Experiments in rectangular areas: restricted randomization or row-column designs?

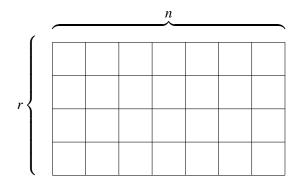
r.a.bailey@qmul.ac.uk

Thanks to CAPES for support in Brasil

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

The problem

An agricultural experiment to compare n treatments. The experimental area has r rows and n columns.



Use a randomized complete-block design with rows as blocks. (In each row, choose one of the n! orders with equal probability.) What should we do if the randomization produces a plan with one

Federer (1955 book): guayule trees

B	D	G	A	F	C	Ε
A	G	С	D	F	В	Ε
G	Ε	D	F	В	С	Α
В	A	С	F	G	Ε	D
G	В	F	С	D	Α	Ε

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Federer (1955 book): guayule trees

В	D	G	A	F	C	E
A	G	С	D	F	В	E
G	E	D	F	В	С	A
B	Α	С	F	G	E	D
G	В	F	С	D	Α	E

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proposed courses of action

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization Keep re-randomizing until you get a plan you like. Analyse as usual.

Solution: Simple-minded restricted randomization Keep re-randomizing until you get a plan you like. Analyse as usual. Solution: Use a Latinized design, but analyse as usual Deliberately construct a design in which no treatment occurs more than once in any column.

Solution: Simple-minded restricted randomization Keep re-randomizing until you get a plan you like. Analyse as usual.

Solution: Use a Latinized design, but analyse as usual

Deliberately construct a design in which no treatment occurs more than once in any column.

Solution (following Yates): Super-valid restricted randomization, with usual analysis

Solution: Simple-minded restricted randomization Keep re-randomizing until you get a plan you like. Analyse as usual.

Solution: Use a Latinized design, but analyse as usual

Deliberately construct a design in which no treatment occurs more than once in any column.

Solution (following Yates): Super-valid restricted randomization, with usual analysis

Solution: Efficient row-column design, with analysis allowing for rows and columns

Solution: Simple-minded restricted randomization Keep re-randomizing until you get a plan you like. Analyse as usual.

Solution: Use a Latinized design, but analyse as usual

Deliberately construct a design in which no treatment occurs more than once in any column.

Solution (following Yates): Super-valid restricted randomization, with usual analysis

Solution: Efficient row-column design, with analysis allowing for rows and columns

・ロト・母ト・ヨト・ヨト ヨー めへぐ

Solution: Use a carefully chosen Latinized design; REML/ANOVA estimates of variance components

Continue to randomize and analyse as usual

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Simple to construct.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Simple to construct.
- Simple to randomize.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- Simple to construct.
- Simple to randomize.
- Simple to analyse.

- Simple to construct.
- Simple to randomize.
- Simple to analyse.

Some treatment comparisons in some experiments will have a specially low or specially high variance, but the estimated variance is unbiased when averaged over all comparisons and all possible randomized plans.

 Y_{α} is the response on plot α .

 $E(Y_{\alpha}) = \theta_i$ where *i* is the treatment on α .

$$\operatorname{Var}(Y_{\alpha}) = \sigma^{2} \quad \text{for all } \alpha$$
$$\operatorname{Cov}(Y_{\alpha}, Y_{\beta}) = \begin{cases} \rho \sigma^{2} & \text{if } \alpha \neq \beta \text{ in same row} \\ \tau \sigma^{2} & \text{if } \alpha \neq \beta \text{ in same column} \\ 0 & \text{if } \alpha \neq \beta \text{ otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

with $0 \le \rho \le 1$ and $0 \le \tau \le 1$.

 λ_{ij} = number of pairs of plots in the same column getting treatments *i* and *j*.

B	D	G	A	F	C	Ε
A	G	С	D	F	В	Ε
G	Ε	D	F	В	С	A
B	A	С	F	G	Ε	D
G	В	F	С	D	Α	Ε

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 λ_{ij} = number of pairs of plots in the same column getting treatments *i* and *j*.

B	D	G	A	F	С	Ε
A	G	С	D	F	В	Ε
G	Ε	D	F	В	С	A
B	A	С	F	G	Ε	D
G	В	F	С	D	Α	Ε

$$\lambda_{AD} = 0 + 1 + 0 + 1 + 0 + 0 + 1 = 3$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 λ_{ij} = number of pairs of plots in the same column getting treatments *i* and *j*.

