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Abstract

We consider experiments where the experimental units are
arranged in a circle or in a single line in space or time.

If neighbouring treatments may affect the response on an
experimental unit, then we need a model which includes the
effects of direct treatments, left neighbours and right
neighbours. It is desirable that each ordered pair of treatments
occurs just once as neighbours and just once with a single unit
in between. A circular design with this property is equivalent
to a special type of quasigroup.

In one variant of this, self-neighbours are forbidden. In a
further variant, it is assumed that the left-neighbour effect is
the same as the right-neighbour effect, so all that is needed is
that each unordered pair of treatments occurs just once as
neighbours and just once with a single unit in between.

I shall report progress on finding methods of constructing the
three types of design.

2/33



Abstract

We consider experiments where the experimental units are
arranged in a circle or in a single line in space or time.

If neighbouring treatments may affect the response on an
experimental unit, then we need a model which includes the
effects of direct treatments, left neighbours and right
neighbours. It is desirable that each ordered pair of treatments
occurs just once as neighbours and just once with a single unit
in between. A circular design with this property is equivalent
to a special type of quasigroup.

In one variant of this, self-neighbours are forbidden. In a
further variant, it is assumed that the left-neighbour effect is
the same as the right-neighbour effect, so all that is needed is
that each unordered pair of treatments occurs just once as
neighbours and just once with a single unit in between.

I shall report progress on finding methods of constructing the
three types of design.

2/33



Abstract

We consider experiments where the experimental units are
arranged in a circle or in a single line in space or time.

If neighbouring treatments may affect the response on an
experimental unit, then we need a model which includes the
effects of direct treatments, left neighbours and right
neighbours. It is desirable that each ordered pair of treatments
occurs just once as neighbours and just once with a single unit
in between. A circular design with this property is equivalent
to a special type of quasigroup.

In one variant of this, self-neighbours are forbidden. In a
further variant, it is assumed that the left-neighbour effect is
the same as the right-neighbour effect, so all that is needed is
that each unordered pair of treatments occurs just once as
neighbours and just once with a single unit in between.

I shall report progress on finding methods of constructing the
three types of design.

2/33



Abstract

We consider experiments where the experimental units are
arranged in a circle or in a single line in space or time.

If neighbouring treatments may affect the response on an
experimental unit, then we need a model which includes the
effects of direct treatments, left neighbours and right
neighbours. It is desirable that each ordered pair of treatments
occurs just once as neighbours and just once with a single unit
in between. A circular design with this property is equivalent
to a special type of quasigroup.

In one variant of this, self-neighbours are forbidden. In a
further variant, it is assumed that the left-neighbour effect is
the same as the right-neighbour effect, so all that is needed is
that each unordered pair of treatments occurs just once as
neighbours and just once with a single unit in between.

I shall report progress on finding methods of constructing the
three types of design.

2/33



An experiment on sunflowers

Sunflowers are traditionally very tall plants.
When new, short-stalked varieties were introduced,
agricultural research stations wanted to do experiments to
compare the new varieties with the old.

Problem: If we grow each variety in a separate field,
then any perceived differences may be caused by differences in
fertility between the fields.

Problem: If we grow the varieties mixed up in the same field,
with several plots per variety, then each tall variety may shade
the variety growing on the plot to its immediate North.

Solution: Use a neighbour-balanced design in which
each ordered pair (i, j) of different varieties occurs
the same number of times as (South, North) neighbours.

3/33



An experiment on sunflowers

Sunflowers are traditionally very tall plants.
When new, short-stalked varieties were introduced,
agricultural research stations wanted to do experiments to
compare the new varieties with the old.

Problem: If we grow each variety in a separate field,
then any perceived differences may be caused by differences in
fertility between the fields.

Problem: If we grow the varieties mixed up in the same field,
with several plots per variety, then each tall variety may shade
the variety growing on the plot to its immediate North.

Solution: Use a neighbour-balanced design in which
each ordered pair (i, j) of different varieties occurs
the same number of times as (South, North) neighbours.

3/33



An experiment on sunflowers

Sunflowers are traditionally very tall plants.
When new, short-stalked varieties were introduced,
agricultural research stations wanted to do experiments to
compare the new varieties with the old.

