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Finite probability space

A finite probability space is a finite set Ω,
together with a function P from the subsets of Ω to R

satisfying (simplified versions of) Kolmogorov’s axioms:
I if ∆ ⊆ Ω then P(∆) ≥ 0;
I P(Ω) = 1;
I if ∆ ∩ Γ = ∅ then P(∆ ∪ Γ) = P(∆) + P(Γ).

It suffices to specify P(ω) = P({ω}) for all ω in Ω,
with P(ω) ≥ 0 and ∑ω∈Ω P(ω) = 1. Then

P(∆) = ∑
ω∈∆

P(ω).
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Uniform finite probability space

I If necesssary, approximate each point probability P(ω) by
a rational number.

I Choose an integer N so that N P(ω) is an integer
for all ω in Ω.

I Replace each element ω by N P(ω) elements,
all with probablity 1/N.

I Throw away any element ω for which P(ω) = 0.
I Rename Ω and all of its subsets,

so that they consist of these new elements.
In particular, |Ω| = N.

If ∆ is a renamed subset, it still has the same probability as
before, but now we can write

P(∆) =
|∆|
N

.

Now (Ω, P) is a uniform probability space. Assume N > 1.
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Partitions and random variables

A partition of Ω is a set of mutually disjoint non-empty subsets
of Ω whose union is Ω. The subsets are called parts.

A random variable on Ω is any function on Ω.
Random variables are typically denoted X, Y, . . . .

P(X = x) means P ({ω ∈ Ω : X(ω) = x}) = P
(

X−1(x)
)

.

The random variable X defines a partition of Ω into the
inverse images X−1(x) of the points x in the range of X.

The entropy (coming up) of the random variable X is
defined entirely in terms of this partition.
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Preview: things from partitions

Partition Random Variable�

Entropy

@
@
@
@
@
@
@
@R

-

?

Subspace

Matrix

�

?

6 �
�

�
�

�
�

�
�	

5/44

Entropy of a random variable

Let X be a random variable.
Let the parts of the partition defined by X be ∆1, . . . , ∆n.
The entropy H(X) of X is defined by

H(X) = −
n

∑
i=1

P(∆i) log(P(∆i))

= −
n

∑
i=1

|∆i|
N

log
( |∆i|

N

)
.

The base of the logarithms is not really important.
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Entropy of a partition

Let F be a partition of Ω.
For ω ∈ Ω, let XF(ω) be the part of F containing ω.
Then XF is a random variable; if ∆ is a part of F then

P(XF = ∆) = P(∆) =
|∆|
N

.

If the parts of F are ∆1, . . . , ∆n then

H(F) = H(XF) = −
n

∑
i=1

|∆i|
N

log
( |∆i|

N

)

=
1
N

n

∑
i=1
|∆i| (log(N)− log(|∆i|))

= log N− 1
N

n

∑
i=1
|∆i| log(|∆i|).
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Entropy of a uniform partition

The partition F is uniform if all of its parts have the same size.

If that size is k, then N = nk and

H(F) = log N− 1
N

n

∑
i=1
|∆i| log(|∆i|)

= log N− 1
N

nk log k

= log N− log k = log n.
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Uncertainty

In general, if F has n parts then H(F) ≤ log n,
with equality if and only if F is uniform.

Entropy is a measure of uncertainty.
If there are more parts, we have less chance of guessing the
right one.
If the parts have unequal sizes, we are better off if we bet on the
larger parts.
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Subspace defined by a partition

Consider the real vector space RΩ of all functions from Ω to R.
These are real random variables, but it is convenient to think of
them as column vectors.

Partition F defines the subspace VF of RΩ consisting of
functions which are constant on each part of F.

Thus dim(VF) = n if F has n parts.
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Matrix defined by a partition

By an “Ω×Ω matrix” I mean a matrix that is not only of size
N×N but also has its rows and columns labelled by the
elements of Ω.
A partition F of Ω defines the Ω×Ω matrix PF whose
(α, β) entry is given by

PF(α, β) =





1
k

if XF(α) = XF(β) and |XF(α)| = k

0 if XF(α) 6= XF(β).

If y ∈ RΩ then (PFy)(α) is the average of the values y(β) for
β in XF(α). Thus PF is sometimes called the F-averaging matrix.
In fact, it is the matrix of orthogonal projection onto VF
under the standard inner product on RΩ.
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Two special cases

Equality partition E Universal partition U

whose parts are singletons which has a single part

XE takes N values, XU is constant

with equal probability

H(E) = log N H(U) = 0

VE = RΩ VU is the one-dimensional

subspace of constant functions

PE = I PU = N−1J

(identity matrix) where J is the all-1 matrix
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Two partitions

Let F and G be two partitions of Ω.
If G has more parts than F,
it does not necessarily follow that H(G) > H(H).