B	D	G	A	F	С	Ε
Α	G	С	D	F	B	Ε
G	Ε	D	F	B	С	Α
B	A	С	F	G	Ε	D
G	B	F	С	D	Α	Ε

$$\lambda_{AD} = 0 + 1 + 0 + 1 + 0 + 0 + 1 = 3$$

$$\lambda_{AB} = 2 + 1 + 0 + 0 + 0 + 1 + 0 = 4$$

 λ_{ij} = number of pairs of plots in the same column getting treatments *i* and *j*.

B	D	G	A	F	С	Ε
Α	G	С	D	F	В	Ε
G	Ε	D	F	В	С	A
B	A	С	F	G	Ε	D
G	В	F	С	D	Α	Ε

$$\begin{array}{ll} \lambda_{AD} &= 0+1+0+1+0+0+1= & 3 \\ \lambda_{AB} &= 2+1+0+0+0+1+0= & 4 \\ \lambda_{AA} &= 1+1+0+1+0+1+1= & 5 \end{array}$$

 λ_{ij} = number of pairs of plots in the same column getting treatments *i* and *j*.

B	D	G	A	F	C	Ε
A	G	С	D	F	B	Ε
G	Ε	D	F	В	С	Α
B	A	С	F	G	Ε	D
G	B	F	С	D	Α	Ε

$$\begin{aligned} \lambda_{AD} &= 0 + 1 + 0 + 1 + 0 + 0 + 1 = 3\\ \lambda_{AB} &= 2 + 1 + 0 + 0 + 0 + 1 + 0 = 4\\ \lambda_{AA} &= 1 + 1 + 0 + 1 + 0 + 1 + 1 = 5\\ \lambda_{BB} &= 4 + 1 + 0 + 0 + 1 + 1 + 0 = 7 \end{aligned}$$

$$\operatorname{Var}(Y_{\alpha}) = \sigma^{2} \quad \text{for all } \alpha$$
$$\operatorname{Cov}(Y_{\alpha}, Y_{\beta}) = \begin{cases} \rho \sigma^{2} & \text{if } \alpha \neq \beta \text{ in same row} \\ \tau \sigma^{2} & \text{if } \alpha \neq \beta \text{ in same column} \\ 0 & \text{if } \alpha \neq \beta \text{ otherwise} \end{cases}$$

$$V_{ij} = \text{variance of the estimator of } \theta_i - \theta_j$$
$$= \frac{\sigma^2}{r^2} \left[2r - 2r\rho + (\lambda_{ii} - r)\tau + (\lambda_{jj} - r)\tau - 2\lambda_{ij}\tau \right]$$

$$\operatorname{Var}(Y_{\alpha}) = \sigma^{2} \quad \text{for all } \alpha$$
$$\operatorname{Cov}(Y_{\alpha}, Y_{\beta}) = \begin{cases} \rho \sigma^{2} & \text{if } \alpha \neq \beta \text{ in same row} \\ \tau \sigma^{2} & \text{if } \alpha \neq \beta \text{ in same column} \\ 0 & \text{if } \alpha \neq \beta \text{ otherwise} \end{cases}$$

$$V_{ij} = \text{variance of the estimator of } \theta_i - \theta_j$$

= $\frac{\sigma^2}{r^2} [2r - 2r\rho + (\lambda_{ii} - r)\tau + (\lambda_{jj} - r)\tau - 2\lambda_{ij}\tau]$
 \uparrow
same
plot

$$\operatorname{Var}(Y_{\alpha}) = \sigma^{2} \quad \text{for all } \alpha$$
$$\operatorname{Cov}(Y_{\alpha}, Y_{\beta}) = \begin{cases} \rho \sigma^{2} & \text{if } \alpha \neq \beta \text{ in same row} \\ \tau \sigma^{2} & \text{if } \alpha \neq \beta \text{ in same column} \\ 0 & \text{if } \alpha \neq \beta \text{ otherwise} \end{cases}$$

$$V_{ij} = \text{variance of the estimator of } \theta_i - \theta_j$$

= $\frac{\sigma^2}{r^2} [2r - 2r\rho + (\lambda_{ii} - r)\tau + (\lambda_{jj} - r)\tau - 2\lambda_{ij}\tau]$
 \uparrow \searrow
same same
plot row

$$\operatorname{Var}(Y_{\alpha}) = \sigma^{2} \quad \text{for all } \alpha$$
$$\operatorname{Cov}(Y_{\alpha}, Y_{\beta}) = \begin{cases} \rho \sigma^{2} & \text{if } \alpha \neq \beta \text{ in same row} \\ \tau \sigma^{2} & \text{if } \alpha \neq \beta \text{ in same column} \\ 0 & \text{if } \alpha \neq \beta \text{ otherwise} \end{cases}$$