Problem: If we grow each variety in a separate field,
then any perceived differences may be caused by differences in
fertility between the fields.

Problem: If we grow the varieties mixed up in the same field,
with several plots per variety, then each tall variety may shade
the variety growing on the plot to its immediate North.

Solution: Use a neighbour-balanced design in which
each ordered pair (i, j) of different varieties occurs
the same number of times as (South, North) neighbours.

3/33



An experiment on sunflowers

Sunflowers are traditionally very tall plants.
When new, short-stalked varieties were introduced,
agricultural research stations wanted to do experiments to
compare the new varieties with the old.

Problem: If we grow each variety in a separate field,
then any perceived differences may be caused by differences in
fertility between the fields.

Problem: If we grow the varieties mixed up in the same field,
with several plots per variety, then each tall variety may shade
the variety growing on the plot to its immediate North.

Solution: Use a neighbour-balanced design in which
each ordered pair (i, j) of different varieties occurs
the same number of times as (South, North) neighbours.

3/33



An experiment on control of aphids

Entomologists wanted to compare several sprays to deter
aphids from the crop without killing them.
The sprays should be applied to a square array of rectangular
plots in a single field, using a Latin square (each spray occurs
on one plot per row and one plot per column).

Problem: If one spray is effective, it may actually increase the
number of aphids on neighbouring plots.
The aphids are as likely to spread East as West, so direction in
one dimension is not an issue,
but the North–South effect may be different from the East–West
one, because the plots are not square.

Solution: Use a quasi-complete Latin square,
in which each unordered pair {i, j} of sprays occurs
the same number of times as neighbours within rows
and the same number of times as neighbours within columns.
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The experiment at Rothamsted on control of aphids
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An experiment in marine biology

A marine biologist wanted to compare 5 genotypes of bryozoan
by suspending them in sea water around the circumference of a
cylindrical tank. Each genotype was replicated 5 times, so that
altogether 25 items were suspended in the tank.

The marine biologist required that
(i) each ordered pair of items should occur just once as

ordered neighbours around the circumference of the tank;
(ii) each ordered pair of items should occur just once with a

single item in between them, in order.
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A circular design for 5 treatments with neighbour balance
at distances one and two
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The lazy way to write the design

(1 1 3 4 3 0 0 1 0 2 2 0 3 3 1 2 1 4 0 4 4 2 3 2 4)
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Statistical model

Denote by τ(i) the treatment on plot i.

Denote by Yi the response on plot i.

Yi = λτ(i−1) + δτ(i) + ρτ(i+1) + εi

where the εi are independent random variables with mean 0
and common variance σ2.

The direct treatment effects δ,
the left neighbour effects λ
and the right neighbour effects ρ
can be estimated orthogonally of each other
in a experiment of this size
if and only if each pair (λj, δk) occurs equally often and each
pair (δj, ρk) occurs equally often and each pair (λj, ρk) occurs
equally often;
in other words, the design has neighbour balance at distances
one and two.
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Those conditions again

Among the triples of the form(
τ(i− 1), τ(i), τ(i + 1)

)
,

each ordered pair of treatments occurs once in positions
1 and 2, once in positions 1 and 3, and once in positions 2 and 3.

Among the triples of the form(
row, column, symbol

)
,

each ordered pair of symbols occurs once in positions 1 and 2,
once in positions 1 and 3, and once in positions 2 and 3.

These are conditions for a Latin square whose rows and
columns have the same labels as the symbols—a quasigroup.
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Building the design from a quasigroup (Latin square)

The quasigroup operation ◦ is defined by

a ◦ b = symbol in row a and column b of the Latin square.

In the circular design, each triple should have the form

(a, b, a ◦ b).

We can start with any ordered pair (x, y) and successively build
the circular design from the quasigroup as

x y x ◦ y y ◦ (x ◦ y) (x ◦ y) ◦ (y ◦ (x ◦ y)) · · ·
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Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B A C D A A oops!

This quasigroup gives a design with four separate circles, not
one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )
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Eulerian quasigroups

Let’s call a quasigroup Eulerian if it gives a single large circle:
that is, a sequence with maximal period.

0 1 2 3 4
0 1 0 2 3 4
1 2 3 1 4 0
2 3 4 0 2 1
3 0 2 4 1 3
4 4 1 3 0 2

(1 1 3 4 3 0 0 1 0 2 2 0 3 3 1 2 1 4 0 4 4 2 3 2 4)
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Do Eulerian quasigroups of order n exist?

