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» There is 1 ‘control’ treatment (labelled 0) and 4 other treatments.

> O shows that we need to know a specific (non-orthogonal) design for
the allocation of the treatments to the dye-slide combinations, such as
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Two applications

Large Brazilian forestry experiment (v. Julio Bueno)

10 varieties of tree are being grown in several states for 5 years.
It is proposed to compare each with control using a single-reference
design with 10 slides. Is this a good use of resources?

Large number of mutations in yeast (Hughes et al., Cell, 102)

300 mutant varieties of yeast were compared with wild-type yeast
using a double-reference design with 600 slides. Was that the best use

of resources?
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t treatments b slides (call these “blocks™) 2 dyes

Assume that the logarithm of the intensity of treatment i coloured
with dye [ in block & has expected value

Ti+ B+ &
and variance 2, independent of all other responses.

To estimate all the 7; — 7;, we need b >t — 1.
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If there are
just 2
treatments,

In general,

we want V,, the variance of
the estimator of 7; — 7o, to
be small

a design is A-optimal if it
minimizes the sum of the
variances of the estimators
of the pairwise differences;

If t = 2 then A-optimal = D-optimal.

and we want the confidence
interval I}, for T — 7> to be
small.

11 is proportional to 1/ Vy;.

a design is D-optimal if it
minimizes the volume of the
confidence ellipsoid for the
vector (71,...,T;) subject to

Z’L’,‘ =0.



Temporarily ignore the dyes

We will come back to them later.
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Experience with block designs of many sizes

» Designs which are good on the A-criterion are also good on the
D-criterion . ..

> ...and vice versa.
» The best designs have equal replication.
» The best designs are symmetric.

» V;, the variance of the estimator of 7; — 7j, is usually smaller if
the distance between vertices i and j in the graph is smaller.



Typical behaviour of the optimality criteria
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Optimality criteria for all connected equireplicate designs with
8 treatments in 12 blocks of size 2:
graphs with edge-connectivity 3, 2, 1 are shown as X, +, o
respectively
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What happens when b = ¢?

Computer investigation by
» Jones and Eccleston (1980)
» Kerr and Churchill (2001)
» Wit, Nobile and Khanin (2005)
» Ceraudo (2005).
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D-optimality

Cheng (1978), after Gaffke (1978), after Kirchhoff (1847):
(t x number of spanning trees)l/(t_l)

Ep =
b oF

number of spanning trees =
number of ways of removing b — 4+ 1 edges without disconnecting
the graph, (which is easy to calculate by hand when b — ¢ is small)

10 spanning trees 4 spanning trees

The loop design is uniquely D-optimal when b = ¢.
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A-optimality

If b = ¢, the graph contains a single circuit.

Let V;; = variance of estimator of 7; — 7;.

For a given size of circuit, the total variance is minimized when
everything outside the circuit is attached to the same vertex of the

~1v111 4
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Average pairwise variance is a cubic function of the size of the circuit.
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Optimality criteria for designs for 20 treatments in
20 blocks

Ep
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The two criteria give essentially reverse rankings.
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The difference between the colours can be
estimated only from the circuit.

More leaves — smaller circuit — larger
variance for colour difference.

Variance between circuit nodes increases
unless the arrows are directed around the
circuit.

Variance between a leaf and a circuit node
increases because the leaf occurs with
only one colour.

Variance between leaves increases unless
they all have the same colour.



What happens when b =1¢+17

A similar analysis shows that the A-optimality and D-optimality
criteria conflict when ¢ > 12.
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Optimal designs when b =1+ 1
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What happens for larger values of b —1?

Bad news theorem
Given any fixed value of b —t, there is a threshold T such that when

t > T the A- and D-optimality criteria conflict.

In fact, when t > T, the A-better designs have many vertices of
valency 1 (leaves) attached to single vertex of some small graph,
whereas the D-better designs have no leaves.
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How do we resolve this conflict between A-optimality and
D-optimality?

Jones and Eccleston just commented on the discrepancy.

Kerr and Churchill recommended even replication for each
treatment, so that each treatment is coloured with each
dye for half its replications. This avoids designs with
leaves.

But there is a similar conflict between well-connected
designs and designs with many triangles at one vertex.

Wit, Nobile and Khanin gave a non-standard definition of
A-optimality and appeared to favour D-optimality.

RAB proposes that we need b > (9/8)1.

Good news theorem

Inserting 1 or 2 (or sometimes 3) vertices into the edges of a graph
with no leaves gives a lower average pairwise variance than
attaching the extra vertices to a single vertex of that graph.
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Choosing a good equireplicate design with replication 4

1. Ignore the colours.

2. Find the best graph with all vertices having valency 4
(smaller problem, can use symmetry to speed up the search).

3. Euler’s Theorem (for bridges of Konigsberg)
says that the arrows can be put on the edges in such a way that
every vertex has two edges coming in and two edges going out.
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Choosing a good equireplicate design with replication 3

1. Divide the treatments into two halves: “more red” and “more
green”.

2. Strategy: make every block contain one treatment from each half.

3. RAB theorem: the best way to do this is to use the Levi graph of
the best design for #/2 treatments equally replicated in /2 blocks
of size 3. (Smaller problem.)

4. Using the algorithm from Hall’s Marriage Theorem,
(also Konig’s Theorem)
orient the edges so that
each lower vertex has 2 out-edges and 1 in-edge and
each upper vertex has 1 out-edge and 2 in-edges.
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Proposed strategy

Compare the following.
1. Insert vertices with valency 2 into the best graph with valency 3.
» Needs 9¢/8 < b <3t/2.
2. Insert vertices with valency 2 into the best graph with valency 4.
» Needs 6¢/5 < b < 2t.
» Contrast between dyes does not interfere with comparisons
between treatments, but there are more vertices of valency 2.
» In RAB’s experience, never beats previous method.
3. Glue many leaves to a single vertex of some small graph.
» Very few spanning trees, but no pairwise variance is bigger than
402
4. Glue many triangles to a single vertex of some small graph.
» Needs b ~ 3t/2.
» Few spanning trees, but no pairwise variance is bigger than
2.670°.