$$V_{ij} = \text{variance of the estimator of } \theta_i - \theta_j$$

= $\frac{\sigma^2}{r^2} [2r - 2r\rho + (\lambda_{ii} - r)\tau + (\lambda_{jj} - r)\tau - 2\lambda_{ij}\tau]$
 \uparrow same same same same column

$$\operatorname{Var}(Y_{\alpha}) = \sigma^{2} \quad \text{for all } \alpha$$
$$\operatorname{Cov}(Y_{\alpha}, Y_{\beta}) = \begin{cases} \rho \sigma^{2} & \text{if } \alpha \neq \beta \text{ in same row} \\ \tau \sigma^{2} & \text{if } \alpha \neq \beta \text{ in same column} \\ 0 & \text{if } \alpha \neq \beta \text{ otherwise} \end{cases}$$

$$V_{ij} = \text{variance of the estimator of } \theta_i - \theta_j$$

= $\frac{\sigma^2}{r^2} [2r - 2r\rho + (\lambda_{ii} - r)\tau + (\lambda_{jj} - r)\tau - 2\lambda_{ij}\tau]$
 \uparrow
same same plot row same column
 σ^2

$$= \frac{\partial}{r^2} \left[2r(1-\rho) + (\lambda_{ii} + \lambda_{jj} - 2\lambda_{ij} - 2r)\tau \right]$$

Pairwise variance in the example

B	D	G	A	F	С	Ε
A	G	С	D	F	B	Ε
G	Ε	D	F	В	С	Α
B	A	С	F	G	Ε	D
G	B	F	С	D	Α	Ε

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?

From
$$V_{BG} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{4}{5}\tau \right]$$

Pairwise variance in the example

B	D	G	A	F	C	E
A	G	С	D	F	В	E
G	E	D	F	В	С	Α
В	Α	С	F	G	E	D
G	В	F	С	D	A	E

From
$$V_{BG} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{4}{5}\tau \right]$$
 to $V_{EF} = \frac{2\sigma^2}{5} \left[1 - \rho + \tau \right]$

Pairwise variance in the example

B	D	G	A	F	С	Ε
A	G	С	D	F	В	Ε
G	Ε	D	F	В	С	Α
В	Α	С	F	G	Ε	D
G	В	F	С	D	Α	Ε

From
$$V_{BG} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{4}{5}\tau \right]$$
 to $V_{EF} = \frac{2\sigma^2}{5} \left[1 - \rho + \tau \right]$

with average
$$V = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{1}{15}\tau \right].$$

- Simple to construct.
- Simple to randomize.
- Simple to analyse.

Some treatment comparisons in some experiments will have a specially low or specially high variance, but the estimated variance is unbiased when averaged over all comparisons and all possible randomized plans.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

► Inefficient to produce plans: many will have to be rejected.

► Inefficient to produce plans: many will have to be rejected. For the 5 × 7 rectangle, the proportion of plans with no repeat in any column is only 0.000006.

► Inefficient to produce plans: many will have to be rejected. For the 5 × 7 rectangle, the proportion of plans with no repeat in any column is only 0.000006.

The actual variance of treatment comparisons is lower, but the estimate of that variance is higher.

Calculations

 λ_{ij} = number of pairs of plots in the same column getting treatments *i* and *j*

Note that
$$\sum_{j=1}^{n} \lambda_{ij} = r^2$$
 for each *i*.

We know that
$$V_{ij} = \frac{\sigma^2}{r^2} [2r(1-\rho) + (\lambda_{ii} + \lambda_{jj} - 2\lambda_{ij} - 2r)\tau]$$

Calculations

 λ_{ij} = number of pairs of plots in the same column getting treatments *i* and *j*

Note that
$$\sum_{j=1}^{n} \lambda_{ij} = r^2$$
 for each *i*.

We know that
$$V_{ij} = \frac{\sigma^2}{r^2} [2r(1-\rho) + (\lambda_{ii} + \lambda_{jj} - 2\lambda_{ij} - 2r)\tau]$$

Put
$$V = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} V_{ij}$$
 and put $D = \sum_{i=1}^{n} \lambda_{ii}$.

Calculations

 λ_{ij} = number of pairs of plots in the same column getting treatments *i* and *j*

Note that
$$\sum_{j=1}^{n} \lambda_{ij} = r^2$$
 for each *i*.

