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What makes a block design good for experiments?

I have v treatments that I want to compare.
I have b blocks.
Each block has space for k treatments (not necessarily distinct).

How should I choose a block design?
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Two designs with v = 5, b = 7, k = 3: which is better?

Conventions: columns are blocks;
order of treatments within each block is irrelevant;
order of blocks is irrelevant.

1 1 1 1 2 2 2
2 3 3 4 3 3 4
3 4 5 5 4 5 5

1 1 1 1 2 2 2
1 3 3 4 3 3 4
2 4 5 5 4 5 5

binary non-binary

A design is binary if no treatment occurs more than once in any
block.
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Two designs with v = 15, b = 7, k = 3: which is better?

1 1 2 3 4 5 6
2 4 5 6 10 11 12
3 7 8 9 13 14 15

1 1 1 1 1 1 1
2 4 6 8 10 12 14
3 5 7 9 11 13 15

replications differ by ≤ 1 queen-bee design

The replication of a treatment is its number of occurrences.

A design is a queen-bee design if there is a treatment that
occurs in every block.
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Two designs with v = 7, b = 7, k = 3: which is better?

1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3

1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2

balanced (2-design) non-balanced

A binary design is balanced if every pair of distinct treaments
occurs together in the same number of blocks.
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Experimental units and incidence matrix

There are bk experimental units.

If ω is an experimental unit, put

f (ω) = treatment on ω

g(ω) = block containing ω.

For i = 1, . . . , v and j = 1, . . . , b, let

nij = |{ω : f (ω) = i and g(ω) = j}|

= number of experimental units in block j which have
treatment i.

The v× b incidence matrix N has entries nij.
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Levi graph

The Levi graph G̃ of a block design ∆ has

I one vertex for each treatment,
I one vertex for each block,
I one edge for each experimental unit,

with edge ω joining vertex f (ω) to vertex g(ω).

It is a bipartite graph,
with nij edges between treatment-vertex i and block-vertex j.
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Example 1: v = 4, b = k = 3
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Example 2: v = 8, b = 4, k = 3

1 2 3 4
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Concurrence graph

The concurrence graph G of a block design ∆ has

I one vertex for each treatment,
I one edge for each unordered pair α, ω, with α 6= ω,

g(α) = g(ω) and f (α) 6= f (ω):
this edge joins vertices f (α) and f (ω).

There are no loops.

If i 6= j then the number of edges between vertices i and j is

λij =
b

∑
s=1

nisnjs;

this is called the concurrence of i and j,
and is the (i, j)-entry of Λ = NN>.
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Example 2: v = 8, b = 4, k = 3
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Example 3: v = 15, b = 7, k = 3
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3 7 8 9 13 14 15
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Laplacian matrices

The Laplacian matrix L of the concurrence graph G is a
v× v matrix with (i, j)-entry as follows:

I if i 6= j then
Lij = −(number of edges between i and j) = −λij;

I Lii = valency of i = ∑
j 6=i

λij.

The Laplacian matrix L̃ of the Levi graph G̃ is a
(v + b)× (v + b) matrix with (i, j)-entry as follows:

I L̃ii = valency of i

=

{
k if i is a block
replication ri of i if i is a treatment

I if i 6= j then Lij = −(number of edges between i and j)

=


0 if i and j are both treatments
0 if i and j are both blocks
−nij if i is a treatment and j is a block, or vice versa.
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Connectivity

All row-sums of L and of L̃ are zero,
so both matrices have 0 as eigenvalue
on the appropriate all-1 vector.

Theorem
The following are equivalent.
1. 0 is a simple eigenvalue of L;
2. G is a connected graph;
3. G̃ is a connected graph;
4. 0 is a simple eigenvalue of L̃;
5. the design ∆ is connected in the sense that all differences between

treatments can be estimated.

From now on, assume connectivity.

Call the remaining eigenvalues non-trivial.
They are all non-negative.
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Generalized inverse

Under the assumption of connectivity,
the Moore–Penrose generalized inverse L− of L is defined by

L− =

(
L +

1
v

Jv

)−1

− 1
v

Jv,

where Jv is the v× v all-1 matrix.

(The matrix
1
v

Jv is the orthogonal projector onto the null space
of L.)

The Moore–Penrose generalized inverse L̃− of L̃ is defined
similarly.
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Estimation and variance

We measure the response Yω on each experimenal unit ω.

