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What makes a block design good for experiments?

I have v treatments that I want to compare.
I'have b blocks.
Each block has space for k treatments (not necessarily distinct).

How should I choose a block design?
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Two designs with v =5, b = 7, k = 3: which is better?

Conventions: columns are blocks;
order of treatments within each block is irrelevant;
order of blocks is irrelevant.

1j1(1)12]2/|2 1{1]1|1]2]2]|2

213|3(4(3|3|4 1(3/3(4|3|3|4

314(5|(5(4|5]|5 2/4|5[5(4|5]|5
binary non-binary

A design is binary if no treatment occurs more than once in any
block.
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Two designs with v = 15, b = 7, k = 3: which is better?

111]2(3/4|5]|6 1/1/1j1)1(1]1
214|5]6/|10|11 |12 2|4|6(8|10]|12|14
3|7(8[9[13|14 |15 3|/5[7|9(11]13]15
replications differ by <1 queen-bee design

The replication of a treatment is its number of occurrences.

A design is a queen-bee design if there is a treatment that
occurs in every block.
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Two designs with v =7, b =7, k = 3: which is better?

112(3|4|5|/6|7 112(3(|4|5|6|7
21314(5(6|7]|1 213(4/5|6|7]|1
4|5(6(7[1]2]|3 3/4(5(6(7]1]|2
balanced (2-design) non-balanced

A binary design is balanced if every pair of distinct treaments
occurs together in the same number of blocks.
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Experimental units and incidence matrix

There are bk experimental units.
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Experimental units and incidence matrix

There are bk experimental units.

If w is an experimental unit, put

f(w) = treatmenton w

g(w) = block containing w.

Fori=1,...,vandj=1,...,0b,let

nj = {w: f(w) = iand g(w) = j}|

= number of experimental units in block j which have
treatment i.

The v X b incidence matrix N has entries n;;.
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Levi graph

The Levi graph G of a block design A has
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Levi graph

The Levi graph G of a block design A has

» one vertex for each treatment,
» one vertex for each block,

» one edge for each experimental unit,
with edge w joining vertex f (w) to vertex g(w).

It is a bipartite graph,
with 7;; edges between treatment-vertex i and block-vertex j.
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Example 1: v=4,b=k=3
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Example 1: v=4,b=k=3
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Example 2: v=8,b=4,k=23
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Concurrence graph

The concurrence graph G of a block design A has
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Concurrence graph

The concurrence graph G of a block design A has

» one vertex for each treatment,

» one edge for each unordered pair «, w, with a« # w,

g(a) = g(w) and f (&) # f(w):
this edge joins vertices f(«) and f(w).

There are no loops.

If i # j then the number of edges between vertices i and j is

b
A =) ighs;
s=1

this is called the concurrence of i and j,
and is the (i,j)-entry of A = NN .
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Example 1: v=4,b=k=3
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Example 1: v=4,b=k=3

Levi graph
can recover design
more vertices
more edges if k = 2
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concurrence graph
may have more symmetry

more edges if k > 4
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Example 2: v=8,b=4,k=23
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Example 2: v=8,b=4,k=23
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Example 3: v=15,b=7, k=3
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Laplacian matrices

The Laplacian matrix L of the concurrence graph G is a
v X v matrix with (i, j)-entry as follows:
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Laplacian matrices

The Laplacian matrix L of the concurrence graph G is a
v X v matrix with (i, j)-entry as follows:
> if i # j then

L = —(number of edges between i and j) = —A;;;
» L; = valency of i = Z)\ij.
j#i

The Laplacian matrix L of the Levi graph G is a
(v+4b) x (v+ b) matrix with (i, j)-entry as follows:
» L= valency of i
k if i is a block

replication r; of i if i is a treatment
» if i # j then L;; = —(number of edges between i and j)

if i and j are both treatments
if i and j are both blocks
—n;; if i is a treatment and j is a block, or vice versa.

0
=<0
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Connectivity

All row-sums of L and of L are zero,
so both matrices have 0 as eigenvalue
on the appropriate all-1 vector.
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Connectivity

All row-sums of L and of L are zero,
so both matrices have 0 as eigenvalue
on the appropriate all-1 vector.

Theorem
The following are equivalent.

1. 0is a simple eigenvalue of L;
G is a connected graph;
G is a connected graph;

0 is a simple eigenvalue of L;

AR AN

the design A is connected in the sense that all differences between
treatments can be estimated.

From now on, assume connectivity.

Call the remaining eigenvalues non-trivial.

They are all non-negative. .