We know that
$$V_{ij} = \frac{\sigma^2}{r^2} \left[2r(1-\rho) + (\lambda_{ii} + \lambda_{jj} - 2\lambda_{ij} - 2r)\tau \right]$$

Put
$$V = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i}^{n} V_{ij}$$
 and put $D = \sum_{i=1}^{n} \lambda_{ii}$.
Calculations give $V = \frac{2\sigma^2}{r^2} \left[r(1-\rho) + \left(\frac{D-r^2}{n-1} - r\right)\tau \right]$

Spectral form of covariance matrix

$$\operatorname{Cov}(\mathbf{Y}) = \sigma^{2}[\mathbf{I} + \rho(\mathbf{R} - \mathbf{I}) + \tau(\mathbf{C} - \mathbf{I})]$$

where I is the identity matrix,

R is the matrix whose (α, β) -entry is equal to 1 if plots α and β are in the same row and to 0 otherwise,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

C is the similarly defined matrix for columns.

Spectral form of covariance matrix

$$Cov(\mathbf{Y}) = \sigma^2[\mathbf{I} + \rho(\mathbf{R} - \mathbf{I}) + \tau(\mathbf{C} - \mathbf{I})]$$

where **I** is the identity matrix,

row

R is the matrix whose (α, β) -entry is equal to 1 if plots α and β are in the same row and to 0 otherwise,

C is the similarly defined matrix for columns.

So
$$\operatorname{Cov}(\mathbf{Y}) = \xi_0 \mathbf{S}_0 + \xi_1 \mathbf{S}_1 + \xi_2 \mathbf{S}_2 + \xi_3 \mathbf{S}_3$$
, where

$$\begin{aligned} \xi_0 &= \sigma^2 (1 + (n-1)\rho + (r-1)\tau) \\ \xi_1 &= \sigma^2 (1 - \tau + (n-1)\rho) \\ \xi_2 &= \sigma^2 (1 - \rho + (r-1)\tau) \\ \xi_3 &= \sigma^2 (1 - \rho - \tau) \end{aligned}$$
rows stratum $\mathbf{S}_1 = \frac{1}{n} \mathbf{R} - \frac{1}{rn} \mathbf{J}$ $\mathbf{S}_2 = \frac{1}{r} \mathbf{C} - \frac{1}{rn} \mathbf{J}$ columns stratum grand mean $\mathbf{S}_0 = \frac{1}{rn} \mathbf{J}$ $\mathbf{S}_3 = \mathbf{I} - \frac{1}{n} \mathbf{R} - \frac{1}{r} \mathbf{C} + \frac{1}{rn} \mathbf{J}$ plots stratum

stratum	df	variance
mean	1	ξ0
rows	r-1	ξ1
columns	n-1	ξ_2
plots	(r-1)(n-1)	ξ3

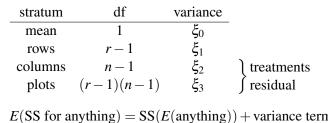
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?

stratum	df	variance	
mean	1	ξ_0	
rows	r-1	ξ1	
columns	n-1	ξ_2) treatments
plots	(r-1)(n-1)	ξ3	∫ residual

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?

stratum	df	variance	
mean	1	ξ_0	
rows	r-1	ξ_1	
columns	n-1	ξ_2) treatments
plots	(r-1)(n-1)	ξ_3	∫ residual

E(SS for anything) = SS(E(anything)) + variance term



E(SS for anything) = SS(E(anything)) + variance termso E(SS for treatments) = Q + r(n-1)V/2, where Q is a positive-definite quadratic form in the treatment effects.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

stratum	df	variance	
mean	1	ξ_0	
rows	r-1	ξ1	
columns	n-1	ξ_2) treatments
plots	(r-1)(n-1)	ξ_3	∫ residual

E(SS for anything) = SS(E(anything)) + variance termso E(SS for treatments) = Q + r(n-1)V/2, where Q is a positive-definite quadratic form in the treatment effects.

Treatments are orthogonal to rows, so

 $E(SS \text{ for contrasts } \perp \text{ to rows}) = Q + (n-1)\xi_2 + (n-1)(r-1)\xi_3$

ション ふぼう ふほう ふほう しょうめん

_

stratum	df	variance	
mean	1	ξ_0	
rows	r-1	ξ_1	
columns	n-1	ξ_2) treatments
plots	(r-1)(n-1)	ξ3	∫ residual

E(SS for anything) = SS(E(anything)) + variance termso E(SS for treatments) = Q + r(n-1)V/2, where Q is a positive-definite quadratic form in the treatment effects.