If experimental unit ω has treatment i and is in block m
(f (ω) = i and g(ω) = m), then we assume that

Yω = τi + βm + random noise.

We want to estimate contrasts ∑i xiτi with ∑i xi = 0.

In particular, we want to estimate all the simple differences
τi − τj.

Put Vij = variance of the best linear unbiased estimator for
τi − τj.

We want all the Vij to be small.
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How do we calculate variance?

Theorem
Assume that all the noise is independent, with variance σ2.
If ∑i xi = 0, then the variance of the best linear unbiased estimator of
∑i xiτi is equal to

(x>L−x)kσ2.

In particular, the variance of the best linear unbiased estimator of the
simple difference τi − τj is

Vij =
(

L−ii + L−jj − 2L−ij
)

kσ2.

18/35



. . . Or we can use the Levi graph

Theorem
The variance of the best linear unbiased estimator of the simple
difference τi − τj is

Vij =
(

L̃−ii + L̃−jj − 2L̃−ij
)

σ2.
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Electrical networks

We can consider the concurrence graph G as an electrical
network with a 1-ohm resistance in each edge.
Connect a 1-volt battery between vertices i and j.
Current flows in the network, according to these rules.
1. Ohm’s Law:

In every edge, voltage drop = current × resistance =
current.

2. Kirchhoff’s Voltage Law:
The total voltage drop from one vertex to any other vertex
is the same no matter which path we take from one to the
other.

3. Kirchhoff’s Current Law:
At every vertex which is not connected to the battery, the
total current coming in is equal to the total current going
out.

Find the total current I from i to j, then use Ohm’s Law to
define the effective resistance Rij between i and j as 1/I.

20/35



Electrical networks: variance

Theorem
The effective resistance Rij between vertices i and j in G is

Rij =
(

L−ii + L−jj − 2L−ij
)

.

So
Vij = Rij × kσ2.

Effective resistances are easy to calculate without
matrix inversion if the graph is sparse.
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Example calculation: v = 12, b = 6, k = 3
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. . . Or we can use the Levi graph

If i and j are treatment vertices in the Levi graph G̃
and R̃ij is the effective resistance between them in G̃ then

Vij = R̃ij × σ2.
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Example 2 yet again: v = 8, b = 4, k = 3
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Resistance increases with distance?

This is obviously true . . .

. . . but actually false.

There are many counter-examples.

It is not even true that the largest resistance corresponds to the
largest distance in the graph.
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Distance-regular graphs

Suppose that the concurrence graph G is simple (no multiple
edges).
Let Ad be the v× v matrix whose (i, j)-entry is equal to{

1 if the distance from i to j in G is d
0 otherwise

The graph G is distance-regular if A1Ad is a linear combination
of Ad−1, Ad and Ad+1 for all d.

Theorem (Biggs)

If G is distance-regular then pairwise resistance is an increasing
function of distance.
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Anything else nice?

Theorem
If the concurrence graph G is regular
(in particular, if the block design is binary and all treatments have the
same replication),
and the Laplacian matrix L has precisely two non-trivial eigenvalues,
then pairwise resistance Rij is a decreasing linear function of
concurrence λij.

Theorem
If the block design is partially balanced with respect to an amorphic
association scheme,
then pairwise resistance Rij is a monotonic decreasing function of
concurrence λij.
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Average pairwise variance

The variance of the best linear unbiased estimator of the simple
difference τi − τj is

Vij =
(

L−ii + L−jj − 2L−ij
)

kσ2.

Put V̄ = average value of the Vij. Then

V̄ =
2kσ2 Tr(L−)

v− 1
= 2kσ2 × 1

harmonic mean of θ1, . . . , θv−1
,

where θ1, . . . , θv−1 are the nontrivial eigenvalues of L.
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Optimality

The design is called
I A-optimal if it minimizes the average of the variances Vij;

—equivalently, it maximizes the harmonic mean of the
non-trivial eigenvalues of the Laplacian matrix L;

I D-optimal if it minimizes the volume of the confidence
ellipsoid for (τ1, . . . , τv);

—equivalently, it maximizes the geometric mean of the
non-trivial eigenvalues of the Laplacian matrix L;

I E-optimal if minimizes the largest value of x>L−x/x>x;

—equivalently, it maximizes the minimum non-trivial
eigenvalue θ1 of the Laplacian matrix L:

over all block designs with block size k and the given v and b.
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D-optimality: spanning trees

A spanning tree for the graph is a collection of edges of the
graph which form a tree (connected graph with no cycles)
and which include every vertex.