If n ≤ 4, a manual check shows that there are none.

For n = 5, we have shown an example.

For every other value of n that we have tried,
we have found an Eulerian quasigroup by computer search;
and we can prove that existence for coprime n and m implies
existence for mn;
BUT we have been unable to prove that they always exist.
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Exercise

Show that, if Q = Zps or Q = GF(ps), then no binary operation
of the form

x ◦ y = ax + by + c

makes Q into an Eulerian quasigroup.
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Variant I: no self-neighbours

Sometimes it is undesirable to have the same treatment on
neighbouring plots.

We need a circular design with n(n− 1) plots in which each
I each ordered pair of distinct treatments occurs just once as

ordered neighbours.
I each left-neighbour treatment occurs just once with all but

one of the right-neighbour treatments.

The incidence of
direct treatments with left-neighbour treatments is a symmetric
balanced incomplete-block design (BIBD, aka 2-design);
direct treatments with right-neighbour treatments is a
symmetric BIBD;
left-neighbour treatments with right-neighbour treatments is a
symmetric BIBD.

Preece (1976) showed that, for overall balance, the missing
pairs at distance two must also be the self-pairs.
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Construction when n = 6 (in general, when n is even)

The treatments are the integers modulo 5, together with ∞.

sequence [4, 3, 1, 2] all different, non-zero
neighbour sums [2, 4, 3] all different, non-zero, non-1
sum of ends 1 must be 1
cumulative sums [0, 4, 2, 3, 0]

(∞ 0 4 2 3 0 ∞ 1 0 3 4 1 ∞ 2 1 4 0 2 ∞ 3 2 0 1 3 ∞ 4 3 1 2 4)

Neighbours of ∞ at distances one and two are OK, by cyclic
construction.
Differences at distance one come from the original sequence;
most differences at distance two are the neighbour sums.
1− last cumulative sum = 1− 0 = 1 = missing neighbour-sum
so differences at distance two either side of ∞ give this.
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A circular design for 6 treatments with no self-neighbours
at distance one or two
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Construction when n = 7 (in general, when n is odd)

The treatments are the integers modulo 6, together with ∞.

sequence [4, 1, 2, 5, 3] all different, non-zero
neighbour sums [5, 3, 1, 2] all different, non-zero, non-4
sum of ends 1 must be 1
cumulative sums [0, 4, 5, 1, 0, 3]

(∞ 0 4 5 1 0 3 ∞ 1 5 0 2 1 4 ∞ 2 0 1 3 2 5
. . . ∞ 3 1 2 4 3 0 ∞ 4 2 3 5 4 1 ∞ 5 3 4 0 5 2)

Neighbours of ∞ at distances one and two are OK, by cyclic
construction.
Differences at distance one come from the original sequence;
most differences at distance two are the neighbour sums.
1− last cumulative sum = 1− 3 = 4 = missing neighbour-sum
so differences at distance two either side of ∞ give this.
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Solution for variant I

Theorem
Given an initial sequence of the non-zero integers modulo n− 1
satisfying those conditions,
that construction always produces an idempotent Eulerian circular
sequence.

Theorem
Such an initial sequence can be constructed whenever n ≥ 6.
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Variant II: undirectional neighbour effects

Suppose that the effect of the neighbouring treatment is the
same whether it is from the left or the right.

Yi = λτ(i−1) + δτ(i) + λτ(i+1) + εi,

where the εi are independent random variables with mean 0
and common variance σ2.

Can we arrange that every treatment have every treatment as
neighbour just once, on one side or the other?

A self-pair gives a self-neighbour on both sides, so we must
ban self-pairs. So we need a circle of n(n− 1)/2 plots.

Each plot has two neighbours, so each treatment has an even
number of neighbours, so n− 1 must be even.

Any triple (a, b, a) gives b as a neighbour of a on both sides, so
there can be no such triples.
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Can we arrange that every treatment have every treatment as
neighbour just once, on one side or the other?

A self-pair gives a self-neighbour on both sides, so we must
ban self-pairs. So we need a circle of n(n− 1)/2 plots.

