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The problem

An agricultural experiment to compare n treatments.
The experimental area has r rows and n columns.

n︷ ︸︸ ︷

r


Use a randomized complete-block design with rows as blocks.
(In each row, choose one of the n! orders with equal probability.)

What should we do if the randomization produces a plan with one
treatment always at one side of the rectangle?



Example

Federer (1955 book): guayule trees
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Proposed courses of action

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization

Keep re-randomizing until you get a plan you like. Analyse as usual.

Solution: Use a Latinized design, but analyse as usual

Deliberately construct a design in which no treatment occurs more
than once in any column.

Solution (following Yates): Super-valid restricted
randomization, with usual analysis

Solution: Efficient row-column design, with analysis allowing
for rows and columns

Solution: Use a carefully chosen Latinized design;
REML/ANOVA estimates of variance components
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Continue to randomize and analyse as usual

I Simple to construct.

I Simple to randomize.
I Simple to analyse.
I Some treatment comparisons in some experiments will have a

specially low or specially high variance,
but the estimated variance is unbiased
when averaged over all comparisons and
all possible randomized plans.
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Assumed model

Yα is the response on plot α .

E(Yα) = θi where i is the treatment on α .

Var(Yα) = σ
2 for all α

Cov(Yα ,Yβ ) =


ρσ2 if α 6= β in same row
τσ2 if α 6= β in same column
0 if α 6= β otherwise

with 0≤ ρ ≤ 1 and 0≤ τ ≤ 1.



Concurrence

λij = number of pairs of plots in the same column getting treatments i
and j.

B D G A F C E

A G C D F B E

G E D F B C A

B A C F G E D

G B F C D A E

λAD = 0+1+0+1+0+0+1 = 3

λAB = 2+1+0+0+0+1+0 = 4

λAA = 1+1+0+1+0+1+1 = 5

λBB = 4+1+0+0+1+1+0 = 7
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Pairwise variance

Var(Yα) = σ
2 for all α

Cov(Yα ,Yβ ) =


ρσ2 if α 6= β in same row
τσ2 if α 6= β in same column
0 if α 6= β otherwise

Vij = variance of the estimator of θi−θj

=
σ2

r2 [2r−2rρ +(λii− r)τ +(λjj− r)τ−2λijτ]

↑
same
plot

↖
same
row

↖ ↑ ↗
same column

=
σ2

r2 [2r(1−ρ)+(λii +λjj−2λij−2r)τ]
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Pairwise variance in the example

B D G A F C E

A G C D F B E

G E D F B C A
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G B F C D A E

From VBG =
2σ2

5

[
1−ρ− 4

5
τ

]

to VEF =
2σ2

5
[1−ρ + τ]

with average V =
2σ2

5

[
1−ρ− 1

15
τ

]
.
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Continue to randomize and analyse as usual: summary

I Simple to construct.
I Simple to randomize.
I Simple to analyse.
I Some treatment comparisons in some experiments will have a

specially low or specially high variance,
but the estimated variance is unbiased
when averaged over all comparisons and
all possible randomized plans.



Simple restricted randomization

Keep re-randomizing until you get a plan you like. Analyse as usual.

I Inefficient to produce plans: many will have to be rejected.

For the 5×7 rectangle, the proportion of plans with no repeat in
any column is only 0.000006.

I The actual variance of treatment comparisons is lower,
but the estimate of that variance is higher.
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Calculations

λij = number of pairs of plots in the same column getting treatments i
and j

Note that
n

∑
j=1

λij = r2 for each i.

We know that Vij =
σ2

r2 [2r(1−ρ)+(λii +λjj−2λij−2r)τ]

Put V =
1

n(n−1)

n

∑
i=1

∑
j6=i

Vij and put D =
n

∑
i=1

λii.

Calculations give V =
2σ2

r2

[
r(1−ρ)+

(
D− r2

n−1
− r

)
τ

]
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Spectral form of covariance matrix

Cov(Y) = σ
2[I+ρ(R− I)+ τ(C− I)]

where I is the identity matrix,
R is the matrix whose (α,β )-entry is equal to 1 if plots α and β are in
the same row and to 0 otherwise,
C is the similarly defined matrix for columns.

