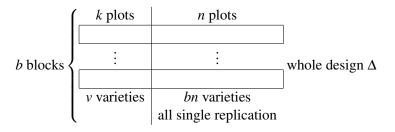
Blocks: example, continued

224 varieties in 14 blocks of size 20. (280-224=56 and 224-56=168, so at least 168 varieties must have single replication.)

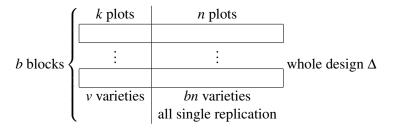
1	8 plots	12 plots	_
14 blocks	:	:	whole design Δ
]
	56 varieties	168 varieties	
		all single replication	

Subdesign Γ has 56 varieties in 14 blocks of size 8.

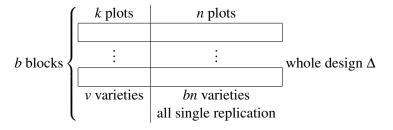
	k plots	<i>n</i> plots	_
b blocks	:	:	whole design Δ
b blocks			whole design Z
	v varieties	bn varieties	•
		all single replication	



Whole design Δ has v + bn varieties in b blocks of size k + n;



Whole design Δ has v + bn varieties in b blocks of size k + n; the subdesign Γ has v core varieties in b blocks of size k;



Whole design Δ has v + bn varieties in b blocks of size k + n; the subdesign Γ has v core varieties in b blocks of size k; call the remaining varieties orphans.

Pairwise variance: two orphans in the same block

1	k plots	<i>n</i> plots	
		i j	
b blocks <	:	:	whole design Δ
	v core varieties subdesign Γ	<i>bn</i> orphan varieties all single replication	J

Pairwise variance: two orphans in the same block

	k plots	<i>n</i> plots	
		i j	
b blocks	<u>:</u>	:	whole design Δ
	v core varieties	<i>bn</i> orphan varieties	
	ig(subdesign $ig($	all single replication	

$$\operatorname{Var}_{\Delta}(\hat{\tau}_i - \hat{\tau}_j) = 2\sigma^2.$$

Pairwise variance: two orphans in different blocks

1	k plots	<i>n</i> plots	
		i	
b blocks {	:	:	whole design Δ
		j	
	v core varieties	bn orphan varieties	
l	subdesign Γ	all single replication	

Pairwise variance: two orphans in different blocks

	k plots	<i>n</i> plots	
		i	
b blocks <	:	:	whole design Δ
		j	
	v core varieties	bn orphan varieties	
	subdesign Γ	all single replication	

$$\operatorname{Var}_{\Delta}(\hat{\tau}_i - \hat{\tau}_j) = 2\sigma^2 + \operatorname{Var}_{\Gamma}(\hat{\beta}_i - \hat{\beta}_j).$$

Pairwise variance: two core varieties

1	k plots	<i>n</i> plots	
	i		
b blocks	÷	:	whole design Δ
	j		
	v core varieties	bn orphan varieties	
Į	subdesign Γ	all single replication	

Pairwise variance: two core varieties

1	k plots	<i>n</i> plots	
	i		
b blocks	<u>:</u>	:	whole design Δ
	j		
	v core varieties	bn orphan varieties	
	subdesign Γ	all single replication	

$$\operatorname{Var}_{\Delta}(\hat{\tau}_i - \hat{\tau}_j) = \operatorname{Var}_{\Gamma}(\hat{\tau}_i - \hat{\tau}_j).$$

Pairwise variance: one core variety and one orphan

1	k plots	<i>n</i> plots	
	i		
b blocks	÷	÷	whole design Δ
		j (block m)	
	v core varieties	bn orphan varieties	
	subdesign Γ	all single replication	