Treatments are orthogonal to rows, so

$$\begin{split} E(\text{SS for contrasts} \perp \text{to rows}) &= Q + (n-1)\xi_2 + (n-1)(r-1)\xi_3 \\ &= Q + (n-1)(y+r-1)\xi_3. \quad (y = \xi_2/\xi_3) \end{split}$$

ション ふぼう ふほう ふほう しょうめん

stratum	df	variance	
mean	1	ξ_0	
rows	r-1	ξ_1	
columns	n-1	ξ_2) treatments
plots	(r-1)(n-1)	ξ_3	∫ residual

E(SS for anything) = SS(E(anything)) + variance termso E(SS for treatments) = Q + r(n-1)V/2, where

Q is a positive-definite quadratic form in the treatment effects. Treatments are orthogonal to rows, so

 $E(SS \text{ for contrasts} \perp \text{ to rows}) = Q + (n-1)\xi_2 + (n-1)(r-1)\xi_3$ = Q + (n-1)(y+r-1)\xi_3. (y = \xi_2/\xi_3) So $E(MS \text{ residual}) = E\left(\frac{SS \text{ residual}}{(n-1)(r-1)}\right) = \frac{1}{r-1}\left[(y+r-1)\xi_3 - \frac{rV}{2}\right].$

The estimator of V is
$$\hat{V} = \frac{2M}{r}$$
, where $M = MS$ residual.
We have shown that $E\left(\frac{2M}{r}\right) = \frac{2}{r-1}\left[\frac{(y+r-1)}{r}\xi_3 - \frac{V}{2}\right]$, so smaller $V \Longrightarrow$ larger \hat{V} .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The estimator of V is
$$\hat{V} = \frac{2M}{r}$$
, where $M = MS$ residual.
We have shown that $E\left(\frac{2M}{r}\right) = \frac{2}{r-1}\left[\frac{(y+r-1)}{r}\xi_3 - \frac{V}{2}\right]$,
so smaller $V \Longrightarrow$ larger \hat{V} .

Reparametrizing:
$$V = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)(D-r^2)}{r^2(n-1)} \right]$$
 with $D = \sum_{i=1}^n \lambda_{ii}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

The estimator of V is
$$\hat{V} = \frac{2M}{r}$$
, where $M = MS$ residual.
We have shown that $E\left(\frac{2M}{r}\right) = \frac{2}{r-1}\left[\frac{(y+r-1)}{r}\xi_3 - \frac{V}{2}\right]$,
so smaller $V \Longrightarrow \text{ larger } \hat{V}$.

Reparametrizing:
$$V = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)(D-r^2)}{r^2(n-1)} \right]$$
 with $D = \sum_{i=1}^n \lambda_{ii}$.

◆□▶◆圖▶◆圖▶◆圖▶ ▲ ● ● ●

If simple restricted randomization implies that no treatment occurs more than once in any column, then $\lambda_{ii} = r$ for all *i*, so D = rn, so

The estimator of *V* is
$$\hat{V} = \frac{2M}{r}$$
, where $M = MS$ residual.
We have shown that $E\left(\frac{2M}{r}\right) = \frac{2}{r-1}\left[\frac{(y+r-1)}{r}\xi_3 - \frac{V}{2}\right]$,
smaller $V \Longrightarrow$ larger \hat{V}

so smaller $V \Longrightarrow \text{larger } \hat{V}$.

Reparametrizing:
$$V = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)(D-r^2)}{r^2(n-1)} \right]$$
 with $D = \sum_{i=1}^n \lambda_{ii}$.

If simple restricted randomization implies that no treatment occurs more than once in any column, then $\lambda_{ii} = r$ for all *i*, so D = rn, so

$$V = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)(n-r)}{r(n-1)} \right]$$

and $\frac{2E(M)}{r} = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)n}{r(n-1)} \right]$

which over-estimates V by $2(y-1)\xi_3/[r(n-1)]$.

Keep re-randomizing until you get a plan with no treatment more than once in any column. Analyse as usual.

- Inefficient to produce plans: many will have to be rejected.
- Variance is overestimated:

$$V = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)(n-r)}{r(n-1)} \right]$$

and

$$E(\hat{V}) = \frac{2E(M)}{r} = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)n}{r(n-1)} \right]$$

Keep re-randomizing until you get a plan with no treatment more than once in any column. Analyse as usual.