Generalized inverse

Under the assumption of connectivity,
the Moore-Penrose generalized inverse L™ of L is defined by

_ 1.\ ! 1
L = <L + v]v) - 5]211
where [, is the v x v all-1 matrix.

(The matrix ! J» is the orthogonal projector onto the null space
of L.)
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Generalized inverse

Under the assumption of connectivity,
the Moore-Penrose generalized inverse L™ of L is defined by

_ 1.\ ! 1
L = <L + v]v) - 5]211
where [, is the v x v all-1 matrix.

1
(The matrix —J, is the orthogonal projector onto the null space
of L.)

The Moore-Penrose generalized inverse L~ of L is defined
similarly.

16/35



Estimation and variance

We measure the response Y, on each experimenal unit w.
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Estimation and variance

We measure the response Y, on each experimenal unit w.

If experimental unit w has treatment i and is in block m
(f(w) =iand g(w) = m), then we assume that

Y, = T + Bm + random noise.

We want to estimate contrasts ) ; x;7; with } ; x; = 0.

In particular, we want to estimate all the simple differences
T - T

Put Vj; = variance of the best linear unbiased estimator for
T — T]

We want all the Vj; to be small.
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How do we calculate variance?

Theorem
Assume that all the noise is independent, with variance o2,
If ¥ x; = 0O, then the variance of the best linear unbiased estimator of
Y. xiT; is equal to

(x"L™x)ko?.
In particular, the variance of the best linear unbiased estimator of the
simple difference T; — T; is

- N\ 2
Vi = (Li +1Lj —2L; ) ko
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. Or we can use the Levi graph

Theorem
The variance of the best linear unbiased estimator of the simple
difference T; — T; is

vy = (L7 +L; —2L;) o
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Electrical networks

We can consider the concurrence graph G as an electrical
network with a 1-ohm resistance in each edge.
Connect a 1-volt battery between vertices i and ;.
Current flows in the network, according to these rules.
1. Ohm’s Law:
In every edge, voltage drop = current x resistance =
current.
2. Kirchhoff’s Voltage Law:
The total voltage drop from one vertex to any other vertex
is the same no matter which path we take from one to the
other.
3. Kirchhoff’s Current Law:
At every vertex which is not connected to the battery, the
total current coming in is equal to the total current going
out.
Find the total current I from i to j, then use Ohm’s Law to

define the effective resistance R;; between iand jas 1/1I.
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Electrical networks: variance

Theorem
The effective resistance R;j between vertices i and j in G is

Ry = (Ly +1Lj =215 ).
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Theorem
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Electrical networks: variance

Theorem
The effective resistance R;j between vertices i and j in G is

Ry = (Ly +1Lj =215 ).

So
Vij = Ri]' X k(Tz.

Effective resistances are easy to calculate without
matrix inversion if the graph is sparse.
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Example calculation: v =12, b=6,k =23
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Example calculation: v =12, b=6,k =23

V=47
I =36

47
R = =

- 36
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... Or we can use the Levi graph

If i and j are treatment vertices in the Levi graph G
and R;; is the effective resistance between them in G then

Vij = Rl] X (72.
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Example 2 yet again: v =8, b=4, k=3
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Example 2 yet again: v =8, b=4, k=3
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Levi graph concurrence graph
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Resistance increases with distance?

This is obviously true ...
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Resistance increases with distance?

This is obviously true ...

... but actually false.
There are many counter-examples.

It is not even true that the largest resistance corresponds to the
largest distance in the graph.
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Distance-regular graphs

Suppose that the concurrence graph G is simple (no multiple
edges).
Let A; be the v x v matrix whose (i, j)-entry is equal to

1 if the distance fromitojin Gisd
0 otherwise
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Distance-regular graphs

Suppose that the concurrence graph G is simple (no multiple
edges).
Let A; be the v x v matrix whose (i, j)-entry is equal to

1 if the distance fromitojin Gisd
0 otherwise

The graph G is distance-regular if A1A; is a linear combination
of Aj_1,Ajand Ay 4 for all d.

Theorem (Biggs)

If G is distance-regular then pairwise resistance is an increasing
function of distance.
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Anything else nice?

Theorem

If the concurrence graph G is reqular

(in particular, if the block design is binary and all treatments have the
same replication),

and the Laplacian matrix L has precisely two non-trivial eigenvalues,
then pairwise resistance R;; is a decreasing linear function of
concurrence Aj;.
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Anything else nice?

Theorem

If the concurrence graph G is reqular

(in particular, if the block design is binary and all treatments have the
same replication),

and the Laplacian matrix L has precisely two non-trivial eigenvalues,
then pairwise resistance R;; is a decreasing linear function of
concurrence Aj;.