G 1 1 1 1 1 1 1 1 8

F 2 2 2 2 2 2 2 2

H(F) = log 8 = 3 log 2

H(G) = log(16)− 8
16

log 8 = 4 log 2− 1
2
(3 log 2) =

5
2

log 2 < H(F).
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Partial order on partitions

Let F and G be partitions of Ω.
Then F is finer than G (written F � G)
if every F-part is contained in a single G-part.

Consider spitting one part of G into two parts, of sizes x and y.

x log x+ y log y < x log(x+ y)+ y log(x+ y) = (x+ y) log(x+ y).

Lemma
If F ≺ G then H(F) > H(G).
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Conditional probability

Let Θ be a non-empty subset of Ω and let X be a random
variable on Ω.
The conditional random variable X | Θ is defined as follows.
The probability space is just Θ.
If x is in the range of X then

P((X | Θ) = x) = P(X = x | Θ)

=
P((X = x) ∩Θ)

P(Θ)

=
|{ω ∈ Θ : X(ω) = x}|

|Θ| .
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Independence

Let X and Y be random variables on Ω.
Then X and Y are independent of each other if

P(X = x and Y = y) = P(X = x)P(Y = y)

for all x in the range of X and all y in the range of Y.

Equivalently, X and Y are independent if

P(X = x | Y = y) = P(X = x)

for all x and y.

16/44

Two partitions; two random variables

If F and G are partitions of Ω then
their infimum F∧G is the partition each of whose parts is the
non-empty intersection of an F-part with a G-part.

F∧G � F and F∧G � G.

If X and Y are random variables on Ω then they define a
joint random variable (X, Y) by

(X, Y)(ω) = (X(ω), Y(ω))

for ω in Ω.

If X defines the partition F and Y defines the partition G,
then the partition defined by (X, Y) is F∧G.

The entropy is H((X, Y)) = H(X, Y) = H(F∧G).
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Easiest case

Lemma
Let F and G be partitions of Ω.
The following statements are equivalent.
(i) F � G.
(ii) F∧G = F.
(iii) For every part ∆ of F, the conditional random variable

XG | (XF = ∆) takes a single value with non-zero probability.
(iv) H(XF, XG) = H(XF).
(v) VG ≤ VF.
(vi) PFPG = PGPF = PG.
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Mutual information

Given random variables X and Y on Ω,
their mutual information is

I(X, Y) = H(X) + H(Y)−H(X, Y).

If the corresponding partitions are F and G, this becomes

I(F, G) = H(F) + H(G)−H(F∧G).

We shall show that I(X, Y) ≥ 0.
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Information in two random variables

Let Γ2 consist of all vectors of the form

(H(X), H(Y), H(X, Y))

as X and Y vary over all pairs of random variables over all
uniform finite probability spaces.

If X and Y have partitions F and G, then F∧G � G so

H(X, Y) = H(F∧G) ≥ H(G) = H(Y) ≥ 0,

H(X, Y) ≥ H(X) ≥ 0,

H(X) + H(Y)−H(X, Y) = I(X, Y) ≥ 0.

Do these inequalities define Γ2?
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Entropy of conditional random variables

Let Γ be a part of the partition defined by the random
variable Y.
Then

H(X | Γ) = log(|Γ|)− 1
|Γ|∑∆

|Γ ∩ ∆| log(|Γ ∩ ∆|),

where the sum is over the parts ∆ of the partition defined by X.

So we define

H(X | Y) =
1
N ∑

Γ
|Γ|H(X | Γ)

=
1
N ∑

Γ
|Γ| log(|Γ|)− 1

N ∑
Γ

∑
∆
|Γ ∩ ∆| log(|Γ ∩ ∆|)

= H(X, Y)−H(Y).
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Two conditional entropies

H(X | Y) = H(X, Y)−H(Y).

Suppose that random variables Y1 and Y2 define
partitions G1 and G2.
If G1 � G2 then Y2 | Y1 is constant.
Then we can show that

H(X | Y2) ≥ H(X | Y1).
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Two partitions; two random variables (again)

If F and G are partitions of Ω then their supremum F∨G is the
finest partition of Ω which is coarser than both F and G.

It is immediate that F∧G � F � F∨G, F∧G � G � F∨G , and
that VF ∩VG = VF∨G.

If X and Y are random variables on Ω with corresponding
partitions F and G then their common random variable is XF∨G.

23/44

Information

Let X and Y be random variables on Ω with corresponding
partitions F and G.