So Cov(Y) = ξ0S0 +ξ1S1 +ξ2S2 +ξ3S3, where

ξ0 = σ
2(1+(n−1)ρ +(r−1)τ)

ξ1 = σ
2(1− τ +(n−1)ρ)

ξ2 = σ
2(1−ρ +(r−1)τ)

ξ3 = σ
2(1−ρ− τ)

rows stratum S1 =
1
n

R− 1
rn

J S2 =
1
r

C− 1
rn

J columns stratum

grand mean S0 =
1
rn

J S3 = I− 1
n

R− 1
r

C+
1
rn

J plots stratum
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Strata for analysis of variance

stratum df variance
mean 1 ξ0
rows r−1 ξ1

columns n−1 ξ2
plots (r−1)(n−1) ξ3

}
treatments
residual

E(SS for anything) = SS(E(anything))+variance term

so E(SS for treatments) = Q+ r(n−1)V/2, where

Q is a positive-definite quadratic form in the treatment effects.
Treatments are orthogonal to rows, so

E(SS for contrasts ⊥ to rows) = Q+(n−1)ξ2 +(n−1)(r−1)ξ3

=

Q+(n−1)(y+ r−1)ξ3. (y = ξ2/ξ3)

So E(MS residual)= E
(

SS residual
(n−1)(r−1)

)
=

1
r−1

[
(y+ r−1)ξ3−

rV
2

]
.
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Overestimation of variance

The estimator of V is V̂ =
2M
r

, where M = MS residual.

We have shown that E
(

2M
r

)
=

2
r−1

[
(y+ r−1)

r
ξ3−

V
2

]
,

so smaller V =⇒ larger V̂ .

Reparametrizing: V =
2ξ3

r

[
1+

(y−1)(D− r2)
r2(n−1)

]
with D =

n

∑
i=1

λii.

If simple restricted randomization implies that no treatment occurs
more than once in any column, then λii = r for all i, so D = rn, so

V =
2ξ3

r

[
1+

(y−1)(n− r)
r(n−1)

]
and

2E(M)
r

=
2ξ3

r

[
1+

(y−1)n
r(n−1)

]
which over-estimates V by 2(y−1)ξ3/[r(n−1)].
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(

2M
r

)
=

2
r−1

[
(y+ r−1)

r
ξ3−

V
2

]
,

so smaller V =⇒ larger V̂ .

Reparametrizing: V =
2ξ3

r

[
1+

(y−1)(D− r2)
r2(n−1)

]
with D =

n

∑
i=1

λii.

If simple restricted randomization implies that no treatment occurs
more than once in any column, then λii = r for all i, so D = rn, so

V =
2ξ3

r

[
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]
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=
2ξ3

r

[
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(y−1)n
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]
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Simple restricted randomization: summary

Keep re-randomizing until you get a plan with no treatment more than
once in any column. Analyse as usual.

I Inefficient to produce plans: many will have to be rejected.
I Variance is overestimated:

V =
2ξ3

r

[
1+

(y−1)(n− r)
r(n−1)

]
and

E(V̂) =
2E(M)

r
=

2ξ3

r

[
1+

(y−1)n
r(n−1)

]

I Genuine treatment differences may not be detected.
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Use a Latinized design, but analyse as usual

Deliberately construct a design in which no treatment occurs more
than once in any column.
Easy to do this directly, eg

A

B C D E F G

C

D E F G A B

G

A B C D E F

B

C D E F G A

D

E F G A B C

Randomize rows, columns, treatments.

Same bias in estimator of variance as for simple restricted
randomization.
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Super-valid restricted randomization

I Needs tables of designs.

I Randomize rows, columns and treatments.
I Analyse as usual.
I Same average variance as in randomized complete-block design,

but with smaller range.
I The estimator of variance is unbiased

when averaged over all comparisons in this one experiment.
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Condition for unbiased estimator of variance

We have V =
2ξ3

r

[
1+

(y−1)(D− r2)
r2(n−1)

]
with D =

n

∑
i=1

λii,

and E
(
V̂

)
=

2
r−1

[
(y+ r−1)

r
ξ3−

V
2

]
,

So V = E(V̂) ⇐⇒ D = r(r +n−1)

If each pair of rows has one column with the same treatment
but no treatment occurs more than twice in any column
then D = r(r +n−1) and V = E(V̂).
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A design from the tables

A B C D E F G

D E F C A B G

A G F B C E D

D B G F C A E

G E C B D A F

1. In every pair of rows, there is exactly one column in which the
two treatments are the same.

2. No treatment occurs more than twice in any column.
3. If mi = the number of columns in which treatment i occurs

twice, then mi−mj ∈ {−1,0,1} for all other treatments j.
4. Subject to conditions (1)–(3), the spread of the variances of the

estimators of simple treatment differences is as small as possible.
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Pairwise variances in the example
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2σ2
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2
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τ

]

· · ·+ τ
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2σ2

5
(1−ρ)

· · ·− 1
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τ

one layout,
normal
method

simple
restricted
randomization
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Super-valid restricted randomization: summary

I Needs tables of designs.
I Randomize rows, columns and treatments.
I Analyse as usual.
I Same average variance as in randomized complete-block design,

but with smaller range.
I The estimator of variance is unbiased

when averaged over all comparisons in this one experiment.

