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A pair of orthogonal decompositions

A decomposition P of VΩ into n pairwise orthogonal subspaces
≡ a set of real Ω×Ω matrices P1, . . . , Pn which

I are symmetric (Pi = P>i )
I are idempotent (P2

i = Pi)
I are mutually orthogonal (PiPj = 0 if i 6= j)
I sum to I.

A decomposition Q of VΓ into m pairwise orthogonal subspaces
≡ a set of real Γ×Γ matrices Q1, . . . , Qm which . . .

Given an allocation of Γ to Ω, we can regard subspaces of VΓ as
subspaces of VΩ and hence regard Q1, . . . , Qm as Ω×Ω matrices.
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A pair of orthogonal decompositions: continued

P1 +P2 + · · ·+Pn = I (identity for VΩ)

Q1 +Q2 + · · ·+Qm = IQ (identity for VΓ in VΩ)

The design is orthogonal if
each subspace in Q is contained in a subspace in P;
that is, for each Qi there is some j such that

I QiPj = PjQi = Qi

I QiPk = PkQi = 0 if k 6= j.

All designs in the preceding examples are orthogonal.
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Structure balance (following Nelder)

P P1 +P2 + · · ·+Pn = I (identity for VΩ)

Q Q1 +Q2 + · · ·+Qm = IQ (identity for VΓ in VΩ)

Definition
A structure Q is structure-balanced in relation to a structure P
if there are scalars λPQ for P in P and Q in Q such that

(i) QPQ = λPQQ for all P in P and all Q in Q, and

(ii) Q1PQ2 = 0 for all P in P and all Q1 6= Q2 in Q.

The structure Q is orthogonal in relation to P if (i) and (ii) hold with
each λPQ equal to either 1 or 0.
The λPQ are called efficiency factors and are summarized in the
P×Q efficiency matrix ΛPQ.
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Structure balance (using James and Wilkinson)

Fix P and Q.

I QPQ = λPQQ means that
every vector in Im(Q) makes angle cos−1(λPQ) with Im(P).

I QPQ = λPQQ implies that λ
−1
PQPQP is the symmetric

idempotent matrix of orthogonal projection onto P(ImQ).
I If QPQ = λPQQ, we write PBQ for λ

−1
PQPQP.

Fix Q, let P vary.
I ∑P = I implies that ∑P λPQ = 1.
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Structure balance

Fix P, let Q vary.
I Q1PQ2 = 0 implies that P(Im(Q1))⊥ P(Im(Q2)), so

PBQ1 and PBQ2 correspond to orthogonal subspaces of Im(P).

I Write P`Q = P−∑Q PBQ, so that
P`Q corresponds to Im(P)∩V⊥

Γ
.

So PBQ1, PBQ2, . . . , PBQm, P`Q decompose P orthogonally.

P BQ = {PBQ : P ∈P, Q ∈Q, λPQ 6= 0}∪{P`Q : P ∈P} .
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Toy example from micorarrays
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Structure balance when one arrow follows another

R −→Q −→P

Theorem
If Q is structure-balanced in relation to P
(with efficiency matrix ΛPQ)
and R is structure-balanced in relation to Q
(with efficiency matrix ΛQR)
then

I R is structure-balanced in relation to P and ΛPR = ΛPQΛQR ;
I R is structure-balanced in relation to P BQ (and Λ . . . );
I Q BR is structure-balanced in relation to P (and Λ . . . );
I (P BQ)BR = P B (Q BR).
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Structure balance when one arrow follows another:
two uses

R −→Q −→P

Composed randomizations

These can be done in either order. No knowledge of of the outcome of
one is needed to perform the other.

Randomized-inclusive randomizations
The outcome of the randomization R −→Q must be known before
the randomization Q −→P can be performed,
because the design for Q −→P needs information about R.
Typically, this information in encoded in pseudofactors for Q.
Typically, the original Q BR is not informative enough.
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Structure balance when one arrow follows another:
the randomization model

R −→Q −→P

Good news
If the allowable permutations of the set of objects admitting P give a
covariance matrix with eigenprojectors P1, . . . , Pn

and the allowable permutations of the set of objects admitting Q give
a covariance matrix with eigenprojectors Q1, . . . , Qm

then the combined randomization gives a covariance matrix whose
eigenprojectors are P BQ.

Bad news
The ‘stratum variances’ may satsify some linear inequalities
and some linear equalities.
ANOVA assumes they are unrelated.
REML has problems.
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Structure balance when two arrows have the same end (1)

Q −→P ←−R

There are three possibilities.

Unrandomized-inclusive randomizations
The outcome of the randomization Q −→P is known;
the design for R −→P and method of randomizing R −→P both
use knowledge of P BQ.
Assume that Q is structure-balanced in relation to P ,
and that R is structure-balanced in relation to P BQ.
Use the decompostion (P BQ)BR.
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Superimposed Experiment in a Row-Column Design
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Randomization model
for unrandomized-inclusive randomizations

There are a lot of possibilities.

How much notice should we take of a randomization
performed 20 years ago?

Not all possibilities give stratifiable covariance matrices.
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Structure balance when two arrows have the same end (2)

Q −→P ←−R

Independent randomizations

The two structurally balanced designs are chosen so that,
for all P except the Mean,
either every PQ is zero or every PR is zero.
Thus Q and R do not interfere with each other in P .

I Q is structure-balanced in relation to P BR;
I R is structure-balanced in relation to P BQ;
I (P BR)BQ = (P BQ)BR.
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Structure balance when two arrows have the same end (3)

Q −→P ←−R

Coincident randomizations
The two structurally balanced designs are chosen so that,
for all P, Q, R

I either PQ is zero (after P, ignore Q)
I or PR is zero (after P, ignore R)
I or PBQ = P (after P, do Q before R)
I or PBR = P (after P, do R before Q)



Structure balance when two arrows have the same end (4)

Q −→P ←−R

Theorem
Given a pair of structurally balanced randomizations which are
independent or coincident (or also unrandomized-inclusive if
VΓ∩Mean⊥ is orthogonal to Vϒ∩Mean⊥),
the decompositions P BQ and P BR are compatible in the sense
that if A ∈P BQ and B ∈P BR then AB = BA. Hence

{AB : A ∈P BQ, B ∈P BR}

gives an orthogonal decomposition of VΩ.



Randomization model
for independent or coincident randomizations

Everything works . . .

. . . but there are no inter-tier interactions.

If you want Q-R interactions, you should use a single randomization.
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Telephone systems: Lewis and Russell (1998)
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Sessions # Times 21 systems 3

residual 18
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