- Inefficient to produce plans: many will have to be rejected.
- Variance is overestimated:

$$V = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)(n-r)}{r(n-1)} \right]$$

and

$$E(\hat{V}) = \frac{2E(M)}{r} = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)n}{r(n-1)} \right]$$

• Genuine treatment differences may not be detected.

A			
C			
G			
B			
D			

A	B			
C	D			
G	A			
B	С			
D	E			

A	В	С		
C	D	Ε		
G	Α	В		
B	С	D		
D	Ε	F		

A	В	С	D	Ε	F	G
C	D	Ε	F	G	A	В
G	Α	В	С	D	Ε	F
В	С	D	Ε	F	G	A
D	Ε	F	G	Α	В	С

A	В	С	D	Ε	F	G
C	D	Ε	F	G	A	В
G	Α	В	С	D	Ε	F
B	С	D	Ε	F	G	A
D	Ε	F	G	A	В	С

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Randomize rows, columns, treatments.

A	В	С	D	E	F	G
C	D	Ε	F	G	A	В
G	Α	В	С	D	Ε	F
B	С	D	Ε	F	G	A
D	Ε	F	G	Α	В	С

Randomize rows, columns, treatments.

Same bias in estimator of variance as for simple restricted randomization.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Needs tables of designs.

- Needs tables of designs.
- Randomize rows, columns and treatments.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Needs tables of designs.
- Randomize rows, columns and treatments.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Analyse as usual.

- Needs tables of designs.
- Randomize rows, columns and treatments.
- Analyse as usual.
- Same average variance as in randomized complete-block design, but with smaller range.

- Needs tables of designs.
- Randomize rows, columns and treatments.
- Analyse as usual.
- Same average variance as in randomized complete-block design, but with smaller range.

ション ふぼう ふほう ふほう しょうめん

The estimator of variance is unbiased when averaged over all comparisons in this one experiment.

Condition for unbiased estimator of variance

We have
$$V = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)(D-r^2)}{r^2(n-1)} \right]$$

with $D = \sum_{i=1}^n \lambda_{ii}$,
and $E(\hat{V}) = \frac{2}{r-1} \left[\frac{(y+r-1)}{r} \xi_3 - \frac{V}{2} \right]$,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Condition for unbiased estimator of variance

We have
$$V = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)(D-r^2)}{r^2(n-1)} \right]$$

with $D = \sum_{i=1}^n \lambda_{ii}$,
and $E(\hat{V}) = \frac{2}{r-1} \left[\frac{(y+r-1)}{r} \xi_3 - \frac{V}{2} \right]$,
So $V = E(\hat{V}) \iff D = r(r+n-1)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Condition for unbiased estimator of variance

We have
$$V = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)(D-r^2)}{r^2(n-1)} \right]$$

with $D = \sum_{i=1}^n \lambda_{ii}$,
and $E(\hat{V}) = \frac{2}{r-1} \left[\frac{(y+r-1)}{r} \xi_3 - \frac{V}{2} \right]$,
So $V = E(\hat{V}) \iff D = r(r+n-1)$

If each pair of rows has one column with the same treatment but no treatment occurs more than twice in any column then D = r(r+n-1) and $V = E(\hat{V})$.

A	В	С	D	Ε	F	G
D	Ε	F	С	Α	В	G
A	G	F	В	С	Ε	D
D	В	G	F	С	A	Ε
G	E	С	В	D	Α	F

1. In every pair of rows, there is exactly one column in which the two treatments are the same.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

A	В	С	D	Ε	F	G
D	Ε	F	С	A	В	G
A	G	F	В	С	Ε	D
D	В	G	F	С	A	Ε
G	Ε	С	В	D	A	F

1. In every pair of rows, there is exactly one column in which the two treatments are the same.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

2. No treatment occurs more than twice in any column.

A	B	С	D	Ε	F	G
D	Ε	F	С	Α	В	G
A	G	F	В	С	Ε	D
D	B	G	F	С	A	Ε
G	E	С	В	D	Α	F

- 1. In every pair of rows, there is exactly one column in which the two treatments are the same.
- 2. No treatment occurs more than twice in any column.
- 3. If m_i = the number of columns in which treatment *i* occurs twice, then $m_i m_j \in \{-1, 0, 1\}$ for all other treatments *j*.

A	В	С	D	Ε	F	G
D	Ε	F	С	Α	В	G
A	G	F	В	С	Ε	D
D	В	G	F	С	Α	Ε
G	E	С	В	D	Α	F

- 1. In every pair of rows, there is exactly one column in which the two treatments are the same.
- 2. No treatment occurs more than twice in any column.
- 3. If m_i = the number of columns in which treatment *i* occurs twice, then $m_i m_j \in \{-1, 0, 1\}$ for all other treatments *j*.
- 4. Subject to conditions (1)–(3), the spread of the variances of the estimators of simple treatment differences is as small as possible.

