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Abstract

We consider experiments where the experimental units are arranged in
a circle or in a single line in space or time. If neighbouring treatments
may affect the response on an experimental unit, then we need a
model which includes the effects of direct treatments, left neighbours
and right neighbours. It is desirable that each ordered pair of
treatments occurs just once as neighbours and just once with a single
unit in between. A circular design with this property is equivalent to a
special type of quasigroup.

In one variant of this, self-neighbours are forbidden. In a further
variant, it is assumed that the left-neighbour effect is the same as the
right-neighbour effect, so all that is needed is that each unordered pair
of treatments occurs just once as neighbours and just once with a
single unit in between.

I shall report progress on finding methods of constructing the three
types of design.
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An experiment in marine biology

A marine biologist wanted to compare 5 genotypes of bryozoan
by suspending them in sea water around the circumference of a
cylindrical tank. Each genotype was replicated 5 times, so that
altogether 25 items were suspended in the tank.

The marine biologist required that

(i) each ordered pair of items should occur just once as ordered
neighbours around the circumference of the tank;

(ii) each ordered pair of items should occur just once with a single
item in between them, in order.
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A circular design for 5 treatments with neighbour balance
at distances one and two
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The lazy way to write the design

(1 1 3 4 3 0 0 1 0 2 2 0 3 3 1 2 1 4 0 4 4 2 3 2 4)
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Model

Denote by τ(i) the treatment on plot i.

Denote by Yi the response on plot i.

E(Yi) = λτ(i−1) +δτ(i) +ρτ(i+1)

The direct treatment effects δ ,
the left neighbour effects λ

and the right neighbour effects ρ

can be estimated orthogonally of each other
in a experiment of this size
if and only if the design has neighbour balance at distances one and
two.
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Those conditions again

Among the triples of the form(
τ(i−1),τ(i),τ(i+1)

)
,

each ordered pair of treatments occurs once in positions 1 and 2, once
in positions 1 and 3, and once in positions 2 and 3.

Among the triples of the form(
row,column,symbol

)
,

each ordered pair of symbols occurs once in positions 1 and 2, once in
positions 1 and 3, and once in positions 2 and 3.

These are conditions for a Latin square whose rows and columns have
the same labels as the symbols—a quasigroup.
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Building the design from a quasigroup (Latin square)

The quasigroup operation ◦ is defined by

a◦b = symbol in row a and column b of the Latin square.

In the circular design, each triple should have the form

(a,b,a◦b).

We can start with any ordered pair (x,y) and successively build the
circular design from the quasigroup as

x y x◦ y y◦ (x◦ y) (x◦ y)◦ (y◦ (x◦ y)) · · ·
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Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B A C D A A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A

B A C D A A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A

B A C D A A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B

A C D A A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B

A C D A A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B A

C D A A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B A

C D A A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B A C

D A A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B A C

D A A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B A C D

A A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B A C D

A A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B A C D A

A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B A C D A

A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B A C D A A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B A C D A A oops!

This quasigroup gives a design with four separate circles, not one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )

9/21



Eulerian quasigroups

Let’s call a quasigroup Eulerian if it gives a single large circle.

0 1 2 3 4
0 1 0 2 3 4
1 2 3 1 4 0
2 3 4 0 2 1
3 0 2 4 1 3
4 4 1 3 0 2

(1 1 3 4 3 0 0 1 0 2 2 0 3 3 1 2 1 4 0 4 4 2 3 2 4)
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Do Eulerian quasigroups of order n exist?

If n≤ 4, a manual check shows that there are none.

For n = 5, we have shown an example.

For every other value of n that we have tried,
we have found an Eulerian quasigroup by computer search;
and we can prove that existence for coprime n and m implies
existence for mn;
BUT we have been unable to prove that they always exist.

Email from Ian Wanless on 11 July 2010:

Back in Australia now and awake in the middle of the
night... but wanted to let you know that in my sleeplessness
I’ve solved that parity question.
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Variant I: no self-neighbours

Sometimes it is undesirable to have the same treatment on
neighbouring plots.