Cheng (1981), after Gaffke (1978), after Kirchhoff (1847):

product of non-trivial eigenvalues of L
= v× number of spanning trees.

So a design is D-optimal if and only if its concurrence graph G
has the maximal number of spanning trees.

This is easy to calculate by hand when the graph is sparse.
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What about the Levi graph?

Theorem (Gaffke)

Let G and G̃ be the concurrence graph and Levi graph for a connected
incomplete-block design for v treatments in b blocks of size k.
Then the number of spanning trees for G̃ is equal to
kb−v+1 times the number of spanning trees for G.

So a block design is D-optimal if and only if
its Levi graph maximizes the number of spanning trees.

If v > b it is easier to count spanning trees in the Levi graph
than in the concurrence graph.
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Example 2 one last time: v = 8, b = 4, k = 3
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E-optimality: the cutset lemma

A design is E-optimal if it maximizes the smallest non-trivial
eigenvalue θ1 of the Laplacian L of the concurrence graph G.

Lemma
Let G have an edge-cutset of size c
(set of c edges whose removal disconnects the graph)
whose removal separates the graph into components of sizes m and n.
Then

θ1 ≤ c
(

1
m

+
1
n

)
.

If c is small but m and n are both large, then θ1 is small.

There is a similar result for vertex-cutsets.
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E-optimality when v = 2b + 1 and k = 3

The Levi graph has 3b + 1 vertices and 3b edges, so it is a tree.
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E-optimality when v = 2b + 1 and k = 3

The Levi graph has 3b + 1 vertices and 3b edges, so it is a tree.

x x x x
x x x x

x x x
x

x x
x

�
�
�
�
�

T
TT

�
��

T
TT
T
TT

b
b
b

bb

"
"
"
""

b
b

b
bb

"
"
"
""

x      �
�
�
�
�












�
�
�
�
�
�

```
``̀

Q
Q
Q

Q
Q

J
J
J
J
J

D
D
D
D
D
D

�
�
�

�
�












      
`````̀Q
Q
Q
Q
Q

J
J
J
J
J

x
xxx

x
x x x

xx
xx

x x �
�

@
@

@
@

�
�

θ1 ≤ 2
(

1
5
+

1
10

)
θ1 ≥ 1

The only E-optimal designs are the queen-bee designs.

34/35



E-optimality when v = 2b + 1 and k = 3

The Levi graph has 3b + 1 vertices and 3b edges, so it is a tree.

x x x x
x x x x

x x x
x

x x
x

�
�
�
�
�

T
TT

�
��

T
TT
T
TT

b
b
b

bb

"
"
"
""

b
b

b
bb

"
"
"
""

x      �
�
�
�
�












�
�
�
�
�
�

```
``̀

Q
Q
Q

Q
Q

J
J
J
J
J

D
D
D
D
D
D

�
�
�

�
�












      
`````̀Q
Q
Q
Q
Q

J
J
J
J
J

x
xxx

x
x x x

xx
xx

x x �
�

@
@

@
@

�
�

θ1 ≤ 2
(

1
5
+

1
10

)
θ1 ≥ 1

The only E-optimal designs are the queen-bee designs.

34/35



E-optimality when v = 2b + 1 and k = 3

The Levi graph has 3b + 1 vertices and 3b edges, so it is a tree.

x x x x
x x x x

x x x
x

x x
x

�
�
�
�
�

T
TT

�
��

T
TT
T
TT

b
b
b

bb

"
"
"
""

b
b

b
bb

"
"
"
""

x      �
�
�
�
�












�
�
�
�
�
�

```
``̀

Q
Q
Q

Q
Q

J
J
J
J
J

D
D
D
D
D
D

�
�
�

�
�












      
`````̀Q
Q
Q
Q
Q

J
J
J
J
J

x
xxx

x
x x x

xx
xx

x x �
�

@
@

@
@

�
�

θ1 ≤ 2
(

1
5
+

1
10

)
θ1 ≥ 1

The only E-optimal designs are the queen-bee designs.

34/35



Can we use the Levi graph to find E-optimal designs?

For binary designs with equal replication,
θ1(L) is a monotonic increasing function of θ1(L̃).

For general block designs, we do not know if we can use the
Levi graph to investigate E-optimality.
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