Pairwise variances in the example

A	В	С	D	Ε	F	G
D	Ε	F	С	Α	В	G
A	G	F	В	С	Ε	D
D	В	G	F	С	A	Ε
G	Ε	С	В	D	Α	F

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Minimum
$$V_{AD} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{2}{5}\tau \right]$$

Maximum $V_{AB} = \frac{2\sigma^2}{5} \left[1 - \rho + \frac{2}{5}\tau \right]$
Average $V = \frac{2\sigma^2}{5} (1 - \rho)$

Pairwise variances in the example

A	В	С	D	Ε	F	G
D	Ε	F	С	Α	В	G
A	G	F	В	С	Ε	D
D	В	G	F	С	A	Ε
G	E	С	В	D	Α	F

Minimum
$$V_{AD} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{2}{5}\tau \right] \qquad \cdots - \frac{4}{5}\tau$$

Maximum $V_{AB} = \frac{2\sigma^2}{5} \left[1 - \rho + \frac{2}{5}\tau \right] \qquad \cdots + \tau$
Average $V = \frac{2\sigma^2}{5}(1 - \rho) \qquad \cdots - \frac{1}{15}\tau$
one layout,
normal

Pairwise variances in the example

Minimum
$$V_{AD} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{2}{5}\tau \right]$$
 $\dots -\frac{4}{5}\tau$
Maximum $V_{AB} = \frac{2\sigma^2}{5} \left[1 - \rho + \frac{2}{5}\tau \right]$ $\dots + \tau$
Average $V = \frac{2\sigma^2}{5}(1 - \rho)$ $\dots -\frac{1}{15}\tau$ $\dots -\frac{2}{3}\tau$
one layout, simple
normal restricted
method

- Needs tables of designs.
- Randomize rows, columns and treatments.
- Analyse as usual.
- Same average variance as in randomized complete-block design, but with smaller range.

ション ふぼう ふほう ふほう しょうめん

The estimator of variance is unbiased when averaged over all comparisons in this one experiment.

- Needs tables of designs.
- Randomize rows, columns and treatments.
- Analyse as usual.
- Same average variance as in randomized complete-block design, but with smaller range.

ション ふぼう ふほう ふほう しょうめん

- The estimator of variance is unbiased when averaged over all comparisons in this one experiment.
- There is no separate estimate of ρ or τ (or y), so treatments must be randomized and a single standard error given for all differences.

Needs tables of designs.

- Needs tables of designs.
- Randomize rows and columns.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲■ - のへ⊙

Efficient row-column designs

- Needs tables of designs.
- Randomize rows and columns.
- More complicated analysis (should be available in software).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Efficient row-column designs

- Needs tables of designs.
- Randomize rows and columns.
- More complicated analysis (should be available in software).
- Average variance may be less than, or more than, the average variance in randomized complete-block design, depending on the size of the correlations.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- Needs tables of designs.
- Randomize rows and columns.
- More complicated analysis (should be available in software).
- Average variance may be less than, or more than, the average variance in randomized complete-block design, depending on the size of the correlations.
- Unbiased estimator of the variance of every treatment contrast.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

$$A = \frac{2\sigma^2}{rV}$$

ション ふぼう ふほう ふほう しょうめん

if the analysis uses information orthogonal to blocks.

$$A = \frac{2\sigma^2}{rV}$$

ション ふぼう ふほう ふほう しょうめん

if the analysis uses information orthogonal to blocks.

Choose the optimal IBD: the one with the largest value of *A*.

$$A = \frac{2\sigma^2}{rV}$$

if the analysis uses information orthogonal to blocks.

Choose the optimal IBD: the one with the largest value of A.

Hall's Marriage Theorem \implies the blocks of this IBD can be arranged as the columns of a row-column design so that each treatment occurs once in each row.

$$A = \frac{2\sigma^2}{rV}$$

if the analysis uses information orthogonal to blocks.

Choose the optimal IBD: the one with the largest value of A.

Hall's Marriage Theorem \implies the blocks of this IBD can be arranged as the columns of a row-column design so that each treatment occurs once in each row.

Randomize rows and columns.

Analyse by fitting rows, columns and treatments.