I There is no separate estimate of ρ or τ (or y),
so treatments must be randomized
and a single standard error given for all differences.
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Efficient row-column designs

I Needs tables of designs.

I Randomize rows and columns.
I More complicated analysis

(should be available in software).
I Average variance may be less than, or more than,

the average variance in randomized complete-block design,
depending on the size of the correlations.

I Unbiased estimator of the variance of every treatment contrast.
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Columns form an Incomplete-block design (IBD)

Given an incomplete-block design for
n treatments in n blocks of size r,
define the number A (0 < A < 1), depending on the design, by

A =
2σ2

rV

if the analysis uses information orthogonal to blocks.

Choose the optimal IBD: the one with the largest value of A.

Hall’s Marriage Theorem =⇒ the blocks of this IBD can be arranged
as the columns of a row-column design so that each treatment occurs
once in each row.

Randomize rows and columns.



Columns form an Incomplete-block design (IBD)

Given an incomplete-block design for
n treatments in n blocks of size r,
define the number A (0 < A < 1), depending on the design, by

A =
2σ2

rV

if the analysis uses information orthogonal to blocks.

Choose the optimal IBD: the one with the largest value of A.

Hall’s Marriage Theorem =⇒ the blocks of this IBD can be arranged
as the columns of a row-column design so that each treatment occurs
once in each row.

Randomize rows and columns.



Columns form an Incomplete-block design (IBD)

Given an incomplete-block design for
n treatments in n blocks of size r,
define the number A (0 < A < 1), depending on the design, by

A =
2σ2

rV

if the analysis uses information orthogonal to blocks.

Choose the optimal IBD: the one with the largest value of A.

Hall’s Marriage Theorem =⇒ the blocks of this IBD can be arranged
as the columns of a row-column design so that each treatment occurs
once in each row.

Randomize rows and columns.



Columns form an Incomplete-block design (IBD)

Given an incomplete-block design for
n treatments in n blocks of size r,
define the number A (0 < A < 1), depending on the design, by

A =
2σ2

rV

if the analysis uses information orthogonal to blocks.

Choose the optimal IBD: the one with the largest value of A.

Hall’s Marriage Theorem =⇒ the blocks of this IBD can be arranged
as the columns of a row-column design so that each treatment occurs
once in each row.

Randomize rows and columns.



IBD continued

Analyse by fitting rows, columns and treatments.

E(MS residual) = ξ3

Vij =
2ξ3

rAij
where Aij is known

V =
2ξ3

rA
=

2σ2

rA
(1−ρ− τ)



Example of a row-column design

A B C D E F G

B C D E F G A

C D E F G A B

D E F G A B C

E F G A B C D

VAB = 1.044× 2
5

ξ3

normal method

VAC = 1.089× 2
5

ξ3

V =
2
5

(
y+4

5

)
ξ3

VAD = 1.091× 2
5

ξ3

averaged over randomizations

V = 1.075× 2
5

ξ3

N.B. y = ξ2/ξ3 ≥ 1
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Efficient row-column designs: summary

I Needs tables of designs.
I Randomize rows and columns.
I More complicated analysis

(should be available in software).
I Average variance may be less than, or more than,

the average variance in randomized complete-block design,
depending on the size of the correlations.

I Unbiased estimator of the variance of every treatment contrast.

I There is no need to randomize treatments; the most important
differences can be given the lowest variance.
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Comparing super-valid restricted randomization and
efficient row-column designs

y =
ξ2

ξ3
=

columns stratum variance
plots stratum variance

≥ 1 (we believe)

The best row-column design is more efficient than super-valid
restricted randomization if and only if y exceeds the following value.

n
r 5 6 7 8 9 10
3 1.68 1.83 1.86 2.02 2.13 2.27
4 1.26 1.47 1.57 1.71 1.80 1.86
5 1.21 1.37 1.48 1.58 1.64
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Use a carefully chosen Latinized design with
REML/ANOVA estimates of variance components

Choose a design with the λij as equal as possible.
Randomize rows and columns.

E(MS residual from complete-block analysis) = ξ3 +
ξ2−ξ3

r(n−1)

E(MS residual from row-column analysis) = ξ3

Hence unbiased estimators of ξ2 and ξ3 and of

V =
2
r

[
ξ3 +

(n− r)(ξ2−ξ3)
r(n−1)

]
.

But this estimator of V does not have a χ2 distribution,
so how do we do hypothesis tests?
Also, there are so few effective df for ξ2 that
these estimates have very poor precision.
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