Then G � F∨G, and so H(F | F∨G) ≥ H(F | G).

H(F, F∨G)−H(F∨G) ≥ H(F, G)−H(G)

H(F)−H(F∨G) ≥ H(F∧G)−H(G)

H(F) + H(G)−H(F∧G) ≥ H(F∨G)

I(X, Y) ≥ H(F∨G) ≥ 0
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Proportional meeting

Partitions F and G of Ω meet proportionately if,
for all parts ∆ of F and Γ of G,

|∆ ∩ Γ| = |∆| |Γ|
N

.

Example

F gives the rows; G gives the columns.

1 3 4
2 6 8
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Entropy under proportional meeting

Lemma
Let F and G be partitions of Ω. The following statements are
equivalent.
(i) The partitions F and G meet proportionately.
(ii) The random variables XF and XG are independent of each other.
(iii) H(XF, XG) = H(XF) + H(XG).
(iv) PFPG = PGPF = PU.
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Proof of (i) implies (iii)

If F and G meet proportionately, then

H(XF∧G) = log N− 1
N ∑

i
∑

j

|∆i|
∣∣Γj
∣∣

N
log

(
|∆i|

∣∣Γj
∣∣

N

)

= log N− 1
N ∑

j

∣∣Γj
∣∣

N ∑
i
|∆i| log (|∆i|)

− 1
N ∑

i

|∆i|
N ∑

j

∣∣Γj
∣∣ log

(∣∣Γj
∣∣)

+
1

N2 ∑
i
|∆i|∑

j

∣∣Γj
∣∣ log N

= 2 log N− 1
N ∑

i
|∆i| log (|∆i|)−

1
N ∑

j

∣∣Γj
∣∣ log

(∣∣Γj
∣∣)

= H(XF) + H(XG).
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Orthogonal partitions

Partitions F and G of Ω are orthogonal to each other
(written F ⊥ G)
if they meet proportionately within each part of F∨G.

Example

5 0 0 0
0 1 3 1
0 2 6 2

Some special cases: F is orthogonal to itself;
if F � G then F is orthogonal to G;
and if F meets G proportionately then F is orthogonal to G.
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Generalizing the previous two lemmas

Lemma
Let F and G be partitions of Ω. If F ⊥ G then the following hold.
(i) XF and XG are conditionally independent given XF∨G.

(This means that XF | (F∨G)(ω) and XG | (F∨G)(ω) are
independent for all ω in Ω.)

(ii) H(XF, XG) = H(XF) + H(XG)−H(XF∨G).
(This means that I(F, G) = H(F∨G).)

(iii)
(
VF ∩V⊥F∨G

)
⊥
(
VG ∩V⊥F∨G

)
.

(iv) PFPG = PGPF = PF∨G.
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Information in three random variables

Let Γ3 consist of all vectors of the form

(H(X), H(Y), H(X, Y), H(Z), H(X, Z), H(Y, Z), H(X, Y, Z))

as X, Y and Z vary over all triples of random variables over all
uniform finite probability spaces.

What can we say about Γ3?

What can we say about Γr?

It has been shown that it suffices to consider Ω as a finite
group, with each relevant partition being the partition into
cosets of some subgroup of Ω.
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Do suprema matter?

Why do information theorists care about infima but not about
suprema?
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Suprema in statistics

Some toy data:
10.3 9.6
9.9 10.2

6.1 5.8
5.9 6.0

Statistician 1 says “I can see that there are differences between
rows. If I fit the average value in each row and then subtract
that from the data, then what is left is random noise, so I can
see that columns have no effect.”

Statistician 2 says “I can see that there are differences between
columns. If I fit the average value in each column and then
subtract that from the data, then what is left is random noise, so
I can see that rows have no effect.”

Statistician 3 says ”The differences can be simply explained as
the difference between the parts of Rows ∨ Columns.”
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Wilkinson’s sweeping algorithm

The input is a vector y in RΩ and a sequence F1, . . . , Fn of
partitions of Ω ordered in such a way that if Fi � Fj then i < j.

begin;
for i = 1 to n do

begin zi := PFiy;
output zi;
y := y− zi;

end;
output y;

end;

Does the order matter?
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When does order matter?

Most people know that the output depends on the chosen
ordering if there are any i and j such that
Fi is not orthogonal to Fj.

It is less well known that the output depends on the chosen
ordering if there are any i and j such that Fi ∨ Fj is not included.
Tue Tjur pointed out the importance of the supremum in 1984
(he called it the ‘minimum’); nevertheless, all statistical
software includes infima but only Heiko Großmann’s
algorithm (in press for CSDA by late 2013) includes suprema.
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Back to partitions

Let F be a collection of distinct partitions of Ω.
The relation � is a partial order on F .