Each plot has two neighbours, so each treatment has an even
number of neighbours, so n− 1 must be even.

Any triple (a, b, a) gives b as a neighbour of a on both sides, so
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Model and variance

Yi = λτ(i−1) + δτ(i) + λτ(i+1) + εi,

In vector form
Y = X1δ + X2λ + ε.

The neighbour conditions in the design imply that each
treatment occurs r times, where r = (n− 1)/2.
Also X>1 X1 = rI, X>1 X2 = J− I and X>2 X2 = 2rI + (J− I),
where I is the n× n identity matrix and J is the n× n all-1
matrix.

Some calculations show that the variance of the estimator of the
difference between two direct effects is

2(2r− 1)
(r− 1)(2r + 1)

σ2

while that for the difference between two neighbour effects is
2r

(r− 1)(2r + 1)
σ2.
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Construction when n = 9

The treatments are the integers modulo 9.

circular sequence (1, 2, 5, 3) ± entries are all different
circular neighbour sums (3, 7, 8, 4) ± entries are all different
cumulative sums [1, 3, 8, 2] last one is coprime to 9

(1 3 8 2 3 5 1 4 5 7 3 6 7 0 5 8 0 2 7 1 2 4 0 3 4 6 2 5 6 8 4 7 8 1 6 0)

We keep adding 2 to the original sequence of length 4.
Because 2 is coprime to 9, every pair in the original sequence
gets all its shifts modulo 9.

Differences at distance one come from the original sequence;
difference at distance two are the neighbour sums.
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A circular design for 9 treatments with undirectional
neighbour balance at distances one and two
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Solution for variant II

Theorem
Given an initial circular sequence of (n− 1)/2 of the
integers modulo n satisfying those conditions,
that construction always produces a circular sequence
balanced for undirected neighbours at distances one and two.

Theorem
Such an initial sequence can be constructed whenever n is odd and
n ≥ 9. There is also such a circular sequence when n = 7.
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Back to the original question

A quasigroup of order n with operation ◦ is Eulerian if the
sequence

x y x ◦ y y ◦ (x ◦ y) (x ◦ y) ◦ (y ◦ (x ◦ y)) · · ·

does not repeat before n2 steps.

Conjecture

If n ≥ 5 then there exists an Eulerian quasigroup of order n.
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Coprime sizes

Theorem
If Q1 and Q2 are Eulerian quasigroups of orders n and m, where n and
m are coprime, then Q1 ⊗Q2 is an Eulerian quasigroup of order nm.

Proof.
In the sequence

(a, x) (b, y) (a�b, x ◦ y) (b�(a�b), y ◦ (x ◦ y)) · · ·

the first coordinates repeat every n2 steps, but not earlier, and
the second coordinates repeat every m2 steps, but not
earlier.

28/33



Coprime sizes

Theorem
If Q1 and Q2 are Eulerian quasigroups of orders n and m, where n and
m are coprime, then Q1 ⊗Q2 is an Eulerian quasigroup of order nm.

Proof.
In the sequence

(a, x) (b, y) (a�b, x ◦ y) (b�(a�b), y ◦ (x ◦ y)) · · ·

the first coordinates repeat every n2 steps, but not earlier, and
the second coordinates repeat every m2 steps, but not
earlier.

28/33



Strategy

So all we have to do is to find an Eulerian quasigroup for all of
the following orders:
I q where q is an odd prime power and q ≥ 5

I 3q where q is an odd prime power
I 2q where q is an odd prime power
I 4q where q is an odd prime power
I powers of 2 bigger than 4.
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Homework

If Q = Zps or Q = GF(ps), then no binary operation of the form

x ◦ y = ax + by + c

makes Q into an Eulerian quasigroup.
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Technique

If q is odd, try taking Q = Zq and putting

x ◦ y = π(x + y)

where π is a relatively simple permutation.

For example, when q = 7 put π = (0 1 2)(3 4) so that

4 ◦ 5 = π(4 + 5) = π(2) = 0.
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Obstacle

Theorem
If n is even then no Eulerian quasigroup can be obtained from
a group of order n by permutions of rows, columns or symbols.
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. . . for all practical purposes

Theorem
If n ≥ 5 and there is no Eulerian quasigroup of order n
then n is divisible by a prime power exceeding 500.
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