If the cells in a semi-Latin square have an effect over and above the
effects of the rows and columns then not all semi-Latin squares
are equally efficient. An inflated Latin square is worst possible,
because the contrasts between the letters of the original Latin square are
completely confounded with contrasts between cells.
Optimal semi-Latin squares are known in some cases.
Cheng and Bailey, 1991 showed
that Trojan squares are optimal.
Bailey, 1988 showed that if
k= r(n-1) then an
r-fold inflation of a Trojan square
is optimal.
Bailey, 1992 showed that if
n=3 and k is odd then an optimal
square can be formed by superposing almost equal
numbers of each of a pair of mutually orthogonal
Latin squares.
For some values of n and k, optimal
semi-Latin squares have been found by exhaustive
search. For k < n th search has
been restricted to simple semi-Latin squares,
also called SOMAs. When k = n-1
then any SOMA must be Trojan, so there is no
SOMA unless there is a projective plane of order
n.
Chigbu, 1995 found all optimal
semi-Latin squares for n=k=4.
Bailey and Royle, 1997 found the optimal
SOMA for n=6 and k=2.
Soicher, 1999 found the optimal
SOMA for n=6 and k=3, and that
there is no SOMA for n=6 and k=4,
Below are optimal semi-Latin squares for small
numbers of letters (v = nk). They
are colour-coded according to the result which
shows optimality. Unless otherwise stated, they are optimal for all
the following critieria:
A |
maximizes the harmonic mean of the canonical efficiency factors;
equivalently, minimizes the average variance of estimators of
simple contrasts | |
D |
maximizes the geometric mean of the canonical efficiency factors;
equivalently, minimizes the volume of the ellipsoid of
confidence around the estimates of treatment effects | |
E |
maximizes the minimum of the canonical efficiency factors
| |
E' |
maximizes the minimum of the efficiency factors for simple
contrasts;
equivalently, minimizes the maximum variance of estimators of
simple contrasts | |
A B | C D | E F |
C F | E B | A D |
E D | A F | C B |
A B | C D | E F | G H |
C H | A F | G D | E B |
E D | G B | A H | C F |
G F | E H | C B | A D |
A B C | D E F | G H I |
D E I | G H C | A B F |
G H F | A B I | D E C |
A B | C D | E F |
G H | I J |
I H | A J | C B |
E D | G F |
G D | I F | A H |
C J | E B |
E J | G B | I D |
A F | C H |
C F | E H | G J |
I B | A D |
A B C D | E F G H | I J K L |
E F K L | I J C D | A B G H |
I J G H | A B K L | E F C D |
A B C | D E F | G H I | J K L |
D K I | A H L | J E C | G B F |
G E L | J B I | A K F | D H C |
J H F | G K C | D B L | A E I |
A B | C D | E F | G H |
I J | K L |
F G | A I | D K | B C |
H L | E J |
C H | F L | A G | J K |
B E | D I |
J L | B K | H I | A E |
D G | C F |
I K | E H | C J | D L |
A F | B G |
D E | D J | B L | F I |
C K | A H |
| is A-optimal and D-optimal |
A B | C D | E F | G H |
I J | K L |
C J | F G | A H | I L |
D K | B E |
F K | A I | C L | D E |
B G | H J |
G L | H K | B D | A J |
C E | F I |
E I | B L | G J | C K |
F H | A D |
D H | E J | I K | B F |
A L | C G |
| is E-optimal |
A L | D J | E K |
F G | B H | C I |
I E | B G | F D |
C L | A K | J H |
F J | I K | C H |
B E | D L | A G |
B K | A H | J G |
D I | C F | E L |
C G | F L | A I |
K H | E J | D B |
D H | E C | B L |
A J | G I | F K |
| is E'-optimal |
A B | C D | E F | G H |
I J | K L | M N |
M J | A L | C N | E B |
G D | I F | K H |
K D | M F | A H | C J |
E L | G N | I B |
I L | K N | M B | A D |
C F | E H | G J |
G F | I H | K J | M L |
A N | C B | E D |
E N | G B | I D | K F |
M H | A J | C L |
C H | E J | G L | I N |
K B | M D | A F |
A B C D E | F G H I J | K L M N O |
F G H N O | K L M D E | A B C I J |
K L M I J | A B C N O | F G H D E |
A B C | D E F | G H I |
J K L | M N O |
M K I | A N L | D B O |
G E C | J H F |
J E O | M H C | A K F |
D N I | G B L |
G N F | J B I | M E L |
A H O | D K C |
D H L | G K O | J N C |
M B F | A E I |
A B C D | E F G H | I J K L | M N O P |
E F O L | A B K P | M N G D | I J C H |
I J G P | M N C L | A B O H | E F K D |
M N K H | I J O D | E F C P | A B G L |
A B | C D | E F | G H | I J | K L |
M N | O P |
C F | A H | G B | E D | K N | I P |
O J | M L |
E J | G L | A N | C P | M B | O D |
I F | K H |
G N | E P | C J | A L | O F | M H |
K B | I D |
I H | K F | M D | O B | A P | C N |
E L | G J |
K D | I B | O H | M F | C L | A J |
G P | E N |
M P | O N | I L | K J | E H | G F |
A D | C B |
O L | M J | K P | I N | G D | E B |
C H | A F |
A B C D E F | G H I J K L | M N O P Q R |
G H I P Q R | M N O D E F | A B C J K L |
M N O J K L | A B C P Q R | G H I D E F |
A L U
|
F K V
|
B G W
|
C H Y
|
D I Z
|
E J X
|
C I V
|
B J U
|
H L Z
|
E F W
|
G K X
|
A D Y
|
D J W
|
A E Z
|
C K U
|
I L X
|
B F Y
|
G H V
|
E K Y
|
H I W
|
A F X
|
D G U
|
J L V
|
B C Z
|
F G Z
|
C D X
|
I J Y
|
A B V
|
E H U
|
K L W
|
B H X
|
G L Y
|
D E V
|
J K Z
|
A C W
|
F I U
|
A B | C D | E F | G H | I J |
K L | M N | O P | Q R |
E D | A F | C B | K J | G L |
I H | Q P | M R | O N |
C F | E B | A D | I L | K H |
G J | O R | Q N | M R |
M H | O I | Q L | A N | C P |
E R | G B | I D | K F |
Q I | M L | O H | E P | A R |
C N | K D | G F | I B |
O L | Q H | M I | C R | E N |
A P | I F | K B | G D |
G N | I P | K R | M B | O D |
Q F | A H | C I | E L |
K P | G R | I N | Q D | M F |
O B | E I | A L | C H |
I R | K N | G P | O F | Q B |
M D | C L | E H | A I |
Page maintained by
R. A. Bailey
Modified 3/5/00