The zeta function of this partial order is the F ×F matrix Z with
entry ζ(F, G) equal to 1 if F � G and to 0 otherwise.
If the partitions are ordered in such a way that
F precedes G if F � G then
Z is upper triangular with all diagonal elements equal to 1.

Hence Z has an inverse matrix M, all of whose entries are
integers. This is called the Möbius function of the partial order;
its entries are written µ(F, G).
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Entropy of a lattice?

The collection F is called a lattice if it is closed under ∨ and ∧.
What can we say about the entropy vector of a lattice of
partitions?

Such a lattice in which all pairs of partitions are mutually
orthogonal gives rise to a particularly nice family of random
variables. What can we say about their entropy vector?

If, in addition, we insist that F include E and U and that all
partitions be uniform, then we obtain an association scheme:
coming up.
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Orthogonal block structures

An orthogonal block structure is a finite set Ω
together with a family F distinct partitions of Ω
satisfying the following conditions.
(i) U ∈ F .
(ii) E ∈ F .
(iii) If F ∈ F then F is uniform, with nF parts of size kF.
(iv) If F and G are in F then F∨G ∈ F .
(v) If F and G are in F then F∧G ∈ F .
(vi) If F and G are in F then F ⊥ G.
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Relation matrices

Suppose that (Ω,F ) is an orthogonal block structure.
For F in F , define the Ω×Ω relation matrix RF by

RF(α, β) =

{
1 if XF(α) = XF(β)

0 otherwise.

Then condition (iii) (uniformity) implies that RF = kFPF.
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Adjacency matrices

Conditions (i) U ∈ F and (v) (infima) imply that,
given any α and β in Ω,
there is a finest partition F in F for which XF(α) = XF(β).
Define the Ω×Ω adjacency matrix AF by

AF(α, β) =

{
1 if F is this finest partition
0 otherwise.

Then
RF = ∑

G�F
AG = ∑

G∈F
ζ(G, F)AG,

which can be inverted to give

AF = ∑
G∈F

µ(G, F)RG.
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Product of two adjacency matrices

Let A be the R-linear span of {AF : F ∈ F}

= the R-linear span of {RF : F ∈ F}
= the R-linear span of {PF : F ∈ F}.

Conditions (vi) (orthogonality, so PFPG = PF∨G)
and (iv) (suprema) show that A is closed under multiplication,
and so forms an algebra.

Therefore, if F and G are in F , there are real numbers p(F, G; H)
such that

AFAG = ∑
H∈F

p(F, G; H)AH.

All the entries in AFAG are non-negative integers.
Given α and β in Ω, there is a unique H in F with AH(α, β) = 1,
while AH′(α, β) = 0 if H′ 6= H. It follows that the coefficients
p(F, G; H) must be non-negative integers.
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Association scheme

We have shown that {AF : F ∈ F , AF 6= 0} satisfies the
following conditions:
(0) All the entries of each AF are 0 or 1, and they are not all 0.
(1) AE = I.
(2) Each AF is symmetric.
(3) ∑ AF = RU = J.
(4) Each product AFAG is a unique integer-linear combination

of the AH.
Any collection of matrices satisfying (0)–(4) is called an
association scheme.
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Bose–Mesner algebra

The algebra A is called the Bose–Mesner algebra of the
association scheme. It is commutative, and all matrices are
symmetric, so it has a basis of primitive idempotents.

For a general association scheme, there is no easy way to derive
the primitive idempotents from the adjacency matrices.
However, for an orthogonal block structure, the set of primitive
idempotents is {QF : F ∈ F , QF 6= 0}, where

PF = ∑
G∈F

ζ(F, G)QG and QF = ∑
G∈F

µ(F, G)PG.
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Back to entropy

Orthogonal block structures give nice families of partitions that
may not come from groups.

Example

Suppose that there are r− 2 mutually orthogonal Latin squares
of order n. Let Ω consist of the n2 cells in a square array.
Let F1 and F2 be the partitions of Ω into rows and columns
respectively.
For i = 3, . . . , r− 2, let Fi be the partition of Ω according to the
letters of square i− 2.
Then, if 1 ≤ i < j < r, we have Fi ∨ Fj = U and Fi ∧ Fj = E.
Hence H(Fi) = log n for 1 ≤ i ≤ r,
while H(

∧
i∈I Fi) = 2 log n whenever I ⊆ {1, . . . , r} and |I| ≥ 2.
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A question

Is there anything special about the entropy vectors of
orthogonal block structures?
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