We need a circular design with n(n−1) plots in which each
I each ordered pair of distinct treatments occurs just once as

ordered neighbours.
I each left-neighbour treatment occurs just once with all but one of

the right-neighbour treatments.

The incidence of
direct treatments with left-neighbour treatments is a symmetric BIBD;
direct treatments with right-neighbour treatments is a symmetric
BIBD;
left-neighbour treatments with right-neighbour treatments is a
symmetric BIBD.

Preece (1976) showed that, for overall balance, the missing pairs at
distance two must also be the self-pairs.
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Idempotent Eulerian circular sequences

We need a circular design with n(n−1) plots in which each
I each ordered pair of distinct treatments occurs just once as

ordered neighbours.
I each left-neighbour treatment occurs just once with every

right-neighbour treatment except itself.

The results of Druilhet (1999) show that such designs are optimal for
the estimation of direct effects and neighbour effects.

A quasigroup is idempotent if x◦ x = x for all x.

Our circular design is equivalent to an idempotent quasigroup in
which the n(n−1) off-diagonal cells give a single circle.
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Construction when n = 6

The treatments are the integers modulo 5, together with ∞.

sequence [4,3,1,2] all different, non-zero
neighbour sums [2,4,3] all different, non-zero, non-1
sum of ends 1 must be 1
cumulative sums [0,4,2,3,0]

(∞ 0 4 2 3 0 ∞ 1 0 3 4 1 ∞ 2 1 4 0 2 ∞ 3 2 0 1 3 ∞ 4 3 1 2 4)

Differences at distance one come from the original sequence;
difference at distance two are the neighbour sums.
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A circular design for 6 treatments with no self-neighbours
at distance one or two
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Solution for variant I

Theorem
Given an initial sequence of the non-zero integers modulo n−1
satisfying those conditions,
that construction always produces an idempotent Eulerian circular
sequence.

Theorem
Such an initial sequence can be constructed whenever n≥ 6.
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Variant II: undirectional neighbour effects

Suppose that the effect of the neighbouring treatment is the same
whether it is from the left or the right.

Yi = λτ(i−1) +δτ(i) +λτ(i+1) + εi,

where the εi are independent random variables with mean 0 and
common variance σ2.

Can we arrange that every treatment have every treatment as
neighbour just once, on one side or the other?

A self-pair gives a self-neighbour on both sides, so we must ban
self-pairs. So we need a circle of n(n−1)/2 plots.

Each plot has two neighbours, so each treatment has an even number
of neighbours, so n−1 must be even.

Any triple (a,b,a) gives b as a neighbour of a on both sides, so there
can be no such triples.
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Model and variance

Yi = λτ(i−1) +δτ(i) +λτ(i+1) + εi,

In vector form
Y = X1δ +X2λ + ε.

The neighbour conditions in the design imply that each treatment
occurs r times, where r = (n−1)/2.
Also X>1 X1 = rI, X>1 X2 = J− I and X>2 X2 = 2rI +(J− I),
where I is the n×n identity matrix and J is the n×n all-1 matrix.

Some calculations show that the variance of the estimator of the
difference between two direct effects is

2(2r−1)
(r−1)(2r +1)

σ
2

while that for the difference between two neighbour effects is
2r

(r−1)(2r +1)
σ

2.
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Construction when n = 9

The treatments are the integers modulo 9.

circular sequence (1,2,5,3) ± entries are all different
circular neighbour sums (3,7,8,4) ± entries are all different
cumulative sums [1,3,8,2] last one is coprime to 9

(1 3 8 2 3 5 1 4 5 7 3 6 7 0 5 8 0 2 7 1 2 4 0 3 4 6 2 5 6 8 4 7 8 1 6 0)

Differences at distance one come from the original sequence;
difference at distance two are the neighbour sums.
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A circular design for 9 treatments with undirectional
neighbour balance at distances one and two
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Solution for variant II

Theorem
Given an initial circular sequence of (n−1)/2 of the
integers modulo n satisfying those conditions,
that construction always produces a circular sequence
balanced for undirected neighbours at distances one and two.

Theorem
Such an initial sequence can be constructed whenever n is odd and
n≥ 9. There is also such a circular sequence when n = 7.
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