Theorem

If the block design is partially balanced with respect to an amorphic
association scheme,

then pairwise resistance R;j is a monotonic decreasing function of
concurrence Aj;.
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Average pairwise variance

The variance of the best linear unbiased estimator of the simple
difference 7; — 7; is

— 7 —\ 12
Vi = (Ly +1Lj =215 ) ko
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Average pairwise variance

The variance of the best linear unbiased estimator of the simple
difference 7; — 7; is

— 7 —\ 12
vy = (Li +1; —2L5 ) ko

Put V = average value of the Vj;. Then

2 _
U Te(L) _ o 1

V= .
v—1 harmonic mean of 0y, ...,0,_1

7

where 6y, ..., 8,1 are the nontrivial eigenvalues of L.
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Optimality

The design is called

» A-optimal if it minimizes the average of the variances V;;

over all block designs with block size k and the given v and b.
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Optimality

The design is called

» A-optimal if it minimizes the average of the variances V;;
—equivalently, it maximizes the harmonic mean of the
non-trivial eigenvalues of the Laplacian matrix L;

» D-optimal if it minimizes the volume of the confidence
ellipsoid for (13, ..., T);

—equivalently, it maximizes the geometric mean of the
non-trivial eigenvalues of the Laplacian matrix L;

» E-optimal if minimizes the largest value of x'L x/x"x;
—equivalently, it maximizes the minimum non-trivial
eigenvalue 0; of the Laplacian matrix L:

over all block designs with block size k and the given v and b.
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D-optimality: spanning trees

A spanning tree for the graph is a collection of edges of the
graph which form a tree (connected graph with no cycles)
and which include every vertex.
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and which include every vertex.

Cheng (1981), after Gaftke (1978), after Kirchhoff (1847):

product of non-trivial eigenvalues of L

= v X number of spanning trees.

So a design is D-optimal if and only if its concurrence graph G
has the maximal number of spanning trees.
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D-optimality: spanning trees

A spanning tree for the graph is a collection of edges of the
graph which form a tree (connected graph with no cycles)
and which include every vertex.

Cheng (1981), after Gaftke (1978), after Kirchhoff (1847):

product of non-trivial eigenvalues of L

= v X number of spanning trees.

So a design is D-optimal if and only if its concurrence graph G
has the maximal number of spanning trees.

This is easy to calculate by hand when the graph is sparse.
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What about the Levi graph?

Theorem (Gaffke)

Let G and G be the concurrence graph and Levi graph for a connected
incomplete-block design for v treatments in b blocks of size k.

Then the number of spanning trees for G is equal to

K'=o+1 times the number of spanning trees for G.
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What about the Levi graph?

Theorem (Gaffke)

Let G and G be the concurrence graph and Levi graph for a connected
incomplete-block design for v treatments in b blocks of size k.

Then the number of spanning trees for G is equal to

K=v+1 times the number of spanning trees for G.

So a block design is D-optimal if and only if
its Levi graph maximizes the number of spanning trees.

If v > b it is easier to count spanning trees in the Levi graph
than in the concurrence graph.
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E-optimality: the cutset lemma

A design is E-optimal if it maximizes the smallest non-trivial
eigenvalue 0; of the Laplacian L of the concurrence graph G.
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If c is small but m and n are both large, then 0; is small.
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E-optimality: the cutset lemma

A design is E-optimal if it maximizes the smallest non-trivial
eigenvalue 0; of the Laplacian L of the concurrence graph G.

Lemma

Let G have an edge-cutset of size ¢

(set of c edges whose removal disconnects the graph)

whose removal separates the graph into components of sizes m and n.

Then . .
91 S C <—|—> .
m n

If c is small but m and n are both large, then 0; is small.

There is a similar result for vertex-cutsets.
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E-optimality when v =2b+1 and k =3

The Levi graph has 3b + 1 vertices and 3b edges, so it is a tree.
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E-optimality when v =2b+1 and k =3

The Levi graph has 3b + 1 vertices and 3b edges, so it is a tree.

1 1
<2 =4+ — 6, >1
6 < <5+10> 1>

The only E-optimal designs are the queen-bee designs.
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Can we use the Levi graph to find E-optimal designs?

For binary designs with equal replication,
01 (L) is a monotonic increasing function of 6; (L).
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Can we use the Levi graph to find E-optimal designs?

For binary designs with equal replication,
01 (L) is a monotonic increasing function of 6; (L).

For general block designs, we do not know if we can use the
Levi graph to investigate E-optimality.

35/35



	Block designs
	Examples

	Graphs
	Laplacians
	Variance
	Resisitance
	Optimality criteria