 $E(MS residual) = \xi_3$

$$V_{ij} = \frac{2\xi_3}{rA_{ij}} \quad \text{where } A_{ij} \text{ is known}$$
$$V = \frac{2\xi_3}{rA} = \frac{2\sigma^2}{rA}(1-\rho-\tau)$$

Example of a row-column design

A	В	С	D	Ε	F	G
B	С	D	Ε	F	G	A
C	D	Ε	F	G	A	В
D	Ε	F	G	A	В	С
E	F	G	Α	В	С	D

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?

$$V_{AB} = 1.044 \times \frac{2}{5}\xi_3$$
$$V_{AC} = 1.089 \times \frac{2}{5}\xi_3$$
$$V_{AD} = 1.091 \times \frac{2}{5}\xi_3$$
$$V = 1.075 \times \frac{2}{5}\xi_3$$

Example of a row-column design

A	В	С	D	Ε	F	G
B	С	D	Ε	F	G	A
C	D	Ε	F	G	A	В
D	Ε	F	G	A	В	С
E	F	G	Α	В	С	D

$$V_{AB} = 1.044 \times \frac{2}{5}\xi_3$$
$$V_{AC} = 1.089 \times \frac{2}{5}\xi_3$$
$$V_{AD} = 1.091 \times \frac{2}{5}\xi_3$$
$$V = 1.075 \times \frac{2}{5}\xi_3$$

normal method

$$V = \frac{2}{5} \left(\frac{y+4}{5} \right) \xi_3$$

averaged over randomizations

N.B. $y = \xi_2/\xi_3 \ge 1$

Efficient row-column designs: summary

- Needs tables of designs.
- Randomize rows and columns.
- More complicated analysis (should be available in software).
- Average variance may be less than, or more than, the average variance in randomized complete-block design, depending on the size of the correlations.
- Unbiased estimator of the variance of every treatment contrast.

Efficient row-column designs: summary

- Needs tables of designs.
- Randomize rows and columns.
- More complicated analysis (should be available in software).
- Average variance may be less than, or more than, the average variance in randomized complete-block design, depending on the size of the correlations.
- Unbiased estimator of the variance of every treatment contrast.
- There is no need to randomize treatments; the most important differences can be given the lowest variance.

Comparing super-valid restricted randomization and efficient row-column designs

$$y = \frac{\xi_2}{\xi_3} = \frac{\text{columns stratum variance}}{\text{plots stratum variance}} \ge 1$$
 (we believe)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Comparing super-valid restricted randomization and efficient row-column designs

$$y = \frac{\xi_2}{\xi_3} = \frac{\text{columns stratum variance}}{\text{plots stratum variance}} \ge 1$$
 (we believe)

The best row-column design is more efficient than super-valid restricted randomization if and only if *y* exceeds the following value.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Comparing super-valid restricted randomization and efficient row-column designs

$$y = \frac{\xi_2}{\xi_3} = \frac{\text{columns stratum variance}}{\text{plots stratum variance}} \ge 1$$
 (we believe)

The best row-column design is more efficient than super-valid restricted randomization if and only if *y* exceeds the following value.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Choose a design with the λ_{ij} as equal as possible. Randomize rows and columns.

Choose a design with the λ_{ij} as equal as possible. Randomize rows and columns.

 $E(MS residual from complete-block analysis) = \xi_3 + \frac{\xi_2 - \xi_3}{r(n-1)}$

 $E(MS residual from row-column analysis) = \xi_3$

Choose a design with the λ_{ij} as equal as possible. Randomize rows and columns.

 $E(MS residual from complete-block analysis) = \xi_3 + \frac{\xi_2 - \xi_3}{r(n-1)}$

 $E(MS residual from row-column analysis) = \xi_3$

Hence unbiased estimators of ξ_2 and ξ_3 and of

$$V = \frac{2}{r} \left[\xi_3 + \frac{(n-r)(\xi_2 - \xi_3)}{r(n-1)} \right]$$

Choose a design with the λ_{ij} as equal as possible. Randomize rows and columns.

 $E(MS residual from complete-block analysis) = \xi_3 + \frac{\xi_2 - \xi_3}{r(n-1)}$

 $E(MS residual from row-column analysis) = \xi_3$

Hence unbiased estimators of ξ_2 and ξ_3 and of

$$V = \frac{2}{r} \left[\xi_3 + \frac{(n-r)(\xi_2 - \xi_3)}{r(n-1)} \right]$$

But this estimator of V does not have a χ^2 distribution, so how do we do hypothesis tests? Also, there are so few effective df for ξ_2 that these estimates have very poor precision.