Pairwise variance: one core variety and one orphan

1	k plots	<i>n</i> plots	
	i		
b blocks	÷	:	whole design Δ
		j (block m)	
	v core varieties	bn orphan varieties	
	\subseteq subdesign Γ	all single replication	

$$\operatorname{Var}_{\Delta}(\hat{\tau}_i - \hat{\tau}_j) = \sigma^2 + \operatorname{Var}_{\Gamma}(\hat{\tau}_i + \hat{\beta}_m).$$

Sum of the pairwise variances

Theorem (cf Herzberg and Jarrett, 2007)

The sum of the variances of treatment differences in Δ

$$= constant + V_1 + nV_3 + n^2V_2,$$

where

 V_1 = the sum of the variances of treatment differences in Γ

 V_2 = the sum of the variances of block differences in Γ

 V_3 = the sum of the variances of sums of one treatment and one block in Γ .

(If Γ is equi-replicate then V_2 and V_3 are increasing functions of V_1 .)

Sum of the pairwise variances

Theorem (cf Herzberg and Jarrett, 2007)

The sum of the variances of treatment differences in Δ

$$= constant + V_1 + nV_3 + n^2V_2,$$

where

 V_1 = the sum of the variances of treatment differences in Γ

 V_2 = the sum of the variances of block differences in Γ

 V_3 = the sum of the variances of sums of one treatment and one block in Γ .

(If Γ is equi-replicate then V_2 and V_3 are increasing functions of V_1 .)

Consequence

For a given choice of k, make Γ as efficient as possible.

A less obvious consequence

Consequence

If n or b is large,

it may be best to make Γ a complete block design for k' controls, even if there is no interest in comparisons between new treatments and controls, or between controls.

5n + 10 treatments in 5 blocks of size 4 + n

1	2	3	4	A_1	• • •	A_n
3	4	5	6	B_1	•••	B_n
5	6	7	8	C_1		C_n
7	8	9	0	D_1		D_n
9	0	1	2	E_1		E_n

Youden and Connor (1953): "experiments in physics do not need much replication because results are not very variable" — chain block design

5n + 10 treatments in 5 blocks of size 4 + n

1	2	3	4	A_1	• • •	A_n
3	4	5	6	B_1	•••	B_n
5	6	7	8	C_1	•••	C_n
7	8	9	0	D_1	•••	D_n
9	0	1	2	E_1	•••	E_n

Youden and Connor (1953): "experiments in physics do not need much replication because results are not very variable" — chain block design

subdesign is dual of BIBD (Herzberg and Andrews, 1978)

5n+10 treatments in 5 blocks of size 4+n

1	2	3	4	A_1	• • •	A_n
1	5	6	7	B_1	•••	B_n
2	5	8	9	C_1	•••	C_n
3	6	8	0	D_1	•••	D_n
4	7	9	0	E_1	•••	E_n

subdesign is dual of BIBD, best subdesign for k = 4

5n + 10 treatments in 5 blocks of size 4 + n

1	2	3	4	A_1	• • •	A_n
1	5	6	7	B_1	•••	B_n
2	5	8	9	C_1	•••	C_n
3	6	8	0	D_1	•••	D_n
4	7	9	0	E_1	•••	E_n

subdesign is dual of BIBD, best subdesign for k = 4

best subdesign for k = 3 is better for large n if $b \neq 5$

5n+10 treatments in 5 blocks of size 4+n

1	2	3	6	A_1	• • •	A_n
2	3	4	7	B_1	•••	B_n
3	4	5	8	C_1	•••	C_n
4	5	1	9	D_1	•••	D_n
5	1	2	0	E_1	•••	E_n

best subdesign for k = 3 is better for large n if $b \neq 5$

5n+10 treatments in 5 blocks of size 4+n

1	2	3	6	A_1	• • •	A_n
2	3	4	7	B_1	•••	B_n
3	4	5	8	C_1	•••	C_n
4	5	1	9	D_1	•••	D_n
5	1	2	0	E_1		E_n

best subdesign for k = 3 is better for large n if $b \neq 5$

better for large n if b > 13 even if there